
Helpful Advice for Code
Knowledge and Attack Resilience

 ACKAR: H H

PROTECT: Code
Testing and Simulation

PROTECT: Code
Testing and Simulation

SHOW: Hierarchical
Workflow,

Explanation, and
Repair Learning

SHOW: Hierarchical
Workflow,

Explanation, and
Repair Learning

AIDE: Suggestion
Planning

AIDE: Suggestion
Planning

Hierarchical Task
 Network (HTN)
representation of
the source

Current program (possibly incomplete)

Code Advice to the User
1. Vulnerability highlights
2. Code replacement
3. Code insertion
4. Suggestion history

HACKAR Eclipse
Plugin/ Programming

Environment

HACKAR Eclipse
Plugin/ Programming

Environment

Different possible
execution traces of the

program

Each trace carries:
Statements/expressions
executed
Program block indicators
Concrete data read and
written
Symbolic branch
constraints

Program
Models

Vulnerability
Models

English Bug
Descriptions

Model Library

Safety constraints/bounds on the
values of program variables,
function/procedure parameters

New, safe learned code blocks for
accomplishing same I/O of the
subroutines and functions

Proactive code-analysis to find program inputs that lead to security vulnerabilities and techniques for learning
program workflows and generating suggestions to repair vulnerabilities as code is developed.

• Generate correct suggestions for 95% of programs, with each
vulnerability analyzed, learned, and a fix is proposed under 2
seconds

• Coverage 100% in our experimental suites

• For our scalability, we can generate a suggestion 1 to 1.5 seconds
on average, for programs that range from 25-30 lines of code to
over 100 LoC

• More experiments and results can be found in Kuter et al. 2015.
Proceedings of the Innovative Applications of Artificial
Intelligence (IAAI-15).

0

0.5

1

1.5

2

2.5

3

3.5

C
P

U
 T

im
es

 (
se

cs
)

Code Advice
 Bug Ranking

Bug
Indicator

Vulnerable
Line/Statement

Source of
potential
failure

Ugur Kuter, Mark Burstein
 UKuter@sift.net, Burstein@sift.net

• Identifies vulnerabilities early in development, allowing the code to be repaired most easily.

• Provides Just-In-Time suggested fixes for improving code and training software engineers

• Provides safeguards against vulnerabilities due to dynamically-changing, ill-documented or untrusted sources of input to remote
functions even if remote functions are opaque or their requirements are unavailable.

• New test input generation techniques based on concolic testing and grammar-based reasoning, sidestep computational problems
of path-explosion in symbolic execution, where branching and looping could explode the space of symbolic tests that need to be
done.

• Structural learning and knowledge capture of program data flows, advancing state-of-the-art AI learning, works to learn arbitrary
recursive, looping, and branching structures.

• Multi-suggestion generation over program hierarchies provides real-time analysis experience to the programmer.

• HACKAR and Eclipse and Emacs integration provides IDEs on two of the most popular code development environments

• Ensuring program operationality and
well-being not just as a stand-alone
artifact but In complex execution
ecosystems

• Vulnerability analysis mobile (e.g.,
Android) applications and services

• HACKAR for binary code transformation
and analysis

HACKAR is funded by the Office of Naval Research

 www.sift.net www.sift.net

Next Steps Next Steps

Evaluation and Validation Evaluation and Validation

HACKAR Technical Capabilities and Innovations HACKAR Technical Capabilities and Innovations

HACKAR Information Flow Architecture HACKAR Information Flow Architecture

