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Proactive code-analysis to find program inputs that lead to security vulnerabilities and techniques for learning
program workflows and generating suggestions to repair vulnerabilities as code is developed.

HACKAR Technical Capabilities and Innovations

* |dentifies vulnerabilities early in development, allowing the code to be repaired most easily.
* Provides Just-In-Time suggested fixes for improving code and training software engineers

* Provides safeguards against vulnerabilities due to dynamically-changing, ill-documented or untrusted sources of input to remote
functions even if remote functions are opaque or their requirements are unavailable.

 New test input generation techniques based on concolic testing and grammar-based reasoning, sidestep computational problems
of path-explosion in symbolic execution, where branching and looping could explode the space of symbolic tests that need to be

done.

e Structural learning and knowledge capture of program data flows, advancing state-of-the-art Al learning, works to learn arbitrary
recursive, looping, and branching structures.

 Multi-suggestion generation over program hierarchies provides real-time analysis experience to the programmer.
« HACKAR and Eclipse and Emacs integration provides IDEs on two of the most popular code development environments
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* Coverage 100% in our experimental suites ——Bug Ranking Code Advic

* For our scalability, we can generate a suggestion 1 to 1.5 seconds
on average, for programs that range from 25-30 lines of code to
over 100 LoC

* More experiments and results can be found in Kuter et al. 2015. m

Proceedings of the Innovative Applications of Artificial
Intelligence (IAAI-15).  Ensuring program operationality and
well-being not just as a stand-alone
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