
A PlaybookTM for Real-Time, Closed-Loop Control
Harry Funk, Robert Goldman, Christopher Miller, John Meisner, Peggy Wu

Smart Information Flow Technologies, LLC
211 First St. North, Ste. 300

Minneapolis, MN 55108
+1 612-339-7438

{hfunk, rpgoldman, cmiller, jmeisner, pwu}@sift.info

ABSTRACT

SIFT has been developing an approach to adaptable automation
control of multiple Unmanned Air Vehicles (UAVs) we call a
PlaybookTM because it is based on the metaphor of a sports team’s
book of acceptable plays. Playbook represents a “delegation”
approach to human-automation interactions because it allows a
human operator to task or delegate authority to automation with
much of the same flexibility with which a human supervisor or
team captain can delegate objectives, methods, constraints and
even detailed instructions to subordinates. In previous work, we
have described the Playbook architecture and approach, illustrated
interfaces, presented initial data clarifying its benefits and describ-
ing collaborative interactions with it. Here, we review the Play-
book concept and previous work and then report on newly imple-
mented play capabilities including the ability for the Playbook to
coordinate the activities of multiple UAVs to track a ground-
based moving target—a play that requires Playbook to dynami-
cally replan within authority delegated to it by the human opera-
tor.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—PlaybookTM; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search--Control theory, Graph and tree
search strategies, Plan execution, formation, , and generation,
Hierarchical Task Networks; I.2.9 [Artificial Intelligence]: Ro-
botics—Autonomous Vehicles, Operator Interfaces.

General Terms
Human Factors.

Keywords
Delegation Interfaces, Tasking Interfaces, Unmanned Air Vehi-
cles, Robotics, Hierarchical Task Networks, Mixed Initiative Con-
trol, Discrete Event Control.

1. INTRODUCTION
Human interaction with complex automation (including robots)
poses myriad challenges. Not the least of these is “tuning” auto-
mation performance so that a satisfactory, safe and effective mix
of human and machine roles results. On the one hand, the “tech-
nological imperative” [1] argues for ever-increasing delegation of
roles and performance duties to automation in order to reduce the
costs (in terms of workload, training, person-hours, boredom and,
in some cases, physical safety) to human operators. On the other
hand, there are now well-understood drawbacks to the over-use of
automation, especially when that automation operates in a less-
than-perfect manner and/or is implemented in such a fashion that
its use will be “clumsy” for the humans that must engage it. Some
of these drawbacks include [2,3] unbalanced workload, loss of
skills, over- and under-trust, lack of user acceptance and reduced
overall system performance and safety.

Human interaction with Unmanned Air Vehicles (UAVs) and
other semi-autonomous vehicles such as robots present these
problems in novel, yet familiar ways. The technological impera-
tive has manifested itself initially in the drive to develop and make
extended use of UAVs in roles that humans either cannot perform,
or cannot perform as safely, conveniently or efficiently as an un-
manned vehicle can. Currently, the imperative manifests itself in a
drive to reduced operator-to-platform ratios and divorce ourselves
from the current practice of providing a dedicated workstation for
each vehicle or vehicle type and to allow operators to control
multiple, heterogeneous vehicle types with minimal workstation
modifications and additional training.

Yet insofar as the UAV (or robotic vehicle in any form) is to serve
the intent of a human supervisor, human interaction with it re-
mains crucial and, thus, convenient and efficient methods of
communicating that intent remain critical. The core challenge is
to develop a method of interacting with sophisticated, variably-
autonomous agents that allows the human supervisor to provide as
much or as little instruction and constraint on the performance
and behavior of the agent as the human deems necessary and de-
sirable. We believe that such methods of interaction have already
been largely developed for cases where the “agent” receiving
instruction happens to be another human in a subordinate role. In
these cases, we say that the supervisor “delegates” tasks, roles,
responsibilities and authority to the subordinate via a more or less
complex set of delegation instructions. Our challenge is to make
such delegation interactions feasible for human-machine interac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Human Robot Interaction’06, March 2-3, 2006, Salt Lake City, Utah
USA.
Copyright 2006 ACM X-XXXXX -XXX -X/XX/XXXX…$X.XX.

tions with at least the degree of flexibility and effectiveness as
they are for human-human interactions.

We are developing an approach to UAV control that addresses
this challenge [3-6]. We use the metaphor of a sports team’s play-
book to enable both quick and complex variable-initiative control
with a variety of UAVs. The user of our PlaybookTM ”calls a play”
to request a service from a team of UAVs. We have implemented
this approach in the Playbook-enhanced Variable Autonomy Con-
trol System (PVACS) project [5], which combines SIFT’s Play-
book interfaces and Geneva Aerospace’s Variable Autonomy
Control System (VACS).

In this paper, we describe the general Playbook concept and pre-
sent the architecture of our PVACS Playbook. We describe ex-
ample “plays” that have been implemented previously, along with
examples of the user interfaces for interacting with a Playbook to
“call” them, and to review and monitor execution of the resulting
UAV plan. Finally, we describe a recently implemented play to
coordinate multiple UAVs in the tracking of a ground-based mov-
ing target. Since this play has required outer loop, discrete-event
control in order to manage assets involved in the tracking task, it
represents a step toward full, dynamic replanning control not pre-
sent in earlier versions of our Playbook.

2. A PLAYBOOK TM APPROACH TO HU-
MAN-AUTOMATION INTERACTION
SIFT has pioneered a human-automation integration architecture,
called Playbook™ [3-6] based on a domain-specific task model
which is shared by human operators and by planning and control
automation—and which serves as a “lingua franca” between them.
The goal of Playbook is to enable the same degrees of flexibility
in commanding automation (specifically, though not exclusively,
unmanned vehicles) that a human supervisor has with knowledge-
able, competent subordinates. Supervisors (or team captains)
interactING with human subordinates can decide how much and
what kind of instruction and constraints or stipulations to impose
on their subordinates as a function of factors such as the time and
workload capacity available, the supervisor’s trust in the subordi-
nate, and the specific constraints of the current context. When
necessary or desirable, they can provide very high level and
minimal instruction about the objectives and methods the subor-
dinate should be pursuing (can “call a play”) and leave most of
the planning, decision making and execution responsibilities to
the subordinate—albeit with less certainty about exactly what
methods will be used. Alternatively, again when necessary or
desirable, they can provide much more detailed
instruction about specific methods to be used (i.e.,
subtasks to be performed or avoided, specific re-
sources to be used or not used, etc.) with a reduc-
tion in uncertainty about how the task will be per-
formed by the subordinate—albeit at the cost of
additional time and workload spent in the tasking
process.

The shared task model at the core of Playbook pro-
vides a means of human–automation communica-
tion about plans, goals, methods and resource us-
age—a process akin to referencing plays in a sports
team’s playbook. A play can be “called” very
quickly and the authority required to adapt and

apply the play to the current situation is left to the intelligence
resident in the system (specifically, in a sports team, in the heads
of the players). Alternatively, a coach or team captain can adapt,
refine or specify a play with minimal effort (since everyone knows
the basic play “vocabulary” to begin with) if time permits or the
situation requires. The Playbook enables human operators to in-
teract with subordinate systems with the same flexibility as with
well-trained human subordinates. For Unmanned Vehicles
(UVs), Playbook actively manages missions at the highest level
enabling the human to delegate objectives and partial instructions
to the UV and then autonomously develop plans to accomplish
those overall mission objectives. Alternatively, and unlike many
other approaches to control of multiple UVs, Playbook also al-
lows the user to “dive into” a high level play and increasingly
refine and specify it, thereby permitting both high and low level
control of UVs. Thus, Playbook affords the variability and flexi-
bility of user interaction which the UV control domain demands.

The basic Playbook architecture consists of a constraint-based
planning engine that shares information with the user (via the
interface) in terms of a shared task model. The task model is both
hierarchical and sequential. When a task (or play as it is some-
times called) is activated, the system then knows all the required
and optional methods that may be used to accomplish it.

Figure 1 presents our general architecture. In our approach, a User
Interface (UI), in the form of a playbook, and an Analysis and
Planning Component (APC) are both based on a Shared Task
Model. The Shared Task Model is the framework for all commu-
nications between these two components and between the play-
book and the human operator. The human operator communicates
tasking instructions in the form of desired goals, tasks, constraints
and/or policies. The APC is a constraint propagation and analysis
system that uses Hierarchical Task Networks. The APC can un-
derstand tasking instructions and (a) evaluate them for feasibility,
and/or (b) expand them to produce method alternatives. Once an
acceptable plan of atomic actions is created, it is passed to an
Executive component which performs Event Handling—an outer-
loop control system capable of making in-flight adjustments to the
plan. The Event Handling component sequences control algo-
rithms that actually effect behaviors in the (possibly simulated)
controlled vehicles.

Through its knowledge of viable task structures in the domain and
through interaction with more sophisticated special purpose tools
(such as dedicated route planners, senor planners, etc.), the plan-
ning component of Playbook is capable of both fleshing out a plan

PlaybookTM

Special
purpose
planners(e.g., route planner, sensor optimizer)Analysis &

Planning
Component

Event
Handling

Algorithms
Control

Instructions

Feedback

Shared Task Model

Playbook
UI

Vehicle(s)

Execution
Environment

PlaybookTM

Special
purpose
planners(e.g., route planner, sensor optimizer)Analysis &

Planning
Component

Event
Handling

Algorithms
Control

Instructions

Feedback

Shared Task Model

Playbook
UI

Vehicle(s)

Execution
Environment

Execution
Environment

Figure 1. General Architecture for Tasking Interfaces.

within parameters specified by a user and of critiquing a plan for
feasibility and goal accomplishment. The planner accomplishes
this by access to knowledge about the resources (for example,
quantities such as fuel or munitions, as well as less obvious re-
sources such as time, distance or, potentially, human attention and
cognition capabilities) used by specific tasks in the scenario, as
well as knowledge of how legal task combinations are known to
accomplish goals.

2.1 The Meaning of “Play”—The Shared
Task Model
Correctly capturing the semantics of plays is critical to acceptance
of the Playbook system. Plays are, in essence, compressed com-
mands. The requestor has an expectation, when the request is
issued, that some action will be taken that conforms to his/her
idea of the request’s meaning. The Shared Task Model illustrated
in Figure 1 forms the ‘language’ through which humans and
automation can communicate about task performance. The
Shared Task Model is a hierarchical decomposition of tasks in the
domain that captures the functional relationships and sequential
constraints between labeled ‘packets’ of goal-directed behavior.
A ‘play’ is an encapsulated set of behaviors—perhaps including
alternatives—that provides a method of accomplishing domain
goal(s). Plays are not scripted, static procedures, but rather dy-
namic templates that identify a labeled range of behaviors which
humans and automation agree will fall under that label. Because
plays (and their component tasks) are hierarchically defined, a
very complex suite of behaviors can be very efficiently referenced
by asserting the label of the parent task. This is the source of the
efficiencies which come in ‘calling plays’. Plays are largely syn-
onymous with tasks, though they may represent a specific aggre-
gation of lower level tasks with a defined label—a macro operator
that can be adapted to the context in which it is ‘called’. Even
when modifications to existing plays are necessary, or whole new
plays need to be created, we can do this very quickly by modify-
ing existing plays.

As Boy [7] points out, the naming or labeling of tasks always
involves a process of ‘rationalization’ or abstraction toward a
‘template’ that leaves the final customization
of the behaviors for the actor at runtime.
Another way to say this is that a task is a
labeled set of potential behaviors which, in
various compositions, represent alternate
methods of accomplishing or performing the
labeled task. When a subordinate (whether
human or automation) is commanded or au-
thorized to perform a task (by name),
he/she/it is given authority to select and enact
any of the various possible behaviors that fall
within the space defined by the task label.
The supervisor may further constrain the set
of allowable methods by providing additional
instructions about which methods can, must
or cannot be used.

Figure 2 shows possible expansions of a task
we are working with currently: Ground Mov-
ing Target Tracking (GMTT)—establishing
and maintaining surveillance of a moving
target. Each of the subordinate tasks shown

in Figure 2 itself has a definition in terms of subtasks that must be
performed to complete the parent task. This definition process
repeats until an atomic task level is reached. Atomic tasks are
those that are executable by a given platform, hence the atomic
level is different for different platforms. Currently supported
platforms include Geneva Aerospace’s fixed-wing Dakota and the
GTMax rotorcraft.

The task formalism we use incorporates four types of information,
shown in Table 1.

These task templates contain a number of variables that must be
set – parameters to the request. Some parameters must be speci-
fied for the task to be executable. Other parameters take their
values from the current situational context and thus have reason-
able default values that are passed to the Analysis and Planning
Control Component as a part of the request. Remaining parame-
ters are set (bound) by the planner during the planning process.

Tasks may include static and calculable information about the
resources (including time) they need, required initiation condi-
tions, expected outcomes, etc. Task models exist in three forms
(1) a generalized form in a library, where they represent (in an
abstract, uninstantiated form) the possible tasks which can be
performed using this vehicle, (2) in a selected and partially instan-
tiated form for use as a mission plan with additional parameters
and selections that must be made at execution time, and (3) a fi-
nal, executable and fully instantiated form at run time. At its low-
est levels, the Shared Task Model contains primitive execution
tasks that can be reliably executed by automation.

In prior work, we have used a variety of representational frame-
works to encode the knowledge required for a Playbook tool to
operate. Thus, we are familiar with a variety of potential ap-
proaches, including object-oriented styles and even Prolog repre-
sentations. For our most recent Playbook effort, we are develop-
ing an XML representation based in part on the DARPA Agent
Markup Language – Services (DAML-S) (and its successor, the
Web Ontology Language – Services (OWL-S)) which should be
both easier to use and more readily integrated with other tools. GMTT SortieAchieveAirborne Ingress GMTT Acquire and track EgressFly WaypointSequence Fly WaypointSequenceFixed-wingGMTT

Fly Racetrack Fly GMTT Circle and SearchTrack acquired Track lostTrack acquired
TimeoutFly Racetrack Fly GMTT Circle and SearchTrack acquired Track lostTrack acquired
Timeout… … …

Figure 2. Play Example: Ground Moving Target Tracking.

2.2 Analysis and Planning Component
The Analysis & Planning Component (APC) is a central part of
what we term ‘Playbook’. The core of the APC is an enhanced
version of a hierarchical task network planner known as SHOP2.
The APC evaluates the feasibility of alternate methods of satisfy-
ing requested plays. When given a high-level play request, the
APC selects among various feasible methods, issues instructions
to the execution environment (either simulation or UV platform)
and monitors for necessary revisions during performance. When
given lower-level, more specific and detailed requests (such as a
specific platform to use, specific paths to be followed, or specific
scan patterns to use), the APC reviews them for feasibility and
either (a) reports when requested actions are infeasible, (b) passes
‘validated’ user requested plans to the execution environment and
monitors their performance, or (c) fleshes out high-level operator
requests to an executable level (for example, choosing among
available platforms, selecting waypoints for ingress and egress,
identifying sensor steering parameters, etc.) within the constraints
the operator has imposed. The APC is designed to use special
purpose planners as adjuncts to its planning process; the route
planner currently in use for one of our programs is a GIS package
modified to perform the route plan function.

Whenever known resource violations occur, the planner can re-
port that this is not a feasible plan. Similarly, whenever task
combinations do not add up to the accomplishment of a parent
goal, the planner can note this fact and either report it (if in cri-
tiquing mode) or choose another method for accomplishment (if
in autonomous planning mode). This planning capability is not a
full simulation, but rather a first-pass, coarse-grained constraint
checking capability. It does not, for example, contain any ability
to simulate world states or enemy actions. Nevertheless, it is a
useful method of doing some plan generation and screening for
obvious errors. More sophisticated simulations, and user feed-
back on candidate plays, could be incorporated to improve this
capability, but at the cost of additional time and computational
resources. This simple, first pass, screening of candidate plans
has proven adequate for many applications to date—especially

given the flexibility to adapt the play during execution (as dis-
cussed below).

2.3 Relaxing Constraints
Using Playbook, we have discovered that over-constrained mis-
sions are particularly challenging, because it is difficult for opera-
tors to know why a request has failed and what constraints to relax
in order to find a viable solution. In essence, when a straightfor-
ward, constraint-based solver fails to find a solution, it behaves as
a subordinate who says, simply “I can’t” when asked to do a task.
Even if honest, this isn’t as helpful as it could be.

To solve this problem we have added a “best-effort” planning
mode to the Playbook [8]. Best-effort plans may be directly use-
ful, or can be used as a guideline in relaxing constraints. In es-
sence, Playbook’s APC begins a heuristic-guided relaxing of user-
imposed constraints until it finds a method of accomplishing the
goals of the play that it believes is feasible. This new, “relaxed-
constraint” play can never be executed without supervisor ap-
proval, but it is a way of both communicating what needed to be
modified in the initial request in order to arrive at a feasible plan
and of having a plan available for quick execution. This new
capability gives Playbook the ability to respond like a subordinate
who says “I can’t do what you wanted, but here is something that
I think is close to what you want and that I know I can do. How
about that?” As such, this suggests that presenting a relaxed con-
straint plan should serve as the first step in a negotiation process
whereby the human supervisor and Playbook’s APC arrive at a
feasible and desirable solution—though we have not yet imple-
mented such a process.

2.4 User Interfaces
The presence of the Shared Task Model and its use as a communi-
cation medium between the user and the APC affords the potential
to create a wide variety of different user interfaces, each custom-
ized for different usage environments. For example, an interface
designed for creating and editing plays will need much more de-
tailed presentation and manipulation capabilities for the underly-

Table 1. Task Model Element Definitions.

Task Model Ele-
ment

Description

Tasks Work domain tasks to be performed by simulated or actual human and automation actors in a con-
structive simulation model.

Hierarchical, Func-
tional Task Rela-
tionships

A representation of the subtasks or methods which are capable of accomplishing a parent task.

Sequential, Condi-
tional and Looping
Relationships

Information about the ways in which tasks can be or must be strung together in order to accom-
plish parent tasks. Conditional branches indicate the conditions under which various branches are
to be taken (including probabilistic branching). With regards to conditional branching points, we
define the conditions with a simple textual rule representation as follows: Condition A: If X, then
Y. Note that probabilistic branching can also be expressed in this format and “do-while” loop-like
branching can be represented by including the ‘while’ clause in the conditional and placing it after
the task to be repeated.

Commandable
Constraints and
Stipulations

Conditions and resources to be used or avoided in the plan to be produced, in terms of the specific
tasks and bindings found in the plan.

ing task structures than will one designed to rapidly call largely
pre-defined plays in, say, a combat environment. Similarly, a
Playbook used primarily for mission planning will likely permit
much more detailed investigation of alternatives and shaping of
the instructions provided to automation—and will benefit from
auxiliary visualization tools such as detailed maps, plan tree
graphics, Gantt charts for timeline visualization, etc. By contrast,
a Playbook used for commanding UVs in a high stress, high
tempo combat environment (such as an organic unit supporting a
ground force or unmanned “wingmen” under the command of an
airborne mission commander) might demand a reduced number of
plays with limited customization options—perhaps even “call-
able” via a speech interface or presented in very minimal form on
a PDA.

The majority of our recent work has focused on Playbook support
for small, dismounted, ground-based units issuing “requests for
service” to a heterogeneous pool of UAVs while continuing their
ongoing tasks such as apartment searches or urban combat. “Ser-
vice requests” are much like play commands in that they require a
designation of the appropriate behavior to be executed at a high
level (the “play” to be performed) and they will benefit from per-
mitting flexibility in the amount of instruction provided about
how that behavior is to be effected. Such a concept of operations
assumes that issues such as deconfliction and basic pilotage are
either fully automated or performed by a user other than the small
unit soldier. For that soldier, though, several requirements be-
come clear. First, current operator-to-platform ratios on the order
of 4-1 will no longer be acceptable. Second, the current practice
of providing a dedicated workstation for each vehicle or vehicle
type will also be unacceptable when individuals must interact with
multiple, heterogeneous vehicles. Operators will need a common
interface for multiple vehicles. Third, new usability and training
requirements will be imposed. Small unit soldiers will not be able
to spend months training to be rated for a vehicle, nor will they
devote full attention to vehicle management (much less to manag-
ing a single vehicle subsystem). Instead, UAVs must be controlla-
ble with much less training and while engaged in many other ac-
tivities.

These requirements have led us, in this work, to an interface
largely optimized for speed of command while still affording
some flexibility and providing adequate execution monitoring to
permit interventions. Generally, the human operator “calls a play”
by designating it from a library and then, instead of drilling down

into a graphic representation of the play such as the conceptual
illustration in Figure 2, s/he stipulates values for a few key pa-
rameters which correspond to significant branch points in the
hierarchical set of alternative methods which make up the play.
The user is required to provide some such parameters (i.e., the
target of an attack or surveillance play), but most can be provided
with reasonable, heuristic-based defaults (perhaps configured pre-
mission with the user’s approval). Such defaults can be, but do
not have to be, modified by the user at execution time. Examples
include the time to begin and duration to maintain a surveillance,
the type of vehicle to be used, the area of ground surveillance, etc.
In general, they permit the calling of a reasonably accurate play
very quickly—generally with as few as 3-5 mouse clicks.

Figure 3 provides two illustrations of user interfaces we have
created for this domain. The left hand example is designed to be
hosted on a laptop or portable notebook and provides more in-
spection and modification views of routes (via maps) and plans
(via timelines and tree diagrams) and well as larger, higher resolu-
tion video imagery. The right hand example is a PDA-based im-
plementation that affords limited plan/route visualization, video
imagery and plan editing capabilities.

3. Recent Playbook Developments
Our most recent modifications to the Playbook design have in-
cluded the incorporation of the Ground Moving Target Tracking
(GMTT) play illustrated in Figure 2. GMTT is a play which en-
ables a human commander/supervisor to say, effectively, “I want
to track this (moving) target on the ground” with the ability (but
not the requirement) to further specify the type of platforms to do
the tracking, the period of time during which tracking is to be
performed, the routes to be flown, etc. This play represents our
first serious foray into outer loop, discrete-event control via Play-
book and is, thus, something of a milestone in Playbook develop-
ment.

Previous plays (primarily surveillance plays which consisted of
variations on a route to fly and a surveillance pattern to execute
for a fixed period of time once at a target area) could generally be
constructed and then passed in “batch” mode to an Executive
which manages event handling for execution. The Executive
would then simply watch for arrival at the target area and, when it
occurred, would issue a command to turn appropriate sensors on
(and reverse this process upon departure). To properly do

Figure 3. Two interfaces for a Playbook for Dismounted Small Unit Soldiers.

GMTT, the Executive must behave in a more complex fashion. It
must watch the UAV’s track status to see when it acquires a track,
change the control mode accordingly, and then watch to see if
track is lost again. If so, it will put the UAV into one of (poten-
tially) multiple alternate search patterns to try to recover the track.
This process iterates throughout the vehicle’s tracking period
(until the requested track period, or the vehicle’s portion of the
tracking period, is over, or until the vehicle has exhausted a time-
out limit for search) until the vehicle can progress to its egress
phase and return to home or to a destaging point.

This is not yet full replanning, as will be necessary for intelli-
gently handling dramatic upsets. We have not yet implemented
such capabilities (and the user interactions that would be neces-
sary to support reporting of such events and negotiations about
how to address them). The outer-loop, discrete event control
required for GMTT, however, represents a step in that direction.
Batch planning is no longer possible; instead, there is a presump-
tion that when the user delegates authority to perform a GMTT
“play”, s/he is authorizing the Playbook to coordinate UAV be-
haviors within the boundaries defined for the play. These include
unpredictable transitions between tracking and searching behav-
iors. Furthermore, this degree of unpredictability makes subse-
quent events in the play less predictable as well. For example,
because we don’t know where the vehicle will end up when its
tracking period is over, we can no longer generate a batch plan
which includes an egress route. Instead, we generate an initial
placeholder waypoint sequence at the start of the mission for re-
turning home, and then after tracking is done, we generate a new,
executable waypoint sequence and download it. Furthermore,
while executing the play, Playbook must continually monitor and
update parameters such as available fuel to maintain its level of
assured performability of the commanded play—that is, to ensure
that the vehicle has sufficient fuel to perform its egress sub-task.
This ongoing monitoring and updating of an evolving play be-
comes particularly complex in those cases where Playbook must
coordinate the behaviors of multiple UAV’s to, for example, sup-
ply continual coverage for a tracking period longer than any one
of them could provide alone.

There are many challenges remaining as we begin to move from
comparatively simple, waypoint-based plays to more complex and
dynamically changing plays such as GMTT. We have demon-
strated the possibility for a Playbook-like delegation interface to
behave appropriately within commanded constraints, but substan-
tial work remains to be done (and, in all likelihood, done in a
application-specific fashion) to tune the interaction between hu-
man and automation for behavior in such unpredictable situations.
The human supervisor should have the ability (at least for some
applications) to provide a much richer set of constraints (for ex-
ample, “track the target for the next 30 minutes, but if it crosses
the border into the neighboring country, cease track”), and per-
haps, a richer set of interactive and reporting or querying behav-
iors (e.g., “Maintain track for 30 minutes, but let me know if you
drop below 20% fuel reserves and if the target starts firing at you,
ask me what you should do next”). Such interactions are very
much in the spirit of the delegation interaction we are seeking to
provide with complex and sophisticated automation, and they are
within reach of our current architecture, but providing them must
await future work.

Finally, it is worth noting that as we build more plays into our
Playbook prototypes, we are beginning to see evidence of the
scalability of this approach and ease of composing novel plays
once an existing play library begins to be populated. For exam-
ple, adding the GMTT play on top of existing surveillance plays
made extensive reuse of waypoint flying behaviors for ingress and
egress, loiter modes for search, and sensor manipulation behav-
iors. In all, the addition of this complex, novel behavior required
only about 125 new lines of code to be added to the Playbook
APC and 430 lines to the Executive event handler. Most of the
latter were devoted to simply reading and parsing ground vehicle
track messages from sensors and are therefore not a core part of
Playbook’s reasoning. If one deducts the amount of code neces-
sary to simply read these messages and translate them into Play-
book data structures, less than 200 LOC were required overall.
This represents extraordinarily good reuse and bodes well for
future scale-up of Playbook data structures.

4. Playbook Benefits
Playbook has been designed to provide the flexibility that comes
from providing an intelligent supervisor and intelligent subordi-
nates the ability to collaborate flexibly about the precise task and
method that the subordinate is to perform. That is, both the dele-
gated task and the degree of specificity with which that task is
delegated and constrained must be under the flexible control of
the supervisor. We have anticipated [3] that providing such an
interaction style will provide multiple benefits for the human +
machine collaboration, including:

• Increased user satisfaction and acceptance

• Decreased human skill loss

• More balanced workload

• More accurate and balanced automation reliance deci-
sions

• Increased situation awareness (relative to a more fully
automated or autonomously adaptive automation ap-
proach)

• Improved human + machine system performance (espe-
cially in flexible and unpredictable domains which offer
enough time for human awareness and planning)

In previous research [9], we obtained empirical evidence for the
efficacy of Playbook type interfaces for mission efficiency. This
work, involving human control of multiple robots in the RoboFlag
capture-the-flag simulation, used a Playbook-like interface that
permitted flexible control at various hierarchical task levels. The
results showed that the multi-level tasking provided by the Play-
book interface allowed for effective user supervision of robots, as
evidenced by the number of missions successfully completed and
the time for mission execution. In addition, the flexible Playbook
interface was superior to fixed control conditions in which the
operator had access only to either manual control of individual
robots or automated plays alone, but not both. Finally, the superi-
ority of the flexible Playbook interface was particularly apparent
in conditions when the opponent posture was unpredictable.
These findings provide strong support for the view that the Play-
book allows for effective tasking of multiple robots while keeping
the operator in the decision-making loop, without increasing op-

erator mental workload, and allowing the human operator to adapt
successfully to unpredictable changes in the environment. These
benefits are important because traditional human-automation in-
terfaces have often been found to result in significant system and
human performance costs—including mode errors, user under-
and over-reliance on automation, and reduced situation awareness
[2,10]. Such limitations are sometimes severe enough to result in
catastrophic accidents, as evidenced by numerous analyses of
aviation incidents, including unmanned aircraft [11,12]. Hence,
the development of appropriate human-automation interfaces is
critical for effective human supervision of autonomous agents,
including robots and unmanned vehicles. Playbook provides such
an interface concept. Its benefits may be particularly apparent in
situations of environmental uncertainty and where unexpected
events occur, which can make pre-programmed automated behav-
iors ineffective.

5. Ongoing and Future Work
Far more than ‘just’ a user interface, Playbook provides a com-
plete architecture for the integration of human input, intelligent a
priori planning, reactive planning and event handling, and ongo-
ing vehicle control loops. To date, development on this tasking
interface architecture has been directed at ground-based control of
remote vehicles. However, our general tasking interface architec-
ture extends to work with software components and is not limited
to the vehicle control domain. SIFT is pursuing the application
and extension of Playbook in a number of different directions.
One particular direction is in developing methodologies to build
more extensive task models, such as the ability to derive Playbook
task knowledge from results of Cognitive Work Analysis (CWA)
of a task domain and then use the Playbook architecture (includ-
ing UI and planning components) to produce useful task timeline
inputs for a constructive simulation. Thus far, our emphasis in
developing a representation has not been on computational effi-
ciency or even on specific software representations, but rather on
ease of accurately and comprehensively expressing knowledge
requirements. Another current project, sponsored by a Navy
Small Business Innovation Research grant (N05-017) is focusing
on the integration of Playbook’s interactive and relaxed-constraint
planning into a sophisticated user interface environment.

Under these and other projects we are learning more about how to
modify the Playbook approach for a wide variety of human task-
ing contexts. Playbook and other tasking approaches to adapting
(rather than adaptive) automation behavior represent a sophisti-
cated and increasingly competent approach to interacting with
sophisticated automation, unmanned vehicles and robots with
unique payoffs in terms of human control, awareness and overall
performance.

6. ACKNOWLEDGMENTS
The PVACS program is funded by a Phase II Small Business
Innovation Research grant from DARPA IXO, administered by
the U.S. Army Aviation & Missile Command, contract number
DAAH01-03-C-R177. We would like to thank Dr. John Bay for
his oversight and advice during the investigation. We are also
grateful for the work of Geneva Aerospace personnel, especially
Billy Pate, on the VACS system and for educating us about it.

7. REFERENCES
[1] Sheridan, T. Supervisory control. In G. Salvendy, (Ed.),

Handbook of human factors. John Wiley & Sons, New York,
(1987), 1244-1268.

[2] Parasuraman, R. and Riley, V. Humans and automation:
Use, misuse, disuse, abuse. Human Factors, 39 (1997), 230-
253.

[3] Miller, C. and Parasuraman, R. (in press). Designing for
Flexible Interaction between Humans and Automation: Dele-
gation Interfaces for Supervisory Control. Accepted for pub-
lication in Human Factors.

[4] Miller, C., Pelican, M. and Goldman, R. “Tasking” Inter-
faces for Flexible Interaction with Automation: Keeping the
Operator in Control. In Proceedings of the Conference on
Human Interaction with Complex Systems. Urbana-
Champaign, Ill. May, 2000.

[5] Miller, C., Goldman, R., Funk, H., Wu, P. and Pate, B. A
Playbook Approach to Variable Autonomy Control: Appli-
cation for Control of Multiple, Heterogeneous Unmanned
Air Vehicles. In Proceedings of FORUM 60, the Annual
Meeting of the American Helicopter Society. Baltimore,
MD; June 7-10, 2004.

[6] Parasuraman, R. and Miller, C. A. Delegation interfaces for
human supervision of multiple unmanned vehicles: Theory,
experiments, and practical applications. In N. Cooke, N. and
H. Pedersen (Eds.) Human Factors of Remotely Piloted Ve-
hicles..Elsevier, New York. (2006, in press).

[7] Boy, G. Cognitive Function Analysis. ABLEX; Stamford,
CT, 1999.

[8] Goldman, R., Miller, C., Wu, P., Funk, H. and Meisner, J.
Optimizing to Satisfice: Using Optimization to Guide Users.
In Proceedings of the American Helicopter Society’s Inter-
national Specialists Meeting on Unmanned Aerial Vehicles.
Chandler, AZ, January 18-20, 2005.

[9] Parasuraman, R., Galster, S., Squire, P., Furukawa, H. &
Miller, C. A Flexible Delegation-Type Interface Enhances
System Performance in Human Supervision of Multiple Ro-
bots: Empirical Studies with RoboFlag. IEEE Systems, Man
and Cybernetics—Part A: Systems and Humans, 35(4),
2005, 481-493.

[10] Parasuraman, R., Sheridan, T. & Wickens, C. A model for
types and levels of human interaction with automation.
IEEE Transactions on Systems, Man, and Cybernetics—Part
A: Systems and Humans, 30, 2000, 286-297.

[11] Parasuraman, R. and Byrne, E. Automation and human per-
formance in aviation. In Principles and practice of aviation
psychology, P. Tsang and M. Vidulich, (Eds.), Erlbaum,
Mahwah, NJ., 2003, 311-356.

[12] Manning, S., Rash, C., LeDuce, P., Noback, R., and
McKeon, J. The Role of Human Causal Factors in U.S. Army
UAV Accidents, Technical Report USAARL-2004-11, U.S.
Army Aeromedical Research Laboratory, Ft. Rucker, AL,
2004.

