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Abstract—Modern cyber attackers use sophisticated, highly-
automated vulnerability search and exploit development tools
to find new ways to break into target computers. To protect
against such threats, we are developing FUZZBUSTER, a host-
based adaptive security system that automatically discovers
faults in hosted applications and incrementally refines and
repairs the underlying vulnerabilities. To perform this self-
adaptation, FUZZBUSTER uses meta-control to coordinate a
diverse and growing set of custom and off-the-shelf fuzz-testing
tools. FUZZBUSTER’s greedy meta-control strategy considers
adaptation deadlines, the exploit potential of vulnerabilities,
the usage schedule of vulnerable applications, and the expected
performance of its various fuzz-testing and adaptation tools.
In this paper, we demonstrate how FUZZBUSTER’s meta-control
reasons efficiently about these factors, managing task selection
to maximize the system’s safety and effectiveness.

Keywords-self-adaptive immunity, cybersecurity, fuzz-testing,
meta-control

I. INTRODUCTION

Cyber-intrusions pose a constant threat to today’s com-
puter systems, and the number of intrusions increases every
year [1], [2]. Cyber attackers use sophisticated tools to detect
and exploit system vulnerabilities (e.g., [3], [4]). This creates
a demand for systems that can quickly react to observed ex-
ploits with automatic diagnosis and adaptation. Furthermore,
if the system can proactively discover a vulnerability before
an attacker exploits it, zero-day exploits might be entirely
prevented.

We are developing FUZZBUSTER under DARPA’s Clean-
slate design of Resilient, Adaptive, Survivable Hosts
(CRASH) program to provide self-adaptive immunity
against cyber-attacks. For an in-depth discussion of FUZZ-
BUSTER’s capabilities, see [5], [6], [7]. FUZZBUSTER uses
a diverse set of custom and off-the-shelf fuzz-testing tools
to perform protective self-adaptation. Fuzz-testing tools
find software vulnerabilities by exploring millions of semi-
random inputs to a program. FUZZBUSTER also uses them
to refine its understanding of known vulnerabilities, clar-
ifying which types of inputs can trigger a vulnerability.
FUZZBUSTER’s behavior falls into two general classes, as
illustrated in Figure 1:

1) Proactive: FUZZBUSTER discovers novel vulnerabili-
ties in applications using fuzz-testing tools. It refines
its models of the vulnerabilities and then repairs them
or shields them before attackers find and exploit them.
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Figure 1. When reacting to an observed fault, FUZZBUSTER creates
an exemplar that reflects the environment and inputs at the time of the
fault. During proactive exploration, FUZZBUSTER synthesizes exemplars
that could lead to a novel fault.

2) Reactive: FUZZBUSTER is notified of a fault in an
application (potentially triggered by an adversary).
FUZZBUSTER subsequently tries to refine the vulnera-
bility and repair or shield it against attackers. Reactive
vulnerabilities pose a greater threat to the host, since
these may indicate an imminent exploit by an attacker.

This paper focuses on FUZZBUSTER’s meta-control rea-
soning, which coordinates proactive and reactive adaptation
under time constraints, without incurring excessive meta-
control processing overhead. We begin by outlining FUZZ-
BUSTER’s process of discovering, refining, and repairing
vulnerabilities, which motivates our research on efficient and
effective meta-control. We then describe our approach and
summarize the results of several experiments that demon-
strate FUZZBUSTER’s meta-control in action.

A. Discovering, Refining, and Repairing Threats Using
FUZZBUSTER

Whether a fault is proactively discovered by FUZZ-
BUSTER or reactively observed on the host, FUZZBUSTER
represents the fault as an exemplar that contains information
about the system’s state when it faulted.

An exemplar includes information for replicating the fault,
such as environment variables and data passed as input
(e.g., via sockets or stdin) to the faulting application.
Some of this data may be unrelated to the underlying
vulnerability (e.g., the fault might be replicated without a
specific environment variable binding). FUZZBUSTER uses
the fuzz-testing tools in Table I to incrementally refine the



Table I
FUZZ-TESTING TOOLS AND OTHER ACTIONS IN FUZZBUSTER.

Discovery actions replicate and discover vulnerabilities:
• replicate-fault: Given an exemplar from the host, repli-

cate the fault under FUZZBUSTER’s control.
• gen-exemplar: Generate an exemplar that might produce a

fault.
• fuzz-2001: Generate random binary data and use it as input

for stdin, file i/o, or command arguments.
• cross-fuzz: Use Javascript and the DOM to fuzz-test web

browsers.
• wfuzz: Fuzz-test web servers with templated attacks.

Refinement actions improve vulnerability profiles:
• env-var: Identify environment variables that are necessary for

a fault.
• smallify: Semi-randomly remove data from the faulting input

to find faulting substring(s).
• div-con: Binary search for a smaller faulting input.
• line-relev: Remove unnecessary lines from multi-line fault-

ing input.
• find-regex: Compute a regular expression to capture the

faulting input.
• insert-chars: Insert characters to generalize regular expres-

sions.
• crest: Given source code, use concolic search to find con-

straints on the faulting input [8].

Adaptation actions deploy a shield or repair a vulnerability:
• create-patch: Given a vulnerability profile, create a patch

to filter input channels and environment variables.
• verify-patch: Assess a patch created by create-patch

to ensure that it outperforms a security baseline.
• apply-patch: Apply a verified patch.
• evolve-patch: Given source code, use GenProg [9] to evolve

a new non-faulting program source and binary.

exemplar, trying to characterize the minimal inputs needed
to trigger the fault.

When the vulnerable application’s source code is avail-
able, FUZZBUSTER can use concolic testing (a combination
of concrete and symbolic execution) to find more general
constraints on the inputs that produce the fault [6]. When no
source code is available, FUZZBUSTER can perform black-
box refinement by using stochastic and deterministic fuzz-
testing tools to generalize the pattern of inputs that produce
the fault. Refinement is an iterative process, where each
concolic or black-box tool improves the vulnerability profile
that FUZZBUSTER uses to characterize the vulnerability.
When refinement is complete, the vulnerability profile char-
acterizes the vulnerability as generally and accurately as
FUZZBUSTER’s toolset will allow.

The vulnerability profile ultimately guides FUZZ-
BUSTER’s adaptation strategy. FUZZBUSTER can deploy
input filters, environment variable filters, or source-code
repair and recompilation, protecting against entire classes
of exploits that may be encountered in the future.

Unfortunately, processing power is limited and FUZZ-
BUSTER is racing against cyber-attackers to discover and

fix vulnerabilities before they are exploited. Consequently,
FUZZBUSTER must repair vulnerabilities quickly, without
spending excessive time deciding among tasks or executing
unnecessary tasks.

In this paper, we describe how FUZZBUSTER’s meta-
control orchestrates the discovery, refinement, and elimi-
nation of software vulnerabilities. We begin by describing
the CIRCA Adaptive Mission Planner [10] on which FUZZ-
BUSTER’s meta-control approach is built. We then describe
how the concepts from CIRCA map to the FUZZBUSTER cy-
bersecurity domain, and how we extended the general meta-
control approach to support additional adaptation capabili-
ties. We present experimental evidence that FUZZBUSTER’s
meta-control attends to important factors in adaptive cyber-
security, including application usage schedules, vulnerability
threat levels, and adaptation deadlines.

II. BACKGROUND: CIRCA ADAPTIVE MISSION
PLANNER

FUZZBUSTER’s meta-control is built on elements from
CIRCA’s Adaptive Mission Planner (AMP). CIRCA (the
Cooperative Intelligent Real-Time Control Architecture) is
designed to control autonomous agents in mission-critical
time-sensitive domains. CIRCA includes a Controller Syn-
thesis Module (CSM) that automatically synthesizes reactive
controllers. The CIRCA CSM is generally over-constrained,
in that it cannot produce optimal plans for an entire mission
in the allotted time. The CIRCA AMP’s job is to actively
manage the CSM, choosing which problems the CSM tries to
solve at any given time. The AMP uses a greedy deliberation
scheduling algorithm to (1) approximate the incremental
expected utility of CSM-planning for all future mission
phases, and then (2) initiate CSM-planning for the highest-
utility phase.

The AMP’s meta-level management relies on the follow-
ing concepts that are relevant to FUZZBUSTER:

• Mission phases are a partitioning over time, from the
beginning to the end of the agent’s mission. Every
mission phase has a start time and an end time. Since
the AMP deliberates before and during the mission, it
tracks the current phase in the mission.

• Threats are hazardous factors within a mission phase
that could end the mission, such as equipment failure
or adversaries. Threats have a numerical lethality value,
where a higher lethality indicates a higher likelihood of
failure if the threat is not addressed by a reactive plan.

• Goals are desirable factors within a mission phase. A
plan that is expected to achieve a goal is assigned a
numerical reward, where reward represents goal desir-
ability.

• Tasks are deliberation actions that take non-negligible
time (e.g., running the CSM planner) and have some
probability of success (e.g., creating a plan that is



expected to successfully achieve all of the selected
goals and prevent threat-induced failures).

• A performance profile for a task k contains estimates
of its time duration t(k) and its probability of success
P (k).

In CIRCA domains, each task involves planning within
a single mission phase in order to achieve a set of goals
and neutralize a set of threats. Some planning tasks can take
longer than others, since some phases have more threats and
goals to consider than others.

The AMP selects the next task to execute from a set of
possible tasks by computing the incremental utility of each
task (i.e., its rate of utility increase over time) based on
the threats and goals within the task’s phase, and the future
rewards from subsequent mission phases. We describe these
equations top-down, starting with incremental utility U(k),
of a task k:

U(k) =
P (k)(E(k)− E(∅))

t(k)
(1)

This is based on the expected future payoff E(k) of
performing the task, and the expected future payoff E(∅) of
doing nothing. We compute E(k) as follows, where Gk and
Tk are the goals and threats addressed by task k, phase pi is
the phase for task k, and the sequence of phases pj , . . . , pn
is the sequence of future phases after pi:

E(k) = R(Gi ∪Gk)S(Ti \ Tk)
n∑

p=j

R(Gp)

p∏
p′=j

S(Tp′) (2)

We use R(G) as the numerical reward for a set of goals
G and S(T ) as the numerical survival probability for a set
of threats T . The expected future payoff first computes the
reward of the goals secured in the current phase Gi and the
goals secured by the task k, Gk, multiplied by the survival
probability of the threats in the phase Ti, but without the
threats Tk addressed by the task. So far, this represents
the expected reward— given the threats— within the phase
of the task. Expected future payoff also includes the sum
of future phase rewards, scaled by the cumulative survival
probability of surviving through all preceding phases. This
means that if the agent can increase survival probability in a
phase (i.e., by neutralizing threats) then it will increase the
expected reward of all future phases and ultimately increase
its expected future payoff.

In the case of E(∅), we set Gk = ∅ and Tk = ∅, so
E(k) − E(∅) (from the incremental utility equation) is the
marginal utility of performing task k.

The AMP computes these values to select the task with
the maximum incremental utility and then execute that task.

Like CIRCA, FUZZBUSTER uses the AMP and the above
equations for task selection, but the concepts from CIRCA
(e.g., phases, threats, and goals) must be mapped into the

domain of cybersecurity, and we must add functionality to
orchestrate the types of tasks shown in Table I.

III. FUZZBUSTER META-CONTROL

FUZZBUSTER must coordinate multiple types of tasks
(see Table I) to simultaneously test and adapt multiple
applications on its host.

The ultimate FUZZBUSTER objective is system security,
which differs from traditional CIRCA missions, but we can
define the AMP concepts from Section II to utilize the same
utility, payoff, reward, and survival metrics.

The CIRCA concepts map to FUZZBUSTER as follows:
• Each mission phase is a nonzero duration of time where

zero or more applications are used (i.e., by the system
or the end user).

• A goal is the use of an application within a phase,
where the numerical reward is proportional to the length
of the phase.

• A threat is either (a) a known vulnerability in an appli-
cation, or (b) a potential vulnerability in an application.
Known vulnerabilities have been found or replicated
by FUZZBUSTER, and potential vulnerabilities have
not (so they are orders of magnitude less lethal), but
any application is potentially vulnerable. Known and
potential vulnerabilities exist in every phase where the
corresponding application is used.

• A task is any discovery, refinement, or adaptation task
shown in Table I, for some application on the host.

• A performance profile for a task includes its runtime
estimate as well as an estimate of its likelihood of
contributing to a successful protective adaptation.

Note that application usage in a particular mission phase
provides a reward, but also exposes the system to one or
more threats that reduce the likelihood of future rewards.
This is because using an application extends the attack sur-
face of the host, and when that attack surface is vulnerable,
it might be exploited.

FUZZBUSTER cannot alter the mission phases or the usage
schedule of the applications therein, but it can select tasks
that increase the probability of survival and thereby increase
future reward, given the usage schedule. It must choose
among proactive fuzz-testing tasks (e.g., fuzz-2001) for
different applications on the host, and it must choose among
different types of refinement and adaptation tasks (e.g.,
smallify and find-regex) for any identified vulner-
ability. FUZZBUSTER uses the incremental utility function
from Section II to select the currently-executable task with
the highest incremental utility. In effect, this means that
FUZZBUSTER will select one task over another task if the
following are true, all else being equal:
• The associated application is used more frequently. This

helps FUZZBUSTER focus on active areas of the attack
surface.



• The associated application will be used sooner. This
helps FUZZBUSTER focus on more imminent potential
exploits.

• The associated vulnerability (e.g., of a refinement task)
is more lethal. This helps FUZZBUSTER address more
critical problems sooner.

• The task is more likely to succeed. This reduces the
likelihood of FUZZBUSTER wasting cycles on futile
tasks.

• The task is expected to take less time. This helps
FUZZBUSTER improve the security of the system at
the highest rate possible.

Unfortunately, adopting the original, unmodified AMP
meta-control code also causes an undesirable behavior. Sup-
pose that FUZZBUSTER is fuzz-testing two applications, one
of which is used 90% as frequently as the other. All other
things being equal, FUZZBUSTER will only select tasks for
the more frequently used application, since it yields more
utility. Since FUZZBUSTER cannot ignore slightly-less-used
applications in its search for unknown vulnerabilities, we
implemented a balancing mechanism, which we discuss
next.

A. Balancing Effort Over the Attack Surface

FUZZBUSTER’s meta-control aims to balance the time it
spends fuzz-testing its applications according to the relative
proportion of time each application will be used in future
mission phases.

FUZZBUSTER embeds effort-balancing into its phase-
based utility computation. For a given task k, it computes
a balance coefficient bi for each phase i. The coefficient
bi is computed using three vectors that track time across
applications: (1) the present time allocation t over all appli-
cations; (2) the task’s allocation tk over all applications;1and
(3) the time allocation ti over applications in phase i. The
balance coefficient is computed as follows, where t̂ indicates
a normalization of vector t:

bi = 1 + (t̂i ·’t+ tk)− (t̂i · t̂) (3)

Phase-based application balancing causes FUZZBUSTER
to allocate its fuzz-testing effort across applications accord-
ing to their share of future usage, all else being equal. By
incorporating this balancing scalar into the utility calcula-
tion, FUZZBUSTER is able to smoothly merge the desired
balancing behavior with the other meta-control behaviors
noted earlier. For example, as we will show in our experi-
mental results, FUZZBUSTER will temporarily abandon its
effort-balancing to fix high-impact known vulnerabilities.
This is because addressing a known vulnerability (to greatly
increase survival probability) provides orders of magnitude
more utility than achieving balance over applications.

1At present, FUZZBUSTER tasks only address a single application, so
vector tk contains exactly one nonzero dimension.

B. Adaptation Deadlines

If FUZZBUSTER only adapted to a vulnerability once
its corresponding vulnerability profile was fully refined,
FUZZBUSTER would leave its host unprotected throughout
a potentially lengthy refinement process. To quickly foil
potential exploits of known vulnerabilities, FUZZBUSTER
has an adaptation deadline parameter for each vulnerability,
which tells FUZZBUSTER how long it has to make an
initial adaptation (e.g., apply an environment patch, apply
an input filter, or evolve a new binary). Deadlines are
optional parameters, but if a deadline is set, it is pending
if the application has not been adapted for that specific
vulnerability, and it is satisfied otherwise.

FUZZBUSTER attempts to satisfy pending deadlines by
creating the best adaptation possible in the allotted time,
and then it continues refining the vulnerability to achieve a
more general and accurate final repair. FUZZBUSTER’s meta-
control addresses pending deadlines using the following
procedure:

1) Calculate the time remaining before the deadline.
2) Calculate the time-bounded refinement probability for

the vulnerability as the probability that some existing
refinement task (see Table I) will succeed before the
deadline, using the tasks’ corresponding performance
profiles.

3) Discount the success probability of all adaptation tasks
(see Table I) for that vulnerability by the time-bounded
refinement probability.

The time-bounded refinement failure probability Pf (v) for
a vulnerability v with deadline d(v) and refinement tasks
R(v) is computed as follows:

Pf (v) =
∏

k∈R(v)

 1− P (k) if d(v) = ∅
1 if tnow + t(k) > d(v)

1− P (k) otherwise
(4)

As a pending deadline approaches for a vulnerability, each
existing refinement task for the vulnerability will eventually
become impossible to execute before the deadline. This
means the time-bounded refinement probability will reach
zero via a step function. At this point, the success probability
of all adaptation tasks for the vulnerability— which have
a high probability of success— will not be discounted,
and FUZZBUSTER will satisfy the deadline by sequentially
selecting adaptation tasks with high utility.

FUZZBUSTER is not guaranteed to satisfy the deadline
by the exact time specified, but it does guarantee that
adaptation tasks take precedence at or before that time. If
the deadline is set to the present clock time, or to a time
in the past, FUZZBUSTER will immediately attempt to adapt
the application until the deadline is satisfied.

We next describe experiments that show how the extended
AMP-based FUZZBUSTER meta-control provides efficient,



context-sensitive task management that produces the desired
types of behavior.

IV. EXPERIMENTS

We describe five indicative examples from a suite of
evaluations that demonstrate FUZZBUSTER’s meta-control
within the cybersecurity domain. Each experiment illustrates
adaptive meta-control under different circumstances, includ-
ing heavy application usage, balancing multiple types of
fuzz-testing, handling vulnerabilities of varying lethality, and
handling multiple adaptation deadlines.

A. Balanced fuzz-testing with an application usage schedule

Our first two experiments evaluate FUZZBUSTER’s effort-
balancing across applications. Since these two experiments
focus on evaluating the effort balance of meta-control,
we used stub applications in place of real ones, so that
FUZZBUSTER would never find and adapt to real vulner-
abilities. We present both examples, and then we describe a
mathematical evaluation of these behaviors.

In our first example, FUZZBUSTER is given a simple
alternating phase schedule, where either application app1
or app2 is used in each phase.
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Figure 2. FUZZBUSTER balances the time it spends on two applications
based on a schedule of future application usage. This behavior results from
the AMP extension for effort balancing, as well as the native AMP tendency
to address more imminent threats to help secure future rewards.

Figure 2 illustrates the results. Since FUZZBUSTER rep-
resents each application usage as a threat with positive
lethality, FUZZBUSTER computes the most utility for tasks
that explore applications that will be used in the near future.
This means that immediately before an application (e.g.,
app1) is used in a phase (e.g., r2a1)— and early-on within
that phase— tasks corresponding to the application have
relatively high utility, increasing their selection potential.
This causes the alternating time allocation behavior of
FUZZBUSTER in Figure 2.

In a second example, we designed a sequence of mission
phases that simulates a day of application usage by a
hypothetical military planner. We repeated the phases twice

to simulate a two-day mission. Both days consist of the
following phases:
• Overnight: no applications are used.
• Intelligence-gathering uses the GIS and
SensorDashboard applications.

• Planning makes use of GIS, comms, PowerPoint,
and Word.

• Briefing makes use of PowerPoint.
• Exec makes use of GIS and comms.
• Debrief makes use of GIS, PowerPoint, and Word.

After the first day d0 of phases, an identical sequence
follows for the next day d1.

We used this sequence of phases as input to FUZZ-
BUSTER, and FUZZBUSTER subsequently created and ex-
ecuted discovery tasks for each of these applications.

Results are plotted in Figure 3. Phase boundaries are
plotted and labeled along the x-axis, indicating which appli-
cations are used in which phase. Each application is plotted
as a separate dataset, showing how much time FUZZBUSTER
has allocated to fuzzing each application.

As mentioned above, FUZZBUSTER computes the most
utility for tasks that explore applications that will be used in
the near future. Consequently, since PowerPoint is the
only application used in the two briefing phases, FUZZ-
BUSTER focuses most of its time on addressing that portion
of the attack surface prior to (and during) those phases.

The graph also illustrates FUZZBUSTER balancing its
fuzz-testing based on future application usage. For instance,
in the overnight phases, FUZZBUSTER balances its time
among multiple applications based on their usage in up-
coming phases, and after the final phase of application usage
(d1p5), FUZZBUSTER attempts to equalize its time allocation
across all applications.
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Figure 3. FUZZBUSTER balances the time it spends on applications using
a repeating schedule of twelve application usage phases.

We can mathematically evaluate the effort balancing as
the time FUZZBUSTER has spent fuzz-testing an application
before and during each subsequent usage, as a preparedness
measure. This is equivalent to computing the area under



the curve for each given application’s dataset, when the
application is in use, and then summing over all applications
and all phases.

The baseline for comparison is the same area computation
if FUZZBUSTER spends equal time on all applications. In the
first example in Figure 2, balancing outperforms the baseline
by 6%, and in the second example in Figure 3, balancing
outperforms the baseline by 9%.

B. Coordinating discovery tasks and refinement tasks

When FUZZBUSTER discovers a vulnerability in its ap-
plications, it must quickly refine the vulnerability and then
adapt the application. Addressing a known vulnerability
should take precedent over additional discovery tasks, since
the ultimate goal of FUZZBUSTER is system security.

To test this tradeoff of discovery, refinement, and adap-
tation tasks (see Table I for the full listing), we pro-
vided FUZZBUSTER two faulty applications (tcsh and
vuln-ping). Unlike the previous experiment, we did not
provide a phase schedule— those two applications are the
only ones of interest.

The results are plotted in Figure 4. FUZZBUSTER begins
by creating and executing vulnerability discovery tasks for
both applications. It finds a vulnerability in tcsh, refines it
fully at 25 seconds, and adapts it at 30 seconds. After tcsh
is adapted, FUZZBUSTER balances its application usage by
performing discovery tasks on vuln-ping, until around
53 seconds, when it achieves its balance and proceeds to
fuzz-test both applications in an alternating pattern.
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Figure 4. FUZZBUSTER discovers a new vulnerability, immediately
addresses it with refinement and adaptation (patch init/apply) tasks, and
then resumes its discovery tasks to find novel vulnerabilities and balance
its time between applications.

C. Adapting to multiple vulnerabilities of varying lethality

Reactive vulnerabilities that are reported by FUZZ-
BUSTER’s underlying host may have resulted from an attack
by an adversary, so these pose a higher threat than proactive
vulnerabilities discovered by FUZZBUSTER (all else being
equal). Consequently, when faced with vulnerabilities of

both types, FUZZBUSTER should dedicate more of its effort
to adapting to the reactive vulnerabilities.

FUZZBUSTER automatically awards reactive vulnerabili-
ties an order of magnitude higher lethality than proactive
vulnerabilities, so tasks that address reactive vulnerabilities
increase survival probability— and the likelihood of sus-
taining future rewards— significantly more than tasks that
address proactive vulnerabilities.

In this experiment (plotted in Figure 5), FUZZ-
BUSTER is given a fault-injected desktop calculator ap-
plication dc-modfail, and it begins by executing dis-
covery tasks. It first finds a proactive vulnerability
Vuln-dc-modfail-nosrc-1, plotted in green, and be-
gins executing refinement tasks to better characterize the
underlying vulnerability.

At 20 seconds, FUZZBUSTER receives a reactive fault
notification from the host regarding a vulnerability in
the same application (i.e., the fault was not triggered
by FUZZBUSTER’s own tests of the application). FUZZ-
BUSTER responds by replicating the fault and construct-
ing a vulnerability profile for the reactive vulnerability
Vuln-dc-modfail-nosrc-2, plotted in blue. FUZZ-
BUSTER stops refining the proactively-discovered vulnera-
bility and proceeds to refine and adapt the application to
address the reactive vulnerability, since it poses a greater
threat.

After the reactive vulnerability is addressed, FUZZ-
BUSTER continues refining the proactive vulnerability until
a second fault notification arrives after 50 seconds. Like the
previous reactive vulnerability, FUZZBUSTER subsequently
replicates it, records it as Vuln-dc-modfail-nosrc-3,
refines the vulnerability, and patches it before returning
to refining the proactive vulnerability that FUZZBUSTER
discovered on its own.
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Figure 5. FUZZBUSTER discovers a new proactive vulnerability (green
line) and begins refining it, then it receives two unexpected, reactive fault
notifications from the host and addresses the reactive vulnerabilities (blue
and red lines) before returning to its proactive fuzz-testing.



D. Handling adaptation deadlines

In our final experiment, FUZZBUSTER fuzz-tests three
faulty applications (tcsh, guess, and vuln-ping), and
when it finds a vulnerability, it creates a 15-second adapta-
tion deadline.

Results are plotted in Figure 6. FUZZBUSTER discovers
a vulnerability in guess and immediately refines and
patches it before the adaptation deadline. After additional
proactive fuzz-testing, FUZZBUSTER discovers a vulnerabil-
ity in tcsh and refines it until the adaptation deadline,
when the utilities of the adaptation tasks surpass those
of the refinement tasks. Once the deadline is satisfied,
FUZZBUSTER continues refining the vulnerability and then
completes a final adaptation. FUZZBUSTER then proactively
fuzzes vuln-ping and guess to regain its balance across
applications.

FUZZBUSTER does not complete its self-adaptation before
either deadline— in both cases, it begins its adaptation
tasks before the deadline, but finishes adapting roughly 2.5
seconds after either deadline. Since FUZZBUSTER does not
spend time planning to coordinate tasks that are not already
in existence, it will not work backwards from the deadline
to schedule its adaptation; however, it is guaranteed to start
adapting before or on the deadline.

The dashed FB Internals curve in Figure 6 plots
the cumulative time spent on all FUZZBUSTER overheads,
including startup, task creation, utility computation, and
logging. This overhead comprises less than 3% of FUZZ-
BUSTER’s time and, subtracting startup, it comprises less
than 1.5% of FUZZBUSTER’s time. Thus FUZZBUSTER’s
meta-control is highly efficient, imposing little overhead for
the intelligent self-guiding behavior it provides.
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Figure 6. FUZZBUSTER discovers proactive vulnerabilities in two applica-
tions, stops refining them by their adaptation deadlines (15s after discovery),
and adapts its application. In the case of tcsh, FUZZBUSTER performs
additional refinement and adaptation after the deadline patch for additional
protection.

V. RELATED WORK

As previously noted, the FUZZBUSTER approach has
roots in fuzz-testing, a term first coined in 1988 applied to
software security analysis [11]. It refers to invalid, random
or unexpected data that is deliberately provided as program
input in order to identify defects. Fuzz-testers— and the
closely related “fault injectors”— are good at finding buffer
overflow, XSS, denial of service (DoS), SQL injection, and
format string bugs. They are generally not highly effective
in finding vulnerabilities that do not cause program crashes,
e.g., encryption flaws and information disclosure vulnerabil-
ities [12]. Moreover, existing fuzz-testing tools tend to rely
significantly on expert user oversight, testing refinement and
decision-making in responding to identified vulnerabilities.

FUZZBUSTER is designed both to augment the power
of fuzz-testing and to address some of its key limitations.
FUZZBUSTER fully automates the process of identifying
seeds for fuzz-testing, guides the use of fuzz-testing to
develop general vulnerability profiles, and automates the
synthesis of defenses for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [13] and PMOP [14] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods
to avoid damage or compromises.

The CORTEX system [15] used a different approach,
placing a dynamically-programmed proxy in front of a
replicated database server and using active experimentation
based on learned (not hand-coded) models to diagnose new
system vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the
self-adaptive, self-regenerative software concept, they are
closely tailored to specific applications and specific repre-
sentations of program behavior. FUZZBUSTER provides a
general approach to adaptive immunity that is not limited
to a single class of application. FUZZBUSTER does not
require detailed system models, but will work from high-
level descriptions of component interactions such as APIs
or contracts. Furthermore, FUZZBUSTER’s proactive use of
intelligent, automatic fuzz-testing identifies possible vulner-
abilities before they can be exploited.

Reinforcement learning (RL) is another approach to soft-
greedy action selection. Temporal difference RL methods
incrementally improve an action policy based on immediate
rewards received by an agent, and evolutionary RL methods
simulate the process of natural selection to optimize a
population of candidate policies. Both of these methods
require orders of magnitude more training than our utility-
based approach, although these methods can be combined
to speed up online learning [16].



VI. CONCLUSION AND FUTURE WORK

FUZZBUSTER is intended to discover vulnerabilities and
then quickly refine and adapt its applications to prevent them
from being exploited by attackers. This requires orchestrat-
ing a diverse set of discovery, refinement, and adaptation
tools without incurring a cumbersome overhead for planning
and deliberation.

We presented a greedy utility-based task selection algo-
rithm that addresses important factors in the cybersecurity
domain. We described two experiments that demonstrate
that FUZZBUSTER’s meta-control adjusts its task selection to
fuzz-test applications based on their usage schedule, giving
priority to applications in order of usage and frequency of
future usage. When FUZZBUSTER discovers vulnerabilities
from fuzz-testing, it immediately refines and repairs the
vulnerability, and then returns to discovery tasks, as shown
in our third experiment. Our fourth experiment shows that
FUZZBUSTER attends to vulnerabilities in order of the threat
they pose to the host, so FUZZBUSTER temporarily sets
aside less-critical vulnerabilities to repair more threatening
ones. Finally, our fifth experiment shows that FUZZBUSTER
can deploy temporary adaptations to shield the host while it
develops a more accurate final repair. We also showed that
FUZZBUSTER’s meta-control can attend to these cyberse-
curity factors and orchestrate adaptations without incurring
cumbersome overhead for planning and meta-reasoning.

Next steps for improving FUZZBUSTER’s meta-control in-
clude using a sliding-window for effort-balancing, updating
the lethality of a vulnerability as new refinements are made,
and using domain-specific knowledge to more accurately
estimate vulnerability lethality and the probability of latent
vulnerabilities in applications. These improvements will
require little or no extension to the meta-control framework.
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