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ABSTRACT  
We present preliminary work supporting a consumer-side smart 
grid agent designed to operate autonomously in order to maximize 
economic reward for its client. The agent must function in an 
environment of real-time electricity pricing and ubiquitous 
uncertainty (price profiles fluctuate, client behavior patterns shift) 
by leveraging advanced scheduling technology that we adapt to 
residential power management. For those resident loads that can 
be automatically controlled the scheduling engine will produce 
advance schedules that respect client preferences and constraints.   

In a larger context with multiple such agents within a community, 
we argue that advance scheduling provides distinct advantages 
over dispatching systems. Such schedules support collaborative 
power management between largely self-interested grid agents to 
realize efficiencies in local power production and consumption.   

W
of the smart home power management problem, yet one of the 
more complex aspects;  water heating via a heater with advanced 
control features.  We present a model of household water heating 
patterns together with real-time pricing profiles and demonstrate 
that an LP approach can rapidly generate cost-optimal solutions to 
this static problem.  Issues and prospects for scaling LP 
approaches to the larger dynamic problem of interest, as well as 
trade-offs in adopting less computationally intensive heuristic 
scheduling methods are discussed. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
Scheduling  

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory 

Keywords 
Intelligent scheduling, smart grid, linear programming  

1. INTRODUCTION 
The international effort to modernize and restructure the electric 
grid has gelled around some core hardware configurations, but 
there is a range of visions as to operation and control.  We focus 
here on a flexible approach that, while it can support a remotely 
driven, more centralized power management model in which 
consumers cede control of loads and distributed energy resources 
(DER) to a grid management organization, realizes its greatest 
potential in an environment fostering locally generated solutions 
to the larger problem of promoting efficient energy production/ 
consumption. In particular, we report on our progress in 
implementing a smart grid agent that exploits look-ahead 

scheduling approaches to implement price responsive demand 
while maximizing economic reward for consumers 
The large scope context and design for the CONSERVE agent 
(Client Owned Negotiator for Scheduling Energy Resources Very 
Efficiently) as presented in [1] is rooted in autonomous operation 
on behalf of consumers, in contrast to utility-side control models 
for implementing demand response.  In brief, the agent is intended 
to operate on the client side in a context that includes Advanced 
Metering Infrastructure (AMI) that delivers power pricing signals, 
2-way communications, and a variety of residential 'smart 
appliances' and components that allow some degree of automatic 
control (Figure 1).  The agent fills the role sometimes referred to 
as an Energy Management System (EMS); Based on the real-time 
price of power, it is tasked with deciding when to activate/ 
deactivate those electrical devices that residents agree to cede 
direct control over in order to reduce costs (maximize profit).  The 
gray panel of Figure 1 envelops the three components of the agent 
of concern here1:  Scheduler, Dispatcher, and Distributed State 
Manager (DSM). All components share the state model of the 
problem and known state information such as temporal 
constraints, scheduled activities, client-imposed constraints, etc. 
The scheduler builds a limited horizon (e.g. 24 hr.), cost 
minimizing schedule and manages it in the face of environmental 
change (e.g., new price profiles). The Dispatcher is responsible 
for triggering energy usage actions according to the extant 
schedule. Finally the DSM is responsible for communicating 
relevant aspects of the usage schedule to the grid at large. 
This home energy optimization problem is complicated by 
numerous sources of uncertainty, such as the regional power 
demand (and thus price), changing wind and insolation (and thus 
power output from intermittent resources), as well as sporadic 
changes in residents' routines and behavior.  Further 
complications arise from the presence of consumer's constraints, 

the pool water be cleaned at least every other day').  Finally, the 
great majority of consumers will be unwilling to devote more than 
brief and cursory attention to electricity consumption in the 
buildings they inhabit, so an EMS  must (re)solve the building 
power optimization problem in real-time with minimal 
dependence on human interaction. 
We seek to address this problem with scheduling technologies that 
we have developed for environments featuring high levels of 
uncertainty, the need to keep pace with execution, a variety of 
hard and soft constraints, and reward maximization in both 

                                                                 
1 Not shown: the Negotiator/Options Manager that comes into 

play in collaborations between multiple agents.  Cooperation 
between CONSERVE agents is not addressed in this paper. 



centralized and distributed problem-solving contexts [2,3].  To 
this end, we formulate client-side power scheduling as a dynamic, 
cost-minimizing optimization problem and anticipate that a robust 
scheduling approach will seek an optimal solution if conditions 
permit, and transition to a faster incremental methods [4] when 
they do not.  In this paper we consider a thin but challenging slice 
of the consumer power management problem typical of a non-
collaborative smart home environment; residential hot water 
heating.  The feasibility of generating optimal advance heating 
schedules is explored with LP techniques, to support an effort to 
determine conditions for which approximate and incremental 
scheduling techniques may be warranted. 
In contrast to advance scheduling, most EMS devices 
implemented to date are fundamentally based on dispatch 
methodologies.  An electric load under EMS control is activated 
when the price of power is 'sufficiently low' and no user-specified 
requirements on the task are violated.  Similarly, for some smart 
devices, they can be temporarily deactivated when the price 
exceeds some threshold.  Such reactive strategies are prone to 
producing sub-optimal results as they make little or no use of the 
predictive strengths inherent to advance scheduling.  Furthermore, 
dispatch approaches to energy management offer little support for 
coordination between clients as the smart grid matures and 
supports the formation of cooperatives or micro-grids.  
We defer this assessment to a future paper, but note here that 
CONSERVE agents endowed with two-way communication and 
allowed to cooperate, can leverage advance scheduling in ways 
that are beneficial to both their clients and overall health of the 
regional power grid. For example, a CONSERVE agent-arbitrated 
agreement to purchase power from a local cooperative member 
can reduce participant costs, reduce transmission costs, and 

contribute to greater grid stability.  From a grid operations 
perspective, cooperating CONSERVE agents can magnify the 
effectiveness of real-time pricing in flattening demand peaks. 

2. POWER MANAGEMENT PROBLEM 
The somewhat simplified general smart home power management 
problem we describe here can be formulated in a variety of ways; 
as a constraint satisfaction or optimization problem (CSP, COP), a 
satisfiability (SAT) problem, or incremental constraint posting 
search problem, to name a few.  We outlined in prior work the 
appeal of viewing it as a scheduling problem in which discrete 

ated so 
as to maximize reward [1].   
Figure 2 depicts key constraints and influences for a 24-hour 

power-consuming activities (gray box) 
for which the client cedes control to an EMS. These include any 
client requirements on start or completion times for those 
activities, a projected load profile of activities outside automated 
control (non-dispatchable loads), and a day-ahead power pricing 
profile supplied via the smart meter.  If the client owns a 
distributed energy resource (DER), such as a wind turbine, then 
the projected output of the turbine based on the wind speed 
forecast over the day is an important factor. The power activities 
constitute the decision variables intuitively they are tasks that a 
scheduling engine could seek execution times for such that the 
cost of electric power consumed is minimized.  To generate an 
advance schedule for a smart home requires detailed 
characterization and classification of all typical daily electric 
loads.  This includes household loads not suitable for automatic 
dispatch such as on-demand room lighting, televisions, and 
microwave ovens which are directly controlled by the consumer.  
Figure 2 also depicts one feasible solution that minimizes usage 
cost. Each power task (gray box) is shown as a block with height 
proportional to its power demand, length proportional to task 
duration, and allocated within the limits of its specified execution 
window.  Since the client
(but not exactly) free, an optimal solver for this situation will seek 
to schedule all tasks such that the combined power demand from 
dispatchable and non-dispatchable loads is lower than the 
projected turbine output at all points over the planning time 
horizon.  Until that capacity is reached, grid power pricing has no 

Figure 1.  Agent architecture and data flow for a 
smart home client.   

a)  Collecting client and environment constraints 

b)  Communicating & executing power schedule 

Figure 2.   Home energy management:  Constraints, 
environment, and pricing profiles (HW hot water heater, 
DW -dishwasher, CW/CD clothes washer, dryer ) 



impact on choosing cost-minimizing task start times.  
For this study we focus on the water heating power task due to 
both the size of the impact on consumption (Heating hot water for 
domestic use typically accounts for 14  25% of home energy 
consumption) and the fact that hot water usage presents a more 
interesting modeling challenge than other smart appliances 
coming to market.  As described below, the water heater tank can 
essentially function as an energy storage reservoir that an 
intelligent control system can use to leverage against forecast or 
historic electricity pricing profiles. 

Key physical aspects of a conventional storage water heater 
include the ready reservoir of hot water and operation by release 
of hot water from the top of the tank when a hot water tap is 
opened. Cold make-up water enters the bottom of the tank, 
ensuring that the tank is always full.  Thermostats in the tank 
control the heater to maintain the tank water temperature within a 
narrow band. Since the tank contents exceed ambient temp, there 
is some energy loss (called standby heat loss) even when a hot 
water tap isn't running.  The smart water heater we model differs 
from the conventional primarily in its ability to support super 
heating of the tank water. We loosely define this as heating above 
the conventional upper limit of 130 0F.  This requires a 
thermostatically controlled water mixing valve at the hot water 
outlet of the tank that functions to prevent scalding by sensing the 
water temperature and mixing enough cold water to achieve the 
nominal (safe) water heater outlet temperature.  Intelligent control 
of such a heater can realize cost efficiencies by shifting heating 
cycles to off-peak times via a combination of 'super-heating' when 
the electricity price is low and 'sub-heating' when it is high.   

We cast the power scheduling problem for our experiments as the 
challenge of finding a minimum cost, day-ahead schedule for 
cycling an electric water heater subject to the condition that the 
hot water demand of residents is always satisfactorily met.  
Specifically, we assume: 

1. a day-ahead 24 hour profile/forecasts for power price 
and  household hot water usage 

2. a 50 gal. water heater tank 
3. water enters tank at Tin = 50 °F (10 °C), required hot 

water tank temp (conventional heater) is Tmax = 120 °F.    
4. client comfort does not degrade for supply temperatures 

down to Tout ~105 0F, (faucets are manually adjusted). 
5. max tank water temp limit (smart heater only) Tmax = 

180 ° A water heating cycle will terminate when 
temperature reaches max. 

6. electric heater power(on) = 11.72 kW (40,000 BTU/hr) 
and heater is 98% efficient. Heater power is high 
enough to keep pace with maximum proposed demand. 

7. energy required to raise a volume of water by a degree, 
(regardless of Tin ):  .00245 kWh/ gal -°F x .98 (eff)  = 
.0025 kWh/gal °F  (1.185 kWh/liter -°C) (first value is 
the avg heat capacity of water over range Tin to Tout)  

8. standby heat loss (Eloss) is equivalent to a temperature 
loss in 50 gallons of water =  2 °F/hr. 

The price and usage profiles are not strictly required, but the 
advantage of advance scheduling becomes more pronounced as 
forecasts or historical data are made available (and improve in 
accuracy). We adopt a day-ahead 24 hour power price profile that 

is representative of typical forecasts published by the PJM 
Interconnect2.  We also adopt a hot water usage profile that is 
loosely based on several sources characterizing household hot 
water consumption; highest demand occurs in the morning as 
residents rise and in the evening as they return home, prepare the 
evening meal, etc (Figure 3).  In practice, resident-specific usage 
patterns should be learned by a companion computational process. 
This model ignores several physical realities; seasonal variations 
in input water temperature, the  heat capacity 
with temperature, and heat loss from the tank increases with 
temperature difference between tank water and ambient air 
temperature.  These simplifications do not significantly alter our 
results over the temperature ranges of interest. 
Optimal advance scheduling    The problem can now be restated 
as:  Find a minimum cost day-ahead schedule for cycling an 
electric water heater given 24-hr forecasts of power pricing and 
hot water usage, and subject to the condition that the tank outlet 
temperature never fails below the lower limit nor exceeds the 
specified upper limit.  Here the lower limit is 105 0F, and the 
upper limit is 120 0F for the conventional heater and 180 0F for 
the smart heater (measured at inlet to mixing valve).  
Intelligent dispatch  For comparison purposes we also consider  
power management similar to many current EMS system 
strategies.  Here the heater control logic can be stated as: 1) 
Heater ON when the electricity price is below the day s projected 
median and tank temp does not exceed the high limit (180 0F)  2) 
Heater ON when tank temp falls below the lower limit (105 0F) 
regardless of electricity price.  3) Heater OFF when the price of 
electricity is above the specified threshold, subject to #2 above. 

3. ENERGY MODELING ALTERNATIVES 
We experimented with different ways of encoding of the water 
heating process as a problem for the Cplex LP solver.  An 
intuitive approach is to model the actual tank water temperature as 
a function of the heater energy input, hot water usage, the 
resulting inflow of cold water makeup, and the standby heat loss. 
This proved adequate for quickly solving a problem featuring a 
conventional water heater, but introducing the water mixing valve 
for the smart heater model leads to a problematic set of LP 
constraints.  The difficulty arises due to the iterations needed to 
determine the amount of super-heated water required to meet a 
demand when it must first be mixed with an unspecified amount 
of cold water to reduce the mix temperature to the acceptable 
band (105 - 120 °F).  This quantity, in turn, determines how much 
cold water at the inlet must now be heated to the target tank 
temperature.  We found that even when accepting several 
additional simplifications and precision losses, optimal solutions 
to the smart heater problem could not be found for this encoding 
within several hours of run time. 
We side-stepped this difficulty by adopting, instead, an energy 
balance model of the tank.  (The water tank is conceptually a 
rechargeable energy storage device.)  At any given time tank 
energy content, Et, is defined as the net tank water energy above 
the energy content of an equivalent volume of water at Tin: 

Et = Einit  Esub  Eloss  + Eadd       where 
Einit is the energy stored in tank at start of analysis cycle 
Esub is the energy withdrawn from tank due to hot water usage 

                                                                 
2http://www.pjm.com/markets-and-operations/energy/day-ahead.aspx 



Eloss is the standby energy lost from tank due to heat transfer to 
environment through tank wall 

Eadd is the energy added to tank by heating cycles 
Under this model, hot water consumption/demand can be 
translated into energy demand (Esub).  Hot water demand is 
expressed as gal/min but this is translated into energy demand by 
assuming a constant energy content value for each gallon of hot 
water: the energy contained in 1 gallon of water at the current 
bulk tank temperature after it's heated from the tank inlet 
temperature.  This assumption is reasonable as long as assumption 
6  
We found that the LP solver efficiently generated cost-optimal 
solutions for this energy balance constraint model in roughly a 
minute for the smart heater case.  

4. RESULTS AND DISCUSSION 
The top two plots of Figure 3 depict the chosen day-ahead power 
price profile and smart home hot water demand forecast for a 24 
hour period (x-axis gives minutes since midnight).   The bulk tank 
temperature for a dispatcher-controlled water heater (Section 2 
logic) appears in the third plot while the tank temperature for the 
cost-minimizing scheduling approach is shown in the bottom plot.  
As expected, for the optimal the heater is run primarily during the 
intervals of lowest cost power to raise bulk tank temperature 
(energy) to the limit in anticipation of future demand.  The 
exceptions are associated with high water demand intervals where 
the heater is run in order to keep tank temperature above the lower 
limit, at times based on the projected temperature going forward.   
The intelligent dispatch approach does reasonably well by 
comparison except in its over-eagerness to reheat the tank to the 
maximum after the morning high water demand period. Here it 
suffers from reheating at a higher power price than if it had 
delayed an hour or so.  We note that the dispatch mode 
performance is a bit overstated due to the simplifying assumption 
about constant standby heat loss.  Once we augment the water 
heater model to reflect the fact that heat loss increases with higher 
bulk tank temperature, there will be a penalty associated with 
maintaining high water temperatures unnecessarily.   
Before numerically comparing the 24-hr heating costs of the two 
power management approaches we compensate for an artifact 
visible at the end-of-day in the temperature plots. Given the  
somewhat artificial 24 hour limit in the demand forecast it 
schedules against, the optimal scheduling model was somewhat 
constrained to finally return to the beginning-of-day temperature.  
The dispatch model, on the other hand reheats tank contents to the 
maximum in the late evening due to its second cycling heuristic.  
However, even if we adjust for this end-of-day reheating artifact 
the 24 hour energy cost of the dispatch approach is $2.25 versus 
$1.80 for the optimal scheduling solution.  

5. CONCLUSIONS AND FUTURE WORK 
We have summarized the design of a client-side agent capable of 
operating autonomously to minimize smart home power costs.  In 
support of the advance scheduling approach at its core, we 
developed the physical models and constraints needed to generate 
cost-optimal schedules for controlling a smart water heater and 
reported results investigating the feasibility of generating optimal 
day-ahead solutions.  A modest advantage over a representative 
intelligent dispatch mode is demonstrated even in this non-
collaborative static analysis. After extending the physical models 

to a complete set of smart home devices that are both more 
representative and more realistic, we plan to investigate strategies 
for leveraging the CONSERVE agent power management 
schedules in local multi-agent cooperatives.    
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Figure 4.   Static solutions for smart water heater 
under pricing and hot water demand forecasts:  
Dispatch strategy vs. optimal scheduling. 


