' SIFT I R ——
m Ac KAR: H el prI AdVIce for COde Smart Information Flow Technologies

Knowledge and Attack Resilience Ugur Kuter, Mark Burstein

UKuter@sift.net, Burstein@sift.net

Proactive code-analysis to find program inputs that lead to security vulnerabilities and techniques for learning
program workflows and generating suggestions to repair vulnerabilities as code is developed.

HACKAR Technical Capabilities and Innovations

* |dentifies vulnerabilities early in development, allowing the code to be repaired most easily.
* Provides Just-In-Time suggested fixes for improving code and training software engineers

* Provides safeguards against vulnerabilities due to dynamically-changing, ill-documented or untrusted sources of input to remote
functions even if remote functions are opaque or their requirements are unavailable.

 New test input generation techniques based on concolic testing and grammar-based reasoning, sidestep computational problems
of path-explosion in symbolic execution, where branching and looping could explode the space of symbolic tests that need to be

done.

e Structural learning and knowledge capture of program data flows, advancing state-of-the-art Al learning, works to learn arbitrary
recursive, looping, and branching structures.

 Multi-suggestion generation over program hierarchies provides real-time analysis experience to the programmer.
« HACKAR and Eclipse and Emacs integration provides IDEs on two of the most popular code development environments

HACKAR Information Flow Architecture

HACKAR Eclipse

Plugin/ Programming
l Current program (possibly incomplete) Environment

PROTECT: Code é =
Testing and Simulation > '

uuuuuuuu

COde Advice to the User it memion 18 " o

Each t] 1. Vulnerability highlights
aC race carries: .
. . Statements/expressions AIDE: Suggestlon 2. Code -replac-ement ’A\
Different possible oy > Planni 3. Code insertion ol \
. execute annin : i
execution traces of the . 8 4. Suggestion history g S
Program block indicators "
program Concrete data read and
written
Symbolic branch
constraints _ .
v Hierarchical Task
Network (HTN)
S H OW : H i e ra rC h ica I re p rese ntatio n Of r:e Edit JaS:u;:.and;:::::/AI::::;:::WE::::; Ei:;;:t B AskHackar Run Window Help
> thesource Mt S0 # @ v =iHmyOyQ iSOy P4 Emh i E oo qQ ﬁ ¢® Java EE | &’ Java
WO r kfl OW' f Package Explorer 52 = B | Androidwifijava & = g
& - & 1#import java.io.BufferedReader;[]
Explanation, and g §P"'=1;:tz;:=;yaz:zzﬁ";;;xm1;
Repair Learnin Safety constraints/bounds on the skt || T et e services) o i
P 5 values of program variables, it e i ittt
function/procedure parameters I3 Jjcomute input for gk ont uee gl 1o get e
C o ttetitan)
M Odel LI b ra ry N eW’ Safe |ea rn ed Cod e b | Ocks fo r ig } Tgsﬁ“ﬁﬁ?nl.setUnCLlckLlstener(new myOnClickListenerl(serviceId));
accomplishing same 1/0 of the Bug s ettt eqtst ey 1 ssricrs.eats) Source of
subroutines and functions . s | 1 e (mucein et | i
I n d I Cato r % ilyButtunl .setOnClickListener(new myOnClickListenerl(serviceld)); J po.te nt I a I
T | g - failure
33 String sID = "4567";
Evaluation and Validation § 0 werTome - e moroiparia): Vulnerable
¥ BugExplorer 2 W 3 B FE ¥ = O ﬁdBug’:jnfct:? Linelstatement # B Y =0
¥ & Androidwifi (1 AndroidWifi.java: 33
'#S(ariest(w}{ } =l Navigation
¥ ¥ High confidence (1) Method Androidwifi.Androidwifi. ANDROIDWIFI() should be fixed as HACKAR suggests.
. . ¥ # HACKAR identified a way to improve the security of your program (1) CODE_TO_REPLACE: /’homn'a/’hackar/"!)roje:.ts',"hackar,"trunk/coclei"tests/toy/jpf,"src/Android:uifi.java:[line 33]
i G e n e rate CO r re Ct S u gge St I O n S fo r 9 5 % Of p rog ra m S' W I t h e a C h # Method Androidwifi.Androidwifi. ANDROIDWIFI() should be fixed as HACKARsugge = REPLACEMENT_CODE: StringsID = "4567"; if (((SID.LENGTH() >= 1)) & ((SID.LENGTH() <= 4))) {...}
vulnerability analyzed, learned, and a fix is proposed under 2
seconds
o . N i Nno Writable Smartinsert 33:5
* Coverage 100% in our experimental suites ——Bug Ranking Code Advic

* For our scalability, we can generate a suggestion 1 to 1.5 seconds
on average, for programs that range from 25-30 lines of code to
over 100 LoC

* More experiments and results can be found in Kuter et al. 2015. m

Proceedings of the Innovative Applications of Artificial
Intelligence (IAAI-15). Ensuring program operationality and
well-being not just as a stand-alone

- S artifact but In complex execution
w 3
2 70 ecosystems
S 60 %‘2.5
5 g 2 * Vulnerability analysis mobile (e.g.,
2 ¢ Eos . . .
= %0 2 Android) applications and services
& 20 v : :
10 05 HACKAR for binary code transformation
D -
e e L L. 0 - :
FRES & TSP Fl T EE T E S and analysis
"‘F § S ‘f} E:F“\. %@ S\ Q‘é\ @% o ..:3}\ <& {QQ\ & “?Q; :g:g, g é‘?“ g\b @é} &
LEPOLTTEF T ¢ PRI T & &
v P T & N o RO ngp <8 s
wh "

HACKAR is funded by the Office of Naval Research

Java Program Name

www.sift.net

