
NST: A unit testing system for Common Lisp

John Maraist
SIFT, LLC

Minneapolis, Minnesota
jmaraist@sift.info

Appears in the Proceedings of the 2010 International Lisp Conference, Reno, Nevada, October 19–21.

ABSTRACT
We introduce NST, an expressive and extensible unit testing
framework for Common Lisp. Distinct features of Lisp’s ob-
ject system CLOS allow an elegant implementation for NST,
and we describe this class model and implementation. There
are over a dozen test frameworks for Lisp which are currently
available, almost half of which are under active maintenance,
and we compare these packages’ features. Development of
NST is ongoing, and we conclude with a discussion of future
directions for the system.

1. INTRODUCTION
In the last ten years the benefits of test-driven devel-

opment have become very clear, and its adoption is now
widespread. Many of its techniques are now widely accepted
as best-practice software engineering standards:
• “Test first” practices such as translating bug reports and

planned features into not-yet-passing tests.
• Use of testing to enforce design contracts for API func-

tions.
• Evolution of regression tests suites which can be fre-

quently, often automatically, rechecked to guarantee the
correctness of a code repository.

With this paper we aim for three goals: First, we introduce
NST, a new unit testing framework for Common Lisp. NST
is an expressive, extensible system which can support a vari-
ety of testing styles. NST was developed as an in-house tool
at SIFT, and has been available under an open-source li-
cense via http://cliki.net/NST since June 2009. Second, we
provide a detailed comparison of current Lisp unit test sys-
tems. There are trade-offs of expressiveness and overhead
among the various systems which give test authors many
valid choices. Finally, NST’s under-the-hood design offers
ideas (or counterexamples!) to developers who find that no
existing test framework serves their needs, and who there-
fore undertake their own testing framework. We begin in
Section 2 with an overview of NST’s features and syntax.
NST translates the artifacts of testing to CLOS classes and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ILC ’10 Reno, Nevada USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

objects, and we discuss this implementation in Section 3.
We survey several unit test systems available for Lisp in
Section 4. We conclude in Section 5 with a discussion of
possible future directions for the project.

2. SYSTEM OVERVIEW
NST shares many of the typical notions of unit test frame-

works [15]. A test has three primary components: a name, a
test criterion, and zero or more forms under test. Execution
of a test assesses its forms in the manner specified by the
criterion (which may or may not involve actually evaluating
the forms). Each test is associated with a named group, al-
lowing multiple tests to be executed by a single invocation of
the group’s name instead of each test’s name; groups are also
implicitly aggregated themselves under the Lisp package in
which their symbolic names reside. Because many tests will
tend to refer to a recurring collection of sample data, it is
convenient to define named sets of fixtures, or test data, to
provide consistent test environments. NST provides macros
for defining tests, groups, fixtures and criteria.

2.1 Fixture sets
Essentially, fixtures are just a list of bindings of names to

forms, as could be used in a let-binding, but not immediately
associated with any particular scope.

(def-fixtures simple-fixture
(: documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-fixtures more-fixtures
(: special magic-number)

(even-ints ’(2 4 10 magic-number))
(dodgy-even-ints ’(1 2 4.0)))

(def-fixtures another-fixture ()
(ordinary 3))

The second argument to the def-fixtures macro, on lines 2, 6
and 9 of the example, specifies options for fixtures via the
usual Lisp convention for optional parameters. The exam-
ples show the documentation argument, and the special ar-
gument for declaring names expected to be bound for any
later use of the fixture. Other options for def-fixture:
• Control whether the values bound when applying fixtures

are evaluated once and cached for future applications, or
re-bound at each application.
• Provide additional mechanisms for declaration over the

scope of the fixtures’ names.
• Specify code to initialize the fixtures, and clean up after

it.

Bundling fixtures as a named set in this manner provides
a number of benefits. First, we can expand them freshly
as needed for different tests or groups, helping to isolate
individual tests from each others’ side-effects. We also avoid
cluttering the package with global variables of test data,
or alternately, needing a separate package to contain the
clutter. At the same time, NST does provide the ability
to inject these bindings as globals within the package for
debugging.

2.2 Tests, groups and criteria
Groups and tests may be defined together, with tests im-

plicitly included in the group within whose form the test
definitions appear, or separately, with tests explicitly nam-
ing the group to which they are assigned:

(def-test-group simple-group (simple-fixtures)
(def-test has-num ()

(:eql magic-number)
(factorial 5)))

(def-test has-sym (:group simple-group)
(:eq magic-symbol)

’asdfh)
(def-test-group other-group (simple-fixtures

more-fixtures)
(def-test even-ints

(:each (:all (: predicate evenp)
(: predicate integerp)))

even-ints)
(def-test even-int-trial

(:each (:all (: predicate evenp)
(: predicate integerp)))

dodgy-even-ints))

The group and test-defining macros accept additional op-
tions, including:
• Specify code to initialize the group or test, and clean up

after it.
• Attach fixtures to individual tests.
• Add documentation strings.

2.3 Criteria
In the first two tests, (:eql magic-number) and (:eq magic-

symbol) are criteria which specify what should be expected
of the forms (factorial 5) and ’asdfh respectively. The sec-
ond pair of tests shows how criteria can be combined and
applied to more complex lists, structures and class objects.
The :each criterion takes another subcriterion as its own ar-
gument, and expects its form under test to evaluate to a list.
The overall criterion passes only if its subcriterion passes for
each element of the evaluated list. The :all criterion expects
that all of its subcriteria should pass on its forms under test.
The :predicate criterion expects its argument, when applied
as a function to the values returned by its forms under test,
to return a non-nil value. The second test group also il-
lustrates the use of multiple fixture sets: simple-fixtures and
more-fixtures are applied in order, so that simple-fixtures pro-
vides a binding to the name magic-number, as more-fixtures
requires.

The :eql, :eq, :each, :all and :predicate are some of the stan-
dard criteria defined within NST. Test authors can define
and name their own criteria to conveniently perform arbi-
trary evaluations of forms. A simple example is suggested
by the two tests of our other-group above: we can define a
new criterion to abbreviate the repeated compound form,

(def-criterion-alias (: even-integer-list)
‘(:each (:all (: predicate evenp)

(: predicate integerp))))

We can then simplify the group’s test definitions,

(def-test-group other-group (simple-fixtures
more-fixtures)

(def-test even-ints :even-integer-list
even-ints)

(def-test even-int-trial :even-integer-list
dodgy-even-ints))

In addition to this “aliasing” mechanism for defining new
criteria in terms of existing ones, NST also provides a more
general mechanism akin to method definitions specifying the
Lisp code mapping the criterion’s arguments and the forms
under test to NST’s structures representing the details of
test success or failure. We discuss criteria definitions and
their implementation in Section 3.2 below.

At first glance, a separate sublanguage for criteria may
seem excessive. For example, the Lisp predicate

(every #’(lambda (x)
(and (evenp x) (integerp x)))

FORM)

returns a true (non-nil) value exactly when the test

(def-test even-ints-form
(:each (:all (: predicate evenp)

(: predicate integerp)))
FORM)

passes. Especially for such a simple example, the overhead of
a separate criteria language seems hardly justifiable. In fact,
the criteria bring two primary advantages over Lisp forms.
First, criteria can report more detailed information than just
“pass” or “fail.” Of course in the simple example of lists of
numbers it will be obvious which members are not even inte-
gers! But in a larger application where the tested values are
more complicated objects and structures, the reason for a
test’s failure may be more subtle. More informative reports
can significantly assist the programmer, especially when val-
idating changes to less familiar older or others’ code. More-
over, NST’s criteria can report multiple reasons for failure.
Such more complicated analyses can reduce the boilerplate
involved in writing tests; one test against a conjunctive cri-
terion can provide as informative a result as a series of sep-
arate tests on the same form. As a project grows larger and
more complex, and as a team of programmers and testers
becomes less intimately familiar with all of the components
of a system, criteria can both reduce tests’ overall verbosity,
while at the same time raising the usefulness of their results.

3. IMPLEMENTATION MODEL
In this section we give an overview of how NST works.

We begin with a high-level view of NST’s implementation
model in Section 3.1. In Section 3.2 we discuss the im-
plementation of NST’s criteria. Finally in Section 3.3 we
present further details of how NST supports key test frame-
work features such as checking forms returning multiple val-
ues, setup and cleanup hooks, and trapping and reporting
errors. We should point out that the implementation de-
tails are certainly not required knowledge for simply using
NST. Throughout this section we will use the examples of
the previous section as our running examples.

nst−group−record

has−num

has−sym

nst−test−record

another−fixture more−fixtures simple−fixtures

simple−groupother−group

even−ints

even−int−trial

Figure 1: UML class diagram showing the class hierarchy of the translations of our running examples. The
arrows link superclasses above to subclasses below.

(def-fixtures simple-fixture
(: documentation

"Define two bindings")
(magic-number 120)
(magic-symbol ’asdfg))

→

(defclass simple-fixture () ()
(: metaclass singleton-class)
(: documentation "Define two bindings"))

(defmethod do-group-fixture-assignment :around
((g simple-fixture) ts)

(declare (ignorable g ts))
(let* ((magic-number 120)

(magic-symbol ’asdfg))
(declare (special magic-number magic-symbol))
(call-next-method)))

(defmethod do-test-fixture-assignment :around
((g simple-fixture) ts)

(declare (ignorable g ts))
(let* ((magic-number 120)

(magic-symbol ’asdfg))
(declare (special magic-number magic-symbol))
(call-next-method)))

Figure 2: Translating fixtures into CLOS classes and methods.

(def-test-group simple-group (simple-fixtures)) →
(defclass simple-group (simple-fixtures)

()
(: metaclass singleton-class))

Figure 3: Translating groups into CLOS classes and methods.

(def-test (has-num
:group simple-group)

(:eql magic-number)
(factorial 5))

→

(defclass nst-intrnl :: mypkg-simple-group--mypkg-has-num ()
(nst-test-record)

(: metaclass singleton-class))
(let ((tproto

(make-instance
’nst-intrnl :: mypkg-simple-group--mypkg-has-num)))

(flet ((set-slot (slot value)
(setf (slot-value tproto slot) value)))

(set-slot ’%criterion ’(:eql magic-number))
(set-slot ’%test-forms ’((factorial 5)))
(set-slot ’%unique-name

’nst-intrnl :: mypkg-simple-group--mypkg-has-num)))

Figure 4: Translating tests into CLOS classes and methods.

3.1 Class model and main execution control
Fixtures, groups and tests all map to CLOS class defini-

tions. Figure 1 shows the relationship among the classes to
which our running examples would be translated. Fixtures
translate to a class and two methods. One method is used to
provide the fixture’s definitions to all tests of a group when
the group is invoked for testing; the other, to provide the
definitions when an individual test is run. Figure 2 shows
the translation of the simple-fixture set from our earlier ex-
ample.1 When a group or a test incorporates fixtures, the
classes to which the fixtures translate become superclasses
of the class to which the group or test is translated. This
allows the group or tests to call methods which produce
dynamic bindings corresponding to the fixture’s definitions
without requiring additional code to be generated for the
bindings. Note that we declare the fixture’s class, as well
as the classes arising from groups and tests, to be a single-
ton class: only one instance of it will be created, simplifying
the bookkeeping of tests and results. Of course this restric-
tion is straightforward to implement with Lisp’s metaobject
protocol; a method for passing classes based on singleton-
class to the generic function make-instance can detect and
return an existing instance, or create the first instance with
call-next-method.

Figure 3 shows the translation of a group definition. The
crucial detail of this translation is that the new class corre-
sponding to the group has as superclasses all of the groups
corresponding to the fixture sets applied to the group. It is
exactly this inheritance which allows the scope of the bind-
ings of do-group-fixture-assignment to transfer to the group.

Tests have a common superclass nst-test-record,

(defclass nst-test-record ()
((% criterion :reader test-criterion)
(% test-forms :reader test-forms)
(% unique-name :reader test-unique-name)))

The three internal slots %criterion, %test-forms and %unique-
name are initialized by the expansion of the def-test macro,
as we illustrate in Figure 4. Note that they are stored as
forms: by waiting to evaluate their syntax we require less
recompilation — and in most cases, a more automatically-
managed recompilation — to correctly test forms involving
macros.

Unlike the translation of fixtures and groups, the transla-
tion of tests maps to a class with a different name than the
original test. This translation allows test authors to give
the same name to two tests in different groups but in the
same Lisp package. Without the alteration of the name,
the classes underlying two such tests would overwrite each
other; requiring the user to ensure unique names for all tests
in different groups of the same package seems onerous. The
new name, which is in a package internal to NST, incorpo-
rates the package and symbol name of both the group and
the test. Note that we do not gensym the new test name:
we do want subsequent redefinitions of a test to redefine the
same class.

With this class structure established, the main control for
test execution is straightforward. Figure 5 contains an ex-
cerpt of these routines, illustrating the interaction of the

1For readability in examples of translations, we write for-
mal parameters such as g and ts as ordinary names. In fact,
per standard macro hygiene practices, these names are intro-
duced via gensym to prevent the possibility of name capture.

(defun run-group-tests (group-obj test-objs)
(do-group-fixture-assignment group-obj

test-objs))

(defgeneric do-group-fixture-assignment
(group-obj test-objs)

(: method (group-obj test-objs)
(loop for test-inst in test-objs do

(do-test-fixture-assignment test-inst))))

(defgeneric do-test-fixture-assignment
(test-obj)

(: method (test-obj)
(core-run-test test-obj)))

(defun core-run-test (test)
(let* ((criterion (test-criterion test))

(forms (test-forms test))
(result
(check-criterion-on-form

criterion
‘(multiple-value-bind

#’list ,(car forms)))))
(setf (gethash (test-unique-name test)

+results-record +)
result)))

Figure 5: NST test execution.

classes underlying fixtures, groups and tests.2 The entry
point to this kernel is the run-group-tests function. Its first
argument is a group object, and its second argument is a list
of test objects: passing a collection as the second argument
allows us to have a single entry point to the code whether
running one, some or all of the tests in a group. The two
generic functions whose primary methods are part of the
kernel are the same two for which the translation of fixtures
provides :around methods: since groups and tests are trans-
lated as subclasses of the fixtures which they use, the scope
of these dynamic bindings will cover any reference in the
criteria or in the forms under test. The core-run-test func-
tion applies the actual test criterion to the forms under test.
It calls the check-criterion-on-form function — which as we
will see below is part of the NST API for criteria definitions,
used not only here but also when defining compound criteria
such as :each — and stores the result in NST’s internal hash
table +results-record+ for test results.

3.2 Test criteria
A criterion specifies a mapping from two sources, the data

over which the criterion itself may be parametrized and a
form which evaluates to the values under test, to a report
on the success or failure of the test. In general, a criterion
receives its inputs as unevaluated forms. There are a num-
ber of motivations behind delaying these forms’ evaluation:
First, some of these data, such as subcriteria, should never
be evaluated as-is. Moreover, the delay allows faithful sup-
port of the traditional Lisp-style of development, where the
programmer redefines individual functions, structures and
variable bindings, re-checking tests frequently. Specifically,
evaluating each tests’ forms at every test invocation allows
a more seamless assessment of forms involving macros or
otherwise in-lined calls, changes to which might not be in-

2The excerpt omits the details of various additional features,
some of which we discuss in Section 3.3 below.

corporated in subsequent tests unless (inconveniently) the
test itself is recompiled. Just as importantly, providing the
original forms allows a criterion to more closely control the
environment in which the forms’ evaluation takes place. An
obvious example is for observation of Lisp’s errors and warn-
ings, for which a criterion could establish a dynamic scope
of handlers for particular conditions arising from form eval-
uation. We discuss NST’s and its criteria’s error handling
in more detail in Section 3.3.3 below. The utility of passing
forms to criteria is not limited to condition handlers; criteria
can usefully alter, or provide a temporary dynamic binding
for, global parameters, simulating various test situations.

3.2.1 Criteria aliasing
The simpler criteria-defining mechanism, which we intro-

duced in Section 2.3, does not refer directly to the forms
under test, but instead merely describes how a new criterion
can be rewritten as existing criteria. The earlier example,
:even-integer-list also did not receive any arguments with the
criterion; a simple example of a criterion which does receive
an argument is :symbol:

(def-criterion-alias (: symbol name)
‘(:eq ’,name))

The :symbol criterion simply rewrites to the :eq criterion,
adding the symbol’s quotation mark.

3.2.2 General criteria definitions
Since a criterion receives both a form which evaluates to

the values under test and the data over which the criterion
itself may be parametrized, our general def-criterion macro
defines a criterion’s method in terms of not one, but two
lambda lists:

(def-criterion (CRITERION-NAME CR-ARGS-LLIST
TEST-VALS-LLIST)

FORM
...
FORM)

Criterion arguments will sometimes include subcriteria or
other forms which should not be evaluated; criteria will
sometimes need to wrap the evaluation of the forms un-
der test in an error handler or other dynamic scope. On
the other hand, when a criterion does not require uneval-
uated arguments from one or the other lambda list, it is
convenient to have some method for eliding the boilerplate
of calling eval and destructuring its results. For this reason,
def-criterion allows the test author to choose between call-
by-name and call-by-value parameter-passing semantics for
each of its lambda list. For example, we might define the
:eq criterion as:

(def-criterion (:eq (: values target)
(: values actual))

(cond
((eq target actual)
(make-success-report))

(t
(make-failure-report

:format "Not eq to ~s: ~s"
:args (list target actual)))))

The symbol at the head of CR-ARGS-LLIST and TEST-VALS-
LLIST specifies the parameter-passing semantics, and the
remainder of each list is a lambda list. An alternative defi-
nition for :eq which provides better failure information is:

(def-criterion (:eq (:forms target-form)
(:form actuals-form))

(destructuring-bind (actual)
(eval actuals-form)

(let ((target (eval target-form)))
(cond

((eq target actual)
(make-success-report))

(t
(make-failure-report

:format "~s evaluates to ~s, not ~
eq to ~s from ~s"

:args (list actuals-form actual
target target-form)))))

There is a subtle distinction between the unevaluated modes
of the two lambda lists. While unevaluated criterion argu-
ments are matched against a general lambda list just as for
macro expansion, when the forms under test are passed un-
evaluated they are passed as a single form, which can be
bound only to a single formal parameter. Like any Lisp ex-
pression a form under test may return multiple values; NST
ensures that multiple values are converted to a list (which
we discuss in Section 3.3.1 below), so that the result of eval-
uating the form can be easily deconstructed.

The :eq criterion definitions also show the use of the make-
success-report and make-failure-report functions. The crite-
rion is expected to return an NST-defined structure that
captures the contexts of errors, failures and warnings; these
functions are the NST test author’s API for creating these
structures. Instead of simple pass/fail/error reporting, these
structures encapsulate lists detailing the (possibly many)
reasons for a test’s failure. Along with the lists of failures
and errors, NST also accumulates runtime warnings, plus
informational messages which can be generated by test cri-
teria. This approach to reporting (hopefully empty) lists of
problems instead of a single success is by no means novel; it
is a variation of the technique first described by Wadler [29].
Here, applying this pattern allows NST to report the more
detailed, hopefully more useful, test results for which we
argued in Section 2.3.

3.2.3 Recursive application of subcriteria
The NST criteria which we have discussed so far in this

section all perform simple tests of scalar values. However,
more complex criteria are possible: these criteria contain
subcriteria which apply to transformations of the originally
provided values, or to components of class or structure ob-
jects. NST provides two functions which facilitate a recur-
sive criterion invocation. We have already seen one of these
functions, check-criterion-on-form, called by core-run-test in
Figure 5 above. Both this function and check-criterion-on-
value provide thin wrappers to the generic function apply-
criterion: NST’s criteria map directly to eql-methods of this
function. The methods dispatch on the symbol naming the
method, and receive two additional parameters: the list of
forms given as arguments to the criterion, and a form which,
when evaluated, returns the values under test. The check-
criterion-on-form and check-criterion-on-value functions sim-
ply unpack the criterion names and arguments, and in the
latter case prepare the already-evaluated value to be passed
to this underlying function which does not necessarily expect
it to have been evaluated:

(defun check-criterion-on-form (criterion form)
(unless (listp criterion)

(setf criterion (list criterion)))
(apply-criterion (car criterion)

(cdr criterion) form))
(defun check-criterion-on-value (criterion val)

(check-criterion-on-form criterion
‘(list ’,val)))

The :apply criterion provides a simple example of a re-
cursive criterion application. With :apply we can define a
new criterion by applying some transformation to the origi-
nal forms under test, and assessing them under some other
subcriterion:

Test

results

Subcriterion
Transforming

function

Forms

under

test Evaluate Updated

form

We can define :apply as:

(def-criterion (:apply (:forms transform
criterion)

(:form form))
(check-criterion-on-form criterion

‘(multiple-value-call #’list
(apply #’,transform ,form))))

For example, we might use the :apply criterion in this test:

(def-test a1 (:group g1)
(: apply max (: predicate zerop))

-1 -10 (- 5 5))

The :predicate criterion is another built-in criterion, which
uses a Lisp function. So when core-run-test processes test
a1, it applies the criterion

(:apply max (: predicate zerop))

to the unevaluated forms

’(-1 -10 (- 5 5))

using check-criterion-on-form. Following the definition of :ap-
ply, Lisp first evaluates

(apply #’max (list -1 -10 (- 5 5)))

to the value 0. This value is then checked by the (:predicate
zerop) criterion, which passes.

3.2.4 Implementing criteria
As we mentioned in the previous section, all criteria def-

initions are translated to methods of the generic function
apply-criterion. Figure 6 illustrates the translation generated
by each of the three criteria-defining mechanisms discussed
above. Translations of the different parameter-passing se-
mantics of def-criterion differ only in that the call-by-value
modes include an evaluation of the forms under test, match-
ing the results of that evaluation instead of the unevaluated
forms to the given lambda lists. Criteria defined using def-
criterion-alias are just translated to a def-criterion which uses
call-by-name semantics for the forms under test, reflecting
that these alias definitions do not directly mention, and thus
should not compel the evaluation of, the forms under test.

3.3 Implementation of other key features
The class model and core routines we presented in Sec-

tion 3.1 are a considerable simplification of the actual NST
code. To more clearly illustrate the overall structure, we

have elided details of many major features as well as all
mundane details of bookkeeping. In this section we describe
the implementation in NST of three key Lisp unit testing
capabilities: cleanly handling Lisp’s ability to return multi-
ple values from a function; specifying routines to set up tests
and clean up after them; and handling errors and warnings
encountered during test execution.

3.3.1 Handling multiple values
Lisp functions are able to return multiple values. In most

usage contexts all but the first value is ignored; the program-
mer must apply additional structure to access the additional
results. In designing NST’s handling of multiple-valued re-
sults, we reverse this philosophy: NST expects all of the
values returned from a form to be tested; the test author
must use additional structure to ignore the additional re-
sults. Lisp’s convention emphasizes brevity for common use
cases, but NST’s emphasis is on the comprehensiveness of
testing: use of some function should certainly be easy and
concise, but good testing practice should look at all of the
results, not just the primary one.

In the apply-criterion function, the third argument is a
form which, when evaluated, returns a list containing the
multiple results. In Figure 6, we see an example of how
def-criterion matches against this list: the lambda list spec-
ifying the values under test becomes the lambda list of the
deconstructing-bind applied to the result of evaluating the
incoming form. For convenience, the test author can explic-
itly enumerate multiple values in a def-test; to support this
variation we amend the translation of def-test illustrated in
Figure 4 as follows:

(defun core-run-test (test)
(let ((criterion (test-criterion test))

(forms (test-forms test)))
(cond
((eql 1 (length forms))
(check-criterion-on-form

criterion
‘(common-lisp:multiple-value-list

,(car forms))))

(t (check-criterion-on-form
criterion ‘(list ,@forms))))))

3.3.2 Setup and cleanup routines
In order to consistently recreate accurate test environ-

ments, NST supports several ways of defining setup and
cleanup hooks:
• A hook can be defined for the start (or end) of a fixture

set, running whenever the fixture is applied to a group
or test.
• A hook can be defined for the start (or end) of a partic-

ular test.
• A hook can be defined for the start (or end) of a group

of tests, running before the first (after the last) test of
the group. Group hooks happily coexist with test hooks;
a test’s hooks bracket the execution of the test, and are
themselves bracketed by the hooks of the group to which
the test belongs.
• A fixture set accepts separate pairs of hooks for setup/-

cleanup within the scope of their fixture sets, and for
before or after the names are in scope. Groups and tests
accept two similar pairs of hooks.

(def-criterion-alias (: symbol name)
‘(:eq ’,name)) →

(def-criterion (: symbol (:forms name)
(:form form))

(apply-criterion-to-form ‘(:eq ’,name) form))

(def-criterion (:eq (: values target)
(: values (actual)))

(cond
((eq target actual)
(make-success-report))

(t
(make-failure-report

:format "Not eq to ~s: ~s"
:args ‘(,target ,actual)))))

→

(defmethod apply-criterion ((top (eql :eq))
ap vals)

(destructuring-bind (target-form) ap
(let ((target (eval target-form)))

(destructuring-bind (actual) (eval vals)
(cond
((eq target actual)
(make-success-report))

(t
(make-failure-report

:format "Not eq to ~s: ~s"
:args ‘(,target ,actual))))))))

(def-criterion (:apply (:forms transform
criterion)

(:form form))
(check-criterion-on-form criterion

‘(multiple-value-call #’list
(apply #’,transform ,form))))

→

(defmethod apply-criterion ((top (eql :apply))
ap form)

(destructuring-bind (transform criterion) ap
(check-criterion-on-form criterion

‘(multiple-value-call #’list
(apply #’,transform ,form)))))

Figure 6: Translating criteria definitions.

(def-test-group simple-group
(simple-fixtures)

(:setup (setf for-setup 0))
(: each-setup
(incf for-setup 1))

(: each-cleanup
(incf for-setup 10)))

→

(defclass simple-group (simple-fixtures) ()
(: metaclass singleton-class))

(let ((grp (make-instance ’simple-group)))
(flet ((set-slot (slot value)

(setf (slot-value grp slot) value)))
(set-slot ’%fixtures-setup-thunk #’(lambda ()))
(set-slot ’%fixtures-cleanup-thunk #’(lambda ()))
(set-slot ’%withfixtures-setup-thunk

#’(lambda () (setf for-setup 0)))
(set-slot ’%withfixtures-cleanup-thunk #’(lambda ()))
(set-slot ’%eachtest-setup-thunk

#’(lambda () (incf for-setup 1)))
(set-slot ’%eachtest-cleanup-thunk

#’(lambda () (incf for-setup 10)))))

Figure 7: Translating a group with setup/cleanup hooks.

• Finally, a hook may be provided with a group’s definition
to run before (after) each individual test of the group.

These hooks are useful for configuring test environments, for
example, when opening (and later closing) a database con-
nection before binding fixtures extracted from the database.
Where we have a single database of test values, we might use
that fixture set’s hooks to manage the database connection.
Where we have multiple, similarly-configured databases, we
might reuse one fixture set but manage the database con-
nection with hooks on groups or tests.

NST traps errors thrown from hooks. Where the user has
activated debugging on errors, NST offers restarts for ig-
noring the error and proceeding with testing, skipping the
current test of group, or aborting testing (optionally skip-
ping or running the various cleanup hooks when the error
occurs earlier). We discuss NST’s error handling in more
detail in the next section.

Implementing these hooks is straightforward; Figure 8

shows extensions to the previous definitions for the classes
nst-test-record and nst-group-record, and for the do-group-
fixture-assignment function. The nullary functions corre-
sponding to the hooks live in slots defined in nst-test-record
and nst-group-record. These slots are set in the transla-
tion of def-test-group and def-test forms; Figure 7 shows
the extended translation of a test group. These slots are
read and the functions executed by the core routines of Fig-
ure 5. For example, the do-group-fixture-assignment function
invokes the group setup/cleanup function for within group
fixtures’ scope, the setup/cleanup associated with the group
for each of its tests, and the test setup/cleanup for outside
the test fixtures’ scope.

3.3.3 Handling errors
One essential capability for a unit test framework is that it

can capture and report not only failures to satisfy test crite-
ria, but also runtime program errors. The interactive nature

(defclass nst-group-record ()
((% fixtures-setup-thunk :reader group-fixtures-setup-thunk)
(% fixtures-cleanup-thunk :reader group-fixtures-cleanup-thunk)
(% withfixtures-setup-thunk :reader group-withfixtures-setup-thunk)
(% withfixtures-cleanup-thunk :reader group-withfixtures-cleanup-thunk)
(% eachtest-setup-thunk :reader group-eachtest-setup-thunk)
(% eachtest-cleanup-thunk :reader group-eachtest-cleanup-thunk)))

(defclass nst-test-record ()
((% test-forms :reader test-forms)
(% criterion :reader test-criterion)
(% prefixture-setup :reader prefixture-setup-thunk)
(% postfixture-cleanup :reader postfixture-cleanup-thunk)))

(defgeneric do-group-fixture-assignment (g tsts)
(: method (g tsts)

(funcall (group-withfixtures-setup-thunk g))
(loop for tst in tsts do

(funcall (group-eachtest-setup-thunk g))
(funcall (prefixture-setup-thunk tst))
(do-test-fixture-assignment tst)
(funcall (postfixture-cleanup-thunk tst))
(funcall (group-eachtest-cleanup-thunk g)))

(funcall (group-withfixtures-cleanup-thunk g))))

Figure 8: Implementing hooks.

of Lisp development places additional, unique burdens on a
Lisp test framework. Lisp developers are best supported by
providing both:
• The batch ability to run all tests without pausing, with

a report on errors and failures at the end, as well as
• Support for interactive development, where errors (or

failures) cause a break to the Lisp REPL, allowing the
developer to examine the dynamic environment, and to
choose to restart or skip tests and groups.

NST’s treatment of errors at testing time is governed by
the global flag *debug-on-error*.3 If it is non-nil, then on
intercepting an error NST should enter the debugger, allow-
ing the user to examine the test state, and possibly restart
tests. On the other hand, if *debug-on-error* is nil, then
NST should note the error but continue with testing, re-
porting the error with its results afterward. Consequently
much of NST’s error processing branches on this flag.

There are three source of errors in NST test runs:4

1. Errors in evaluating the forms under test.
2. Errors in evaluating fixtures, setup, and cleanup.
3. Errors arising from test criteria coding.

The latter two of these sources reflect the reality that sec-
ondary testing code is as subject to bugs as primary appli-
cation code! It is important for the framework to correctly
characterize the source of an error in test execution.

To catch errors in user setup/cleanup routines, we wrap
the various funcalls to the various funcalls invoking these
thunks:
• When testing interactively, to offer restarts allowing ei-

ther:
– The routine to be re-run,
– Tests to proceed despite the setup/cleanup error, or
– The test or group to be skipped.

3NST treats failures by a similar mechanism; we omit the
repetitive details here. Note that these global variables are
implementation aspects; NST’s user interface via the REPL
provides a mechanism for controlling its behavior that does
not require users to manipulate its global variables.
4Aside from bugs in NST itself!

• For setup routines, to record the error as a test failure
when not retrying.
• For cleanup routines, to note the error along with the

test result when not retrying.
The NST source uses macros to tame the boilerplate code
arising from the repetition of these patterns of handlers and
restarts arising at every funcall, while still allowing small dif-
ferences as each instance requires. To process errors arising
from fixtures, we add similar mechanisms for restarts and re-
porting within the let*-bound forms of the :around methods
of do-test-fixture-assignment and do-group-fixture-assignment
illustrated in Figure 2, which allow the names of the erring
fixture and its fixture set to be reported to the test runner.

Distinguishing errors of types 1 and 3 can be tricky. The
availability of the unevaluated forms under test to criteria,
combined with the freedom which test authors have to define
arbitrary criteria performing arbitrary manipulations to the
forms under test, means that either of these types of error
could arise from the same code. The illustrations of criteria
definition expansions in Figure 6 show how the sources of
these errors may alternate: strictly speaking the only sure
source of errors arising from the forms under test is from
the (eval vals) call, but this expression occurs between error
sources which could be considered configuration errors from
either the criterion’s coding, or its application. NST pro-
vides two macros returning-test-error and returning-criterion-
config-error which generate a test result object appropriate
to the respective error sources. NST inserts calls to these
macros within the code generated from def-criterion. For
example, in Figure 9 we extend Figure 6’s simplified trans-
lation of the :eq criterion.

4. RELATED WORK
In this section we survey a number of other available Lisp

unit test systems, and compare them to NST. Table 1 sum-
marizes the features of these systems.

General architecture.
XUnit refers to a structure of tests arranged into groups

(defmethod apply-criterion ((top (eql :eq)) ap val-form)
(returning-criterion-config-error

((format nil "Criterion arguments ~a do not match lambda-list (target)" ap args-formals))
(destructuring-bind (target) ap

(let ((vals (returning-test-error (eval val-form))))
(returning-criterion-config-error

((format nil "Values under test ~a do not match lambda-list (actual)" vals))
(destructuring-bind (actual) vals

(returning-criterion-config-error ("Error from criterion :eq body")
(cond
((eq (eval target) actual)
(make-success-report))

(t (make-failure-report
:format "Not eq to value of ~s: ~s" :args ‘(’target ,actual))))))))))

Figure 9: Extending criteria expansion for error tracking.

or suites in the manner of Beck’s proposal for Smalltalk [6]
and its descendants such as JUnit. Tests and groups are
typically all named, and have methods for configuring their
environment. CLOS-unit [23, 22], HEUTE [21] and XLU-
nit [9] are xUnit style frameworks intended as a literal re-
implementation of JUnit in Lisp [23].5 They hew very closely
to the object-oriented style of the original xUnit frameworks
(which we indicate as OO in the table): their equivalent of a
group is a defclass definition with a particular superclass. To
define tests, one simply defines methods on this class with
def-test-method, an enhanced defmethod. For example, to
express the example tests of Section 2 we could write:6

(defclass simple-group (test-case)
((magic-number :accessor magic-number)
(magic-symbol :accessor magic-symbol)))

(defmethod set-up ((g simple-group))
(setf (magic-number g) 120

(magic-symbol g) ’asdfg))
(def-test-method has-num ((g simple-group))

(assert-equal (magic-number g)
(factorial 5)))

(def-test-method has-sym ((g simple-group))
(assert-true (eq (magic-number g) ’asdfh)))

Most of the available Lisp unit test systems are in the
general xUnit style, but provide macros which more com-
pletely hide the underlying object model of the test frame-
work. NST is of this style (which we mark F for “functional”
in the table), as are FiveAM [4], LIFT [17, 18], Stefil [14,
19], lisp-unit [14, 25], CLUnit [1], and MSL.TEST [11]. The
basic forms for defining groups and tests in these systems
are generally similar; for example in LIFT we would write
the simple-group as:

(deftestsuite simple-group ()
((magic-number 120)
(magic-symbol ’asdfg))

(:tests
(has-num

(ensure-same (factorial 5) magic-number))
(has-sym

(ensure-same ’asdfh magic-symbol))))

5An additional system XPTEST seems to have been super-
seded by XLUnit; its URL listed on CLiki et al. no longer
exists, although periodic updates to its source are made to
a Debian-distributed package (which does not include doc-
umentation).
6We use XLUnit for our examples of this style, although all
three use very similar syntax.

We also survey two additional systems RT [26, 30] and
Franz’s tester [12] which are much simpler than the xUnit
architecture.

Correctness criteria.
Every test system includes some way of describing the

“correct” result of a test, which is the table we summarize in
the columns under the Criteria heading. The various test
frameworks fall into three general groups of what specifica-
tions the system allows, which we summarize in the Form
column.

t A test is just an expression to be evaluated; non-null
values indicate a passing test. RT, CLOS-unit and tester
specify correct behavior this way.

S Tests specify atomic criteria on scalars, but the criteria
do not include subcriteria for components of data struc-
tures such as lists, structs, and objects. FiveAM, Ste-
fil, LIFT, XLUnit, lisp-unit, MSL.TEST, CLUnit, and
HEUTE offer simple criteria.

C Tests specify complex criteria, involving sub-criteria for
testing structure components. NST provides complex
criteria.

NST and LIFT also provide facilities within their frame-
works to extend the set of test criteria.

We argued for the advantages of complex criteria in Sec-
tion 2.3. Systems where test objects are explicitly exposed
offer a possible alternative mechanism for achieving similar
ends. For example, XLUnit et al. do not export a facility for
extending their criteria, but this restriction is not necessarily
a straightjacket. Their more explicit exposure of test class
definitions allows us to parametrize particular instances over
the individual objects which we would like to test according
to a particular rubric encoded as a subclass of test-case.

(defclass even-integer-list (test-case)
((the-list :initarg :the-list

:reader the-list)))
(def-test-method is-even-integer-list

((g even-integer-list))
(assert-true

(every #’(lambda (x) (and (evenp x)
(integerp x)))

(the-list g))))

Unfortunately, XLUnit’s exported macro get-suite takes only
the class name of a test-case, not any keyword arguments
which might be passed to initialize-instance — but this omis-
sion is easily patched in a local installation, at least for

manual use in the REPL on an instance-by-instance basis.
Similarly, LIFT’s deftestsuite macro generates similarly-
named initarg keywords for each slot, and its API functions
run-test and run-tests do in fact accept a testsuite-initargs ar-
gument. These features suggest7 allowing a LIFT test suite
to be applied as NST applies criteria, harvesting multiple,
separately reported tests abstracted over the form of inter-
est.

(deftestsuite even-integer-list () (this-list)
(:test

(ensure-true
(every #’(lambda (x)

(and (evenp x)
(integerp x)))

this-list))))

However, in both of these cases it is not clear how to natu-
rally incorporate a series of applications of one suite to dif-
ferent values into another suite. Furthermore, while these
workarounds do mimic NST criteria’s abstraction of multi-
ple tests, the limitation that each individual test stops at the
first failure remains: there is no analogue to NST’s :each cri-
terion which will ensure that every element of the list passes
some subcriterion. In other words, these techniques apply
well to multiple tests along the static structure of complex
objects under test, but they account less well for dynamic
variations of inputs.

Individual tests.
The columns under the Tests heading describe how indi-

vidual tests are phrased. Note that terms including “test”
are used in different ways by different systems; in this com-
parison and table we describe the functionality denoted by
our use of each term in NST. So by “test” we mean the ap-
plication of one test criterion to a form or forms, regardless
of whether a particular platform uses “test” to describe such
an artifact, or something else.

In the current versions of almost all of the platforms, a
test on a form including a macro will not need to be explic-
itly recompiled or reloaded when the definition of the macro
changes (possibly by setting a flag for that test). The Macro
column reflects these implementations; tester does not store
tests for later re-execution, so this concern is not relevant to
that package.

The Invoke column concerns how tests are run. Almost
all systems allow tests to be (re-) run by name. In lisp-unit
and MSL.TEST, basic tests are not named; only groups of
tests are named, and these groups can be explicitly invoked.
Tester does not name tests, nor allow groups to be invoked
by name, so they can be re-run only by re-entering them on
the REPL, or re-loading the file which contains them.

Deleting tests is useful when developing tests interactively;
an author may decide that a test is incorrect or inappropri-
ate. Of course, test deletion is relevant only when tests are
re-runnable. NST, LIFT, lisp-unit, CLUnit and RT allow
tests to be deleted.

Test groups/suites.
The columns under the Groups heading enumerate fea-

tures available for test groups. Most simply, a check-mark
in the Definable column indicates whether some sort of test
grouping is available. The original release of RT does not

7The testsuite-initargs argument is undocumented.

allow tests to be grouped, although some packages branch-
ing it do. Many systems allow test groups to be nested, so
that invoking one group checks not only that group’s own
tests, but also a set of other groups identified with as the
first group’s “children.” FiveAM and HEUTE allow such
nesting of groups within each other; NST and lisp-unit offer
a weaker form of nesting where the groups within a par-
ticular package can be invoked. In the Nestable column, a
check-mark indicates that nested groups are generally al-
lowed; a “P” indicates nesting of groups within a package,
but not within other groups. A check-mark in the Delete
column indicates that the framework provides a mechanism
for deleting test groups. Finally, a check-mark in the Test
dep. column indicates that a framework allow the execution
to be ordered and dependent on whether other tests pass or
fail; only FiveAM and MSL.TEST offer this feature.

Fixture sets, and setup and cleanup hooks.
The columns under the Fixtures heading describe plat-

forms’ facilities for naming sample data referred to in tests.
A number of test packages use the term “fixture” to describe
the facility for the general setup and cleanup routines of
tests or groups of tests; we consider specifying name-form
binding lists from these hook functions separately.

The Definable column describe whether fixture sets can
be defined through the test framework. NST, FiveAM and
LIFT allow sets of fixture bindings to be named and re-used.
LIFT does not model these bindings as a separate entity;
binding are associated with a test suite, and are inherited
by any suite extending the suite defining the fixtures. Revis-
iting LIFT’s version of simple-group, we can factor out the
fixture set definitions,

(deftestsuite simple-fixtures ()
((magic-number 120)
(magic-symbol ’asdfg)))

(deftestsuite simple-group (simple-fixtures) ()
(:tests ...

The documentation of Stefil, CLOS-unit and XLUnit de-
scribe how their setup and cleanup hooks can be harnessed
to provide fixtures (indicated by an “L” in the table). These
mechanisms tend to introduce fixtures via accessors rather
than simple bound names, as we saw in the XLUnit version
of simple-group above.

A check-mark in the Groups column indicates that fix-
ture sets may be applied to groups; in the Tests column, to
individual tests.

The columns under the Hooks heading describe how the
platforms allow setup and cleanup routines. A check-mark in
the Fixtures column indicates that setup and cleanup hooks
may be applied to fixture set uses; in the Groups column,
to test groups; in the Tests column, to individual tests.

Results.
The columns under the Results heading describe the plat-

forms’ facilities for storing, retrieving and inspecting test
failure and error reports. A check-mark in the Stored col-
umn indicates that test results are stored by the platform,
as opposed to simply printed once and then discarded.

There are no check-marks in the History column: no plat-
form records the history of test runs in some persistent
storage, and allows the results over time to be examined.
FReT [20] is an in-progress project with a slight variation
of the LIFT API. Because it seems to still be working to-

Criteria Tests
Groups Fixtures Hooks Results

X
U

nit

For
m

Ext
en

d

M
ac

ro

In
vo

ke

D
ele

te

D
efi

nab
le

Nes
ta

ble

D
ele

te

Tes
t dep

.

D
efi

nab
le

G
ro

ups

Tes
ts

Fix
tu

re
s

G
ro

ups

Tes
ts

Sto
re

d

Hist
or

y

O
pen

NST1 F C � � � � � P � × � � � � � � � × ×
FiveAM2 F S × � � × � � × � � � × × × × � × ×

Stefil3 F S × � � × � × × × L × � — × � � × ×
LIFT4 F S � � � � � × × × � �5 � — � � � × ×

lisp-unit6 F S × � ×7 � � P � × × — — × × × × × �
MSL.TEST8 F S × � × × � × × � × — — × × × × × ×

CLUnit9 F S × � � � � × × × × — — × × × × × ×
RT10 S t — � � � ×11 — — — × — — × × × × × ×

CLOS-unit12 OO t — � � × � × × × L � × — � × � × �
HEUTE13 OO S × � � × � � × × × — — — � � � × �
XLunit14 OO t — � � × � × × × L � × — � × � × �

(p) tester15 S t — —16 × — � × × × × × × × × × × × ×

W
ar

nin
gs

Q
kc

G
UI

ASD
F

SLIM
E

Last
NST � � × � × 9/2010

FiveAM × � × S × 3/200817

Stefil × × × S � 7/2009
LIFT �18 ×19 × S × 4/2010

lisp-unit × × × S × Unav.
MSL.TEST × × × × × Unav.

CLUnit × × × × × 11/2002
RT × ×20 × S × 12/1990

CLOS-unit × × × × × 8/2002
HEUTE × × � × × 1/2006
XLunit × × × S × 9/200721

(p) tester × × × × × 6/2009
Clickcheck × � × S × 9/2005

General key:
� Available feature.
× Unavailable feature.
— Not applicable under the particular system architecture.
In particular columns:
• Under XUnit:
OO XUnit style in CLOS.

F XUnit in functional style, hiding underlying CLOS
implementation.

S Simpler model than xUnit.
• Under From:

t t/nil testing.
S Named criteria on scalars.
C Named criteria on structured objects.

• Under Nestable:
P Via package system only.

• Under Fixtures-Definable:
L Following documented examples of CLOS methods.

• Under ASDF:
S For loading the test system itself only.

1Version 2.1.1.
2[4, accessed August 2010].
3[19, accessed August 2010].
4[16, accessed August 2010]. Some of LIFT’s more recent
features are undocumented [17, March 2008 and April 2010
news blurbs]. So while our table entries are at least up-to-
date with LIFT’s user guide, we may have overlooked some
features present in the source code but not fully documented.
5The bindings for a group are applied separately to each test
in the group.
6[25, accessed August 2010].
7Lisp-unit does not name its simple applications of criteria
to forms under test. They use the word “test” as we use
“group,” to refer to several of these basic criteria applica-
tions.
8[11, accessed August 2010].
9[2, accessed August 2010].
10[26, accessed August 2010]. A number of extensions of RT
exist; however these do not seem to be maintained.

11But groups are commonly supported in extensions of RT.
12[22, accessed August 2010].
13[21, accessed August 2010].
14Based on examples in code distribution [9, accessed Au-
gust 2010]; no documentation distributed.
15[12, accessed August 2010]
16Tester does not store tests for later re-execution, so the
four latter points of comparison of tests are moot.
17Date of last snapshot tarball.
18A global variable controls whether LIFT should treat run-
time warnings as errors, and there is a test criterion which
expects a warning to be raised.
19LIFT supports random generation of certain scalars, but
not of more complex objects, and does not seem to support
sampled verification of invariants.
20Dietz’s extensions support randomized repetition of
tests [10].
21Date of files in distribution via CLiki.

Table 1: Comparison of Lisp unit test packages.

wards an initial “1.0” release, we have omitted it from the
summary table; however FReT is notable as the only one of
these systems which proposes (though does not yet imple-
ment) a retrospective view of test results over time. More
recently, developers’ tools such as Hudson have provided a
similar functionality in a non-language specific way.

When developing GUIs or other extensions which bene-
fit from asynchronous access to events in the testing pro-
cess, it is useful to find an open architecture for processing
test results, for example by allowing Listener pattern [13]
hook functions to be registered with the platform. Lisp-
unit, CLOS-unit, HEUTE and CLunit make particular doc-
umentation of APIs for this purpose, indicated in the Open
column.

Other features.
The Warnings column describes whether the system pro-

vides support for capturing runtime warning emitted by
tests; note that we do exclude the trivial “support” of al-
lowing a form which provides its own handler-bind/muffle-
warning structure to catch and detect any warnings.

Quickcheck [7] is a lightweight framework for random gen-
eration of data for validating program properties. This style
of testing is somewhat more complicated than specific tests
on single, bespoke forms. There are two distinct aspects: de-
scribing how sample data is to be generated, especially for
more complex objects, and specifying invariant properties
on these data. Discussions of Quickcheck and its implemen-
tation are widely available,8 and we do not discuss them
further here. We summarize platforms’ implementation of
Quickcheck in the Qkc column. NST and FiveAM include
an implementation of Quickcheck-style testing. Clickcheck
is a standalone Quickcheck implementation which could be
used in any test framework. LIFT provides some support for
randomized values of particular types; Dietz’s extensions to
RT [10] support randomized repetition of tests.

Of the systems we considered, only HEUTE includes a
GUI for displaying the progress and results of unit testing.

ASDF (Another System Definition Facility) is a commonly
used protocol for packaging Lisp systems and for specifying
how they should be loaded, run and tested [5]. Unit test sys-
tems can integrate with ASDF on two levels. More simply,
a test system may be packaged so that it can be loaded via
ASDF, perhaps as a dependency for testing another system,
indicated in the table with an “S.” FiveAM, Stefil, LIFT,
lisp-unit, RT, XLunit and Clickcheck are all packaged as
ASDF systems. NST provides both this and a further level
of ASDF integration with an extension of the class of ASDF
systems to facilitate specifying how a system’s test-op test
operation should invoke NST.

SLIME [28] provides a richer Lisp development environ-
ment within Emacs. Tools can provide binding to streamline
their use under SLIME. Although a number of systems list
a SLIME front-end as a future goal, only Stefil documents
its use under SLIME.

Updates.
The Last column describes the date of the last release,

update or patch to the system. NST, FiveAM, LIFT, tester,
and perhaps also Stefil seem to be under active development,
or at least to be issuing occasional patches. We were unable

8For example, www.cs.chalmers.se/˜rjmh/QuickCheck .

to determine a last-release date for lisp-unit and MSL.TEST.

Other test systems.
We have omitted some Lisp test systems from the table:

cl-smoketest [27] is for checking compilation of ASDF sys-
tems. FReT [20], as we mentioned above, seems still to
be under initial development. EnclineUnit [8, 24], aka En-
clineTest, seems to have been abandoned several years ago
after its early releases; as of this writing its download links
are non-functioning and we were unable to find an installable
version.

5. CONCLUSION
We have introduced NST as a flexible and expressive unit

testing framework for Common Lisp. While our survey of
available Lisp test frameworks suggests a number of addi-
tional useful features for NST, most notably SLIME inte-
gration and results visualization, our experience suggests
that NST is already quite useful for both larger and smaller
projects.

The number of available testing frameworks for Lisp is,
in part, a reflection of the ease which Lisp’s introspective
and dynamic features, as well as its uniquely expressive and
flexible object hierarchy CLOS, lend to the construction and
customization of program analysis and execution tools. This
facility and the continuing evolution of software engineer-
ing techniques suggest to us that neither NST nor any of
the other systems we survey here will be the last word on
a canonical Lisp testing framework! We are hopeful that
our presentation of NST’s design will provide helpful design
points to future test system authors.

Acknowledgments.
I am grateful to Michael J. S. Pelican, several anonymous

reviewers and Jill Maraist for their detailed comments on
this paper. NST itself benefited from design feedback and
bug/usability reports from Michael Atighetchi, Steven A.
Harp, Michael J. S. Pelican and especially Robert P. Gold-
man. This material is based upon work supported by the De-
fense Advanced Research Projects Agency under Contract
FA8650-06-C-7606. The views, opinions, and/or findings
contained in this article/presentation are those of the au-
thor/presenter and should not be interpreted as representing
the official views or policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the De-
partment of Defense. Distribution Statement A: Approved
for Public Release, Distribution Unlimited.

6. REFERENCES
[1] F. A. Adrian. CLUnit web site.

http://www.ancar.org/CLUnit.html.

[2] F. A. Adrian. Using CLUnit: An introduction and
tutorial. Shipped with CLUnit distribution [1].

[3] D. Bacon. Clickcheck and Peckcheck web site.
http://www.accesscom.com/˜darius/software
/clickcheck.html.

[4] M. Baringer. FiveAM. Online user manual,
http://common-lisp.net/project/bese/FiveAM.html .

[5] D. Barlow, R. P. Goldman, F.-R. Rideau, and
Contributors. ASDF Manual.
http://common-lisp.net/project/asdf/asdf.html.

[6] K. Beck. Simple Smalltalk testing: With patterns.
Smalltalk Report, 1994. Updated June 2001,
http://www.xprogramming.com/testfram.htm.

[7] K. Claessen and J. Hughes. Quickcheck: a lightweight
tool for random testing of Haskell programs. In
P. Wadler, editor, Proceedings of the International
Conference on Functional Programming, Montreal,
2000.

[8] Development, building, testing, and documentation
aids. CLiki, the Common Lisp wiki.
http://www.cliki.net/development.

[9] XLUnit CLiki entry. http://www.cliki.net/xlunit.

[10] P. Dietz. The GCL ANSI Common Lisp test suite. In
J. White, editor, International Lisp Conference,
Stanford University, June 2005.

[11] P. Foley. MSL.TEST web site.
http://users.actrix.co.nz/mycroft/test-doc.txt, 2003.

[12] Franz, Inc. The Allegro CL test harness.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing
Series. Addison-Wesley, 1995.

[14] P. Gold. Common Lisp testing frameworks. on-line
article, Mar. 2007.
http://aperiodic.net/phil/archives/Geekery/notes-on-
lisp-testing-frameworks.html.

[15] P. Hamill. Unit Test Frameworks. O’Reilly Media,
Nov. 2004.

[16] G. King. LIFT user’s guide.
http://common-lisp.net/project/lift/user-guide.html.

[17] G. King. LIFT web site.
http://common-lisp.net/project/lift/.

[18] G. King. LIFT — the LIsp Framework for Testing. In
R. de Lacaze, editor, International Lisp Conference,
New York, Oct. 2003.

[19] A. Lendvai, T. Borbély, and L. Mészáros. Stefil:
Simple TEst Framework in Lisp. Online
documentation
http://common-lisp.net/project/stefil/index-old.shtml
(marked as obsolete) or
http://dwim.hu/project/hu.dwim.stefil (described as
newer by the older site, may not be accessible).

[20] S. Mishra. FReT (framework for regression testing)
web site. http://www.sfmishras.com/smishra/fret/.

[21] J. Newton. HEUTE (Hierarchical Extensible Unit
Testing Environment for Common Lisp) web site.
http://www.rdrop.com/ jimka/lisp/heute/heute.html.

[22] S. Pedrazzini. clos-unit web site.
http://www.lme.die.supsi.ch/˜pedrazz/clos-unit/.

[23] S. Pedrazzini. A CLOS implementation of the JUnit
testing framework architecture. In R. de Lacaze,
editor, International Lisp Conference, San Francisco,
Oct. 2002.

[24] Y. A. Rashkovskii. Encline web site.
http://common-lisp.net/project/encline/.

[25] C. Riesbeck. LispUnit web site.
http://www.cs.northwestern.edu/academics/courses
/325/readings/lisp-unit.html.

[26] RT (Common Lisp regression tester) web site.
http://www-2.cs.cmu.edu/afs/cs/project/ai-
repository/ai/lang/lisp/code/testing/rt/0.html.

[27] A. Shields. cl-smoketest CLiki entry.
http://www.cliki.net/cl-smoketest.

[28] SLIME (the superior Lisp interaction mode for Emacs)
web site. http://common-lisp.net/project/slime/.

[29] P. Wadler. How to replace failure by a list of successes:
A method for exception handling, backtracking, and
pattern matching in lazy functional languages. In J.-P.
Jouannaud, editor, Proc. Conf. Functional
Programming Languages and Computer Architecture,
volume 201 of Lecture Notes in Computer Science,
pages 113–128, Nancy, France, Sept. 1985. Springer.

[30] R. C. Waters. Supporting the regression testing of Lisp
programs. ACM Lisp Pointers, 4(2):47–53, June 1991.

