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Figure 1a.  Conceptual relationship between system 
adaptiveness, human workload and unpredictability.  
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ABSTRACT 
The ongoing debate in the HCI community between direct 
manipulation and intelligent, automated agents points to 
a fundamental problem in complex systems. Humans want 
to remain in charge even if they don’t want to (or can’t) 
make every action and decision themselves. We have been 
exploring a middle road through “tasking interfaces”—
interfaces which share a task model with a projective 
planner to enable human operators to flexibly “call 
plays” (i.e., stipulate plans) to various levels of abstrac-
tion, leaving the remainder to be fleshed out by the plan-
ner. The result is akin to ‘tasking’ a knowledgeable sub-
ordinate with more or less detailed instructions. We 
describe a prototype tasking interface for Uninhabited 
Combat Air Vehicles (UCAVs).  
 

INTRODUCTION 
As systems become more complex, the temptation is to 
control them via “automation” (e.g., Billings, 1997)—
either with systems which fully perform the task, or with 
‘decision aids’ which provide guidance but leave final 
execution to humans. In spite of extensive technological 
achievements in automation, advanced automation suffers 
from a basic sociological problem. Human operators want 
to remain in charge. For example, in developing the Ro-
torcraft Pilot’s Associate Cockpit Information Manager 
(Miller & Funk, 1997), we asked multiple pilots and de-
signers to develop a consensus list of goals for a “good” 
cockpit configuration manager. Two of the top three items 
on the list were “Pilot remains in charge of task alloca-
tion” and “Pilot remains in charge of information pre-
sented.” 
 
There are good reasons to design systems at the higher 
levels of automation. By definition (Sheridan, 1987), such 
systems share responsibility, authority and autonomy over 
many work behaviors with human operator(s) to accom-
plish their goals of reducing workload and information 
overload. While operators may wish to remain in charge, 
today’s complex systems no longer permit them to be 
fully in charge of all system operations—at least not in 
the same way as in earlier cockpits and workstations.  

 
The problem is shown conceptually in Figure 1a. The re-
lationship between the adaptiveness of a human-machine 
system is a function of the workload and unpredictability 
it causes the operator. This implies that for any increase 
in adaptiveness (the ability of to perform in an appropri-
ate, context-dependent manner across situations) there 
must be an accompanying increase in one or both of the 
other legs of the triangle. Either human workload or un-
predictability (the human’s inability to know what the 
automation will do) must increase. Since adaptiveness is 
generally the goal of added complexity (though systems 
can be complex without achieving it), this is equivalent to 
saying that any increase in system complexity must affect 
the operator in two ways—either (1) the added complex-
ity must be controlled by the human, resulting in in-
creases in workload, or (2) the added complexity must be 
managed by automation, resulting in increases in unpre-
dictability. The ongoing debate (Maes, 1994; Schneider-
man, 1997) in the HCI design community over intelligent 
agents vs. direct manipulation interfaces is a manifesta-
tion of these alternatives. 
 
In recent work developing an interface for Uninhabited 
Combat Air Vehicles (UCAVs), we have explored a mid-
dle road between ‘full’ human control and delegation to 
automation. In brief, our solution is to allow human op-
erators to interact with advanced automation flexibly at a 
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Figure 2.  General Architecture for Tasking Interfaces. 
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variety of levels. This 
allows the human 
operator to smoothly 
vary the ‘amount’ of 
automation s/he uses 
depending on such 
variables as time 
available, workload, 
criticality of the de-
cision, degree of trust, 
etc.—variables known 
to influence human 
trust and accuracy in 
automation use (Riley, 1996). It also allows the human to 
flexibly act within the limitations imposed by the capa-
bilities and constraints of the world—a strategy shown to 
produce superior aviation plans and superior human un-
derstanding of plan considerations in (Layton, Smith & 
McCoy, 1994) and which lies at the heart of recent ad-
vances in ecological interface design (Vicente, 1996). 
While this does not eliminate the dilemma presented in 
Figure 1a, it mitigates it by allowing operators to choose 
various points on the spectrum for interaction with auto-
mation (see Figure 1b). We call human-machine systems 
of this sort “tasking” interfaces, because they allow pos-
ing a task to automation at all the different levels one 
might ‘task’ a knowledgeable subordinate.  
 

PROPOSED SOLUTION— TASKING 
INTERFACES: REQUIREMENTS AND 

ARCHITECTURE 
There are three primary challenges involved in the con-
struction of a tasking interface:  
 
(1) A shared vocabulary must be developed, through 

which the operator can flexibly pose tasks to the auto-
mation and the automation can report how it intends 
to perform those tasks. 

(2) Sufficient knowledge must be built into the interface 
to enable making intelligent choices within the task-
ing constraints imposed by the user. 

(3) One or more interfaces must be developed which will 
permit inspection and manipulation of the tasking vo-
cabulary to pose tasks and review task elaborations in 
a rapid and easy fashion.  

 
Figure 2 presents our general architecture for tasking in-
terfaces. The three primary components each address one 
of the challenges described above. In our approach, a 
Graphical User Interface (GUI) in the form of a “play-
book” and a Mission Analysis Component (MAC) are 
based on and communicate with each other and with the 

human operator via a Shared Task Model. The human op-
erator communicates tasking instructions in the form of 
desired goals, tasks, partial plans or constraints, via the 
Playbook GUI, in accordance with the task structures de-
fined in the shared task model. These are, in fact, the 
methods used to communicate commander’s intent in cur-
rent training approaches for U.S. battalion level com-
manders (Shattuck, 1995). The MAC is a projective plan-
ning system capable of understanding these instructions 
and (a) evaluating them for feasibility or b) expanding 
them to produce fully executable plans. The MAC may 
draw on special purpose planning tools to perform these 
functions, wrapping them in the task-sensitive environ-
ment of the tasking interface as a whole. Outside of the 
tasking interface itself, but essential to its use, are two 
additional components. Once an acceptable plan is cre-
ated, it is passed to an Event Handling component, which 
is a reactive planning system capable of making moment 
by moment adjustments to the plan during execution. The 
Event Handling component then passes these instructions 
to control algorithms that actually effect behaviors in the 
controlled system automation.  
 

USAGE SCENARIO 
Additional description of these components is beyond the 
scope of this paper; see Miller & Goldman, 1997 and 
Miller, Pelican & Goldman, 1998 for more details. In-
stead, we will focus on an illustration of the human inter-
action with one implementation of a tasking interface.  
 
The following scenario illustrates how a user interacts 
with the tasking interface prototype we have developed to 
plan a UCAV mission. Current and emerging UCAV in-
terfaces either require operators to remotely control the 
aircraft via a dedicated cockpit mockup, or they rely on 
very high level behaviors (e.g., Close Air Patrol circuits 
or waypoint-designated routes) which can be easily but 
inflexibly commanded. The first approach provides high 
predictability and adaptiveness, but at the cost of very 
high operator workload; the second approach minimizes 
operator workload and provides highly predictable behav-
ior, but only at the cost of adaptiveness. Neither approach 
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Figure 4.  Pop-up window for “Airfield Denial”. 

 
Figure 3.  The Tasking Interface prototype at startup. 

is sufficient for usefully placing one or more UCAVs at 
the disposal of an operator who is concurrently piloting 
his/her own aircraft.  
 
Building on prior Honeywell control algorithms and 
simulation work supporting scenarios of multiple unin-
habited F-16s, we have developed a tasking interface to 
enable a human leader to lay out a mission plan for the 
UCAV’s. This interface will support the stipulation of 
full and partial plans and constraints for the UCAVs ei-
ther separately or in conjunction. To date, we have con-
centrated on a ground-based tasking interface due to its 
lighter demands on user, simulation and interface design. 
However, we believe that with suitable GUI modifica-
tions, this approach will be suited to in-flight tasking as 
well. 
 
Our prototype tasking interface as illustrated in Figures 3-
7. The interface illustrated in these figures is our current 
Playbook GUI. This interface runs in conjunction with a 
prototype MAC, communicating via a Shared Task 
Model. The MAC interacts with a specialty route plan-
ning algorithm. Plans produced by this tasking interface 
can be ‘flown’ in simulation using realistic control algo-
rithms developed by Honeywell’s Guidance and Control 
group. 
Figure 3 (and, in larger format, Figure 7) shows the five 
primary regions of the Playbook GUI. The upper half of 
the screen is a Task Composition Space that the plan 
composed thus far. At startup, this area presents the three 
top-level tasks (or ‘mission types’) the system currently 
knows about: Interdiction, Airfield Denial, and Suppress 
Enemy Air Defenses (SEAD). The lower left corner of 
the interface is an Available Resource Space, currently 
presenting the set of aircraft available for use. The lower 
right corner contains an interactive Terrain Map of the 
area of interest. As noted above, some planning interac-
tions can be more easily performed or understood via di-
rect, graphical presentation against the terrain of interest. 
The space between these two lower windows (empty at 
startup) is a Resource in Use Space—once resources are 
selected, they will be moved to this space, where they can 
be interacted with in more detail. Finally, the lower set of 
control buttons is always present. This includes options 
such as “Finish Plan” for handing the partial plan off to 
the MAC for completion and/or review, “Final Route” for 
accessing the route planner to create a route within con-
straints specified, “Print” and “Show Schedule” for ob-
taining a Gantt chart timeline of the activities planned for 
each actor, etc. 
 

The mission leader would interact with the tasking inter-
face to, first, declare that the “task” for the day was “Air-
field Denial.” Most interactions with the Playbook GUI 
are via mouse buttons. In this case, the three top-level 
mission task boxes have “or” relationships between them, 
meaning the pilot must select one. Figure 4 shows the 
pop-up window when the user clicks on “Airfield De-
nial.” 
From this pop-up menu, the human “tasker” can tell the 
MAC to “Plan this Task” (that is, develop a plan using 
this task) or indicate that s/he will “Choose airfield de-
nial” as a task that s/he will flesh out further. The pop-up 
menu also contains a context-sensitive list of subtasks that 
the tasker can choose to include under this task (only one 
is appropriate at this level: “Suppress Air Defenses”). 
 
At this point, having been told only that the task for the 
day is “Airfield Denial,” a team of trained human pilots 
would have a very good general picture of the mission 
they would fly. Similarly, our interface (via the MAC and 
the Shared Task Representation) knows what a typical 
airfield denial plan consists of. But just as a leader in-
structing a human flight team could not leave the instruc-
tions at that, so the tasker is required to provide more in-
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Figure 6.  Stipulating subtasks under “Ingress”. 

 
Figure 5.  Second-level expansion of ‘Airfield De-

formation to instantiate the high level task. Here, the 
tasker must provide the items listed in the next block in 
the pop-up window in Figure 4 (e.g., a target, a homebase, 
etc.) and, as for all plans, the specific aircraft to be used. 
S/he selects aircraft by clicking on the available aircraft 
resources and moving them to the Resources in Use Area. 
By clicking on “Choose Target”, the user activates the 
Terrain Map and a subsequent click there will designate a 
target location.  
 
The human leader could provide substantially more detail 
(such as route, munitions, roles for wingmen, etc.) but 
s/he could also hand the task off to at this point and let a 
human team develop the plan. The tasker can also do this, 
handing the task to the MAC via the “Finish Plan” button. 
We will assume that the user provides more plan specifi-
cations. Both the tasker and the interface know, thanks to 
their Shared Task Model, that any Airfield Denial plan 
must consist of Ingress, Strike and Egress subtasks, in that 
order. “Airfield Denial” may also include a Defense Sup-
pression subtask that runs in parallel with Strike. After 
the tasker selects “Choose Airfield Denial”, the Task 
Composition Space is reconfigured as in Figure 5 to show 
the next level of options. The small arrows between the 
task blocks indicate that all subtasks are sequential.  

To provide detailed instructions about how to perform the 
Ingress task, the tasker must choose it, producing the “ge-
neric” Ingress task shown in Figure 6. Note that this is not 
a default method of doing “Ingress” so much as a generic, 
uninstantiated template—roughly what a human expert 
knows about how Ingress can or should be performed. A 
trained pilot knows that Ingress can be done either in for-
mation or in dispersed mode and, in either case, must in-
volve a “Take Off” subtask followed by one or more “Fly 
to Location” subtasks. Figure 6 illustrates the GUI after 
the user selects “Formation Ingress”. The MAC automati-
cally fills in the set of steps it knows must be accom-
plished to do Ingress in formation— that all aircraft must 
takeoff and then fly to a specified location. In the event 
that there are further specifications the user can or must 
supply, the MAC will generate them in context-sensitive 

pop-up windows (e.g., specifying the airfield to take off 
from.) 
The user can continue to specify and instantiate tasks 
down to the “primitive” level where the subtasks are be-
haviors the control algorithms (see Figure 2) in our simu-

lator can be relied upon to execute in flight. Alternatively, 
at any point after the initial selection of mission task and 
its required parameters, the tasker can hand the partly de-
veloped plan over to the MAC for completion and/or re-
view by means of the “Finish Plan” button.  In extreme 
cases, a viable “Airfield Denial” plan could be created 
with as few as five choices (select aircraft, target, home-
base, staging and rendezvous points). If the MAC is inca-
pable of developing a viable plan within the constraints 
imposed, (e.g., if the user has stipulated distant targets 
that exceed aircraft fuel supplies) MAC will inform the 
user of these difficulties via pop-up windows. 
 
Figure 7 shows the completed plan provided by the MAC 
after the stipulation of the Ingress task as described 
above. The user has asked for a Final Route generated by 
the route planner on the basis of the MAC’s inputs. This 
output is presented in the Terrain Map window. 
 

LESSONS AND CONCLUSIONS 
Our prototype interface builds plans for 3 types of multi-
UCAV missions (corresponding to 3 top-level tasks). 
Other types of interfaces are entirely possible (see Miller 
& Goldman, 1997, for a more ambitious, though unim-
plemented example) and we hope to explore their devel-
opment as we carry the tasking interface concept into al-
ternate domains and gain more experience with user 
interactions with this type of automation. Our approach to 
tasking interfaces builds a bridge of flexibility between 
‘pure’ direct manipulation interfaces where the user is 
always in charge but must incur the associated workload, 
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Figure 7.  Finished plan returned by the MAC after User ‘calls’ the Ingress task. 

and ‘pure’ intelligent agent automation where the user is 
free from undue workload but at the cost of surrendering 
control and predictability to a system that may not do 
what s/he wants. While operators of complex systems are 
rarely comfortable giving over authority to automation at 
all times, they are quite willing to use it when helpful. 
Tasking interfaces are a method of allowing the operator 
to remain fully in charge, yet of enabling almost full 
autonomy for an aiding agent. Perhaps by requiring (and 
enabling) automation to behave more like an intelligent 
subordinate, operators will be more tolerant of its weak-
nesses and more willing to let it show its capabilities in 
some settings. Through use, then, users may become more 
familiar with their automation’s strengths and weaknesses 
and, ultimately, better at using it when it is needed. 
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