
Submitted for presentation at the International Conference on Intelligent User Interfaces. Redondo Beach, CA: January 5-8, 1999.

1

Adaptiveness

U
npredictabilityW

or
kl

oa
d

Or

a

uw

a

uw

Increased human manage-
ment role yields increased
human workload

Increased automation man-
agement role yields increased
unpredictability to human

Figure 1a. Conceptual view of the relationship between sys-
tem adaptiveness, human workload and unpredictability.

“Tasking” Interfaces for Flexible Interaction with Automa-
tion: Keeping the Operator in Control

Christopher A. Miller, Michael Pelican and Robert Goldman
Honeywell Technology Center

3660 Technology Dr.
Minneapolis, MN 55418 U.S.A.

cmiller, pelican, goldman@htc.honeywell.com

ABSTRACT
The ongoing debate in the HCI community between direct
manipulation and intelligent, automated agents points to a
fundamental problem in complex systems. Humans want to
remain in charge even if they don’t want to (or can’t) make
every action and decision themselves. We have been ex-
ploring a middle road through the development of “tasking
interfaces”—interfaces which share a task model with a
projective planning system to enable human operators to
flexibly “call plays” (that is, stipulate plans) at various lev-
els of abstraction, leaving the remainder of the plan to be
fleshed out by the planning system. The result is akin to
‘tasking’ a knowledgeable subordinate to whom one can
give more or less detailed instructions. We describe a pro-
totype tasking interface for developing mission plans for
Uninhabited Combat Air Vehicles (UCAVs).

Keywords
Tasking Interface, Mixed Initiative Planning and Control,
Task Model, Hierarchical Task Network Planning, Unin-
habited Combat Air Vehicles

INTRODUCTION
As systems become more complex, there is increasing
temptation to control them via “automation” [e.g., 1]—
either in the form of subsystems which fully perform the
task, or as ‘decision aids’ which provide guidance but leave
the final execution to the human. In spite of extensive tech-
nological achievements in automation technology (as well
as some spectacular failures), experience has consistently
shown that advanced automation suffers from a basic socio-
logical problem. Human operators of complex systems
want to remain in charge. For example, in developing the
Rotorcraft Pilot’s Associate Cockpit Information Manager
[10], we multiple pilots and designers to develop a consen-
sus list of prioritized goals for a “good” cockpit configura-
tion manager. Two of the top three items on the list were
“Pilot remains in charge of task allocation” and “Pilot re-
mains in charge of information presented.”

There are good reasons to design and use systems at the

higher levels of automation. By definition [17], such sys-
tems share responsibility, authority and autonomy over
many work behaviors with human operator(s) to accomplish
their goals of reducing operator workload and information
overload. While operators may wish to remain in charge,
and it is critical that they do so, today’s complex systems no
longer permit them to be fully in charge of all system opera-
tions—at least not in the same way as in earlier cockpits
and workstations.

Conceptually, the problem can be presented as in Figure 1a.
This figure shows the relationship between the adaptiveness
of a human-machine system as a function of the workload
or unpredictability it causes for the human operator. This
view implies that for any increase in adaptiveness (the abil-
ity of the human-machine system to perform in an appropri-
ate, context-dependent manner across situations) there must
be an accompanying increase in one or both of the other
two legs of the triangle. Either human workload (the
amount of physical, attentional or cognitive “energy” the
human must exert to use the system) or unpredictability (in-
ability of the human to know what the automation will do at
any given time) must increase.

Since adaptiveness is generally the goal of added complex-
ity (though systems can be complex without achieving it),
this is equivalent to saying that any increase in human-
machine system complexity must affect the human operator
in two ways—either (1) the added complexity must be fully
controlled by the human, resulting in increases in workload,

 2

Flexibility across Spectrum

Figure 1b. A 'Tasking Interface'
provides multiple methods of
increasing adaptivenss.

Event
Handling

Control
Algorithms

Playbook
GUI

Tasking
Instructions Provably correct

plans

Provably safe
reactions

Feedback

System control

Mission
Analysis

Shared Task Model

Special Purpose
Tools

Figure 2. General Architecture for Tasking Interfaces.

or (2) the added complexity must be managed by automa-
tion, resulting in increases in unpredictability. The ongoing
debate [9,18] in the HCI design community over intelligent
agents vs. direct manipulation interfaces is a manifestation
of these alternative approaches.

In recent work developing an interface for Uninhabited
Combat Air Vehicles (UCAVs), we have explored a middle
road between these alternatives. In brief, our solution is to
allow human operators to interact with advanced automa-
tion flexibly at a variety of levels. This allows the human
operator to smoothly vary the ‘amount’ of automation s/he
uses depending on such variables as time available, work-
load, criticality of the decision, degree of trust, etc.—
variables known to influence human willingness and accu-
racy in automation use [13]. It further allows the human to
flexibly act within the limitations imposed by the capabili-
ties and constraints of the equipment and the world—a
strategy shown to produce superior aviation plans and supe-
rior human understanding of plan considerations in [8] and
which lies at the heart of recent advances in ecological in-
terface design [19]. While this does not eliminate the di-
lemma presented in Figure 1a, it mitigates it by allowing
operators to choose various points on the spectrum for in-
teraction with
automation (see Figure
1b). We call human-
machine systems of this
sort “tasking” interfaces,
because they allow
posing a task to
automation at all the
different levels one
might ‘task’ a
knowledgeable subor-
dinate.

PROPOSED SOLUTION— TASKING INTERFACES
There are three primary challenges involved in the con-
struction of a tasking interface:

(1) A shared vocabulary must be developed, through which
the operator can flexibly pose tasks to the automation
and the automation can report how it intends to per-
form those tasks.

(2) Sufficient knowledge must be built into the interface to
enable making intelligent choices within the tasking
constraints imposed by the user.

(3) One or more interfaces must be developed which will
permit inspection and manipulation of the tasking vo-
cabulary to pose tasks and review task elaborations in a
rapid and easy fashion.

Figure 2 presents our general architecture for tasking inter-
faces. The three primary components each address one of
the challenges described above. In our approach, a Graphi-
cal User Interface (GUI) in the form of a “playbook” and a
Mission Analysis Component (MAC) are based on and

communicate with each other and with the human operator
via a Shared Task Model. The human operator communi-
cates tasking instructions in the form of desired goals, tasks,
partial plans or constraints, via the Playbook GUI, in accor-
dance with the task structures defined in the shared task
model. These are, in fact, the methods used to communicate
commander’s intent in current training approaches for U.S.
battalion level commanders [16]. The MAC is a projective
planning system capable of understanding these instructions
and (a) evaluating them for feasibility or b) expanding them
to produce fully executable plans. The MAC may draw on
special purpose planning tools to perform these funcions,
wrapping them in the task-sensitive environment of the
tasking interface as a whole. Outside of the tasking inter-
face itself, but essential to its use, are two additional com-
ponents. Once an acceptable plan is created, it is passed to
an Event Handling component, which is a reactive planning
system capable of making moment by moment adjustments
to the plan during execution. The Event Handling compo-
nent then passes these instructions to control algorithms that
actually effect behaviors in the controlled system automa-
tion. Since the GUI, MAC and the Shared Task Model are
components unique to the construction of a tasking inter-
face, they will be described in more detail in separate sub-
sections below.

Shared Task Model
A critical enabling technology for tasking interfaces is the
ability to code, track and dynamically modify the goals and
plans which human users have in operating their automation
and equipment. By explicitly representing these entities in a
“task model” format that is both familiar to a human opera-
tor and interpretable by a knowledge-based planning sys-
tem, we gain a level of coordination between human and
system beyond that previously possible.

Beyond the comparatively static task models used in work-
flow support tools [14], a task model must meet several re-
quirements to support a tasking interface. First, it must be
organized via functional decomposition—each task or goal
must be decomposable into alternate methods of achieving
that goal, down to some bottom layer of executable, primi-

tive actions. A ‘task’, therefore, represents an encapsulated
set of behaviors—perhaps including alternatives—which is
known as a method of accomplishing domain goals. As Boy
[2] points out, the naming or labeling of tasks always in-

 3

volves a process of ‘rationalization’ or abstraction toward a
‘template’ which leaves the final customization of the be-
haviors for the actor at runtime. This both motivates our in-
clusion of execution components beyond the interface itself
to translate the plan into action in the use environment (cf.
Figure 2), and points to the importance of the task model as
a means of communication between user and system. It
also permits tasking at an abstract enough level to over-
come many of the objections that Vicente [20] raises
against static, prescriptive ‘scripting’ approaches to task-
based instruction, while adhering to one of his central ten-
ets: that designs need to be ‘finished at run time’ by the
executing agent.

The second requirement of a task model for a tasking inter-
face is that the tasks represented must be drawn from the
way operators think about their domain. That is, the label-
ing conventions used by the interface and the system must
be the same as those used by the human operators. ‘Tasks’
may be drawn from training materials, operator interviews,
etc., but the resulting model should be intuitive and easily
readable by any experienced operator.

Finally, the task model must also be understandable by all
automation systems using it. It should serve the same func-
tion as a football team's playbook—each player knows what
he is supposed to do when a given play is called, coordina-
tion is an emergent function stemming from all players
sharing the same playbook and complicated behaviors can
be activated rapidly by use of their ‘labels’.

Our task modeling representation is based on a PERT-chart
like approach developed initially by McDonnell-Douglas
for use in their Pilot’s Associate and Rotorcraft Pilot’s As-
sociate programs [7]. One possible enhancement to our ap-
proach would be shifting to a representation that explicitly
models the distinction between goals and the plans that
achieve them, such as Geddes Plan-Goal Graph [15]. The
plan-goal distinction is a natural one for users to make in
communicating intent [16].

In the creation of our tasking interface, we have extended
the operator’s ability to ‘call plays’ by enabling him/her to
interact directly with the task model, activating and combin-
ing tasks at various levels of decomposition. This capabil-
ity is provided via the Playbook GUI described in the next
section below. We have also provided a planning system
which is capable of understanding the operator’s commands
and either evaluating them for performability or, developing
an executable plan which obeys, yet fleshes out, the opera-
tor’s instructions. This Mission Analysis Component is de-
scribed in the following subsection.

Playbook Graphical User Interface
The human operator must have a method of inspecting and
interacting with the task model, both to understand the pos-
sible actions which could be taken to achieve known goals
and, more importantly, to declare those tasks, goals, partial
plans and constraints s/he wishes the system to pursue. This

interface must provide the operator with a method of “call-
ing plays” as described above. Just as a quarterback can ac-
tivate a complex set of behaviors by referring to a simple
play name and/or spend additional time (if available) refin-
ing those behaviors by combining play elements or tweak-
ing play parameters, so the operator should be able to flexi-
bly interact with his or her automation via the Playbook
GUI.

Some requirements which the Playbook GUI must fulfill in-
clude: (1) the set of “plays” (e.g., maneuvers, procedures,
etc.) represented must be those any well-trained operator
should know (thus making it intuitive to learn and use), (2)
the general play ‘templates’ in the playbook can be com-
posed and instantiated to create any specific mission plan,
(3) The operator may select plays at various hierarchical,
leaving the lower levels to be selected and composed by the
MAC, and (4) operators may either require or prohibit the
use of specific plays or of specific resources within a play.
This makes true mixed initiative planning possible and
makes the tasking of a UCAV much like providing instruc-
tions to a human wingman.

One Playbook GUI is presented in Figure 3. While we be-
gan with the development of a direct viewing and manipula-
tion tool for the task model itself, some limitations of this
interface are clear. The underlying links to a task model
permit a wide variety of interfaces. The specific attributes
of the GUI must be driven by the uses to which it is put. As
a simple example, a pre-mission planning tool will require
much more flexibility and precision in visualizing and in-
teracting with the emerging plan, while an in-flight tasking
tool will be constrained to be more simple—perhaps an at-
tenuated menu of only those tasking options currently rele-
vant. Further, while a direct presentation of the task model
(as illustrated in Figure 3) generally provides the most de-
tailed and precise interaction with the emerging plan, it is
not the most familiar or efficient presentation for many pilot
planning tasks. For UCAV tasking, potential users have
told us that interacting with the underlying task model indi-
rectly via a map tool and a simple timeline view would be
more intuitive, though the detailed task model tools should
be retained for more complex mission specifications. We
have included these concepts in the prototype tasking sys-

Ground Attack

Ingress
Target
Attack Egress

Defense
Suppression

ARTY Support Decoy Aux. Attack

P
l
a
y

L
i
b
r
a
r
y

User Controls

J

Figure 3. One possible instantiation of a playbook GUI.

 4

tem described below.

Mission Analysis Component
The Mission Analysis Component (MAC) integrates projec-
tive planning technology with a human tasking mechanism.
MAC operates over full or partial mission plans provided
via the Playbook GUI, performing two sub-functions: (1)
analyzing the operator’s plan for feasibility and goal
achievement by verifying constraints and (2) automatically
generating candidate completions of partial mission plans in
keeping with the requirements and prohibitions imposed by
the pilot.

The hierarchical, typed representation of plays in the play-
book simplifies choices for plan completion by limiting the
types of plays that are useful at each level. The MAC uses a
hierarchical task network planner [3] in conjunction with
constraint propagation techniques [6,5] to perform the two
functions described above. In broad outline, the structure
of a UCAV mission is known before the planning has be-
gun. Rather than rediscover this outline (a more traditional
AI planning approach), the MAC must manage the re-
sources, deadlines, etc. between alternative operational re-
finements during the development of the plan. The MAC
represents these limited quantities as constraints on and be-
tween individual plan operators that are maintained by a
constraint management engine. These plan operators are,
however, sequenced and composed by a hierarchical task
network planning algorithm in conjunction with a human
operator.

The decomposition planner continuously determines the
feasibility of the current partially specified plan. The
shared task model, resident as a plan library usable by the
MAC, specifies constraints on tasks and the subtasks they
expand into. As a plan is built, constraints propagate both
up, from sub-tasks to tasks, and down, from tasks to their
expansions. This constraint propagation process enables the
planner to identify flaws in the plan early. For example, if
currently instantiated tasks require more fuel than will be
available for the entire mission, the planner will detect the
infeasibility and either automatically backtrack, if planning
automatically, or notify the user, if evaluating a plan re-
finement s/he suggested.

Concurrently with checking for feasibility, the MAC fleshes
out the abstract (non-primitive) tasks in the plan. When the
MAC identifies a non-primitive, it decomposes by finding
and then applying one or more subtask methods. In the
case that more than one method applies, the planner devel-
ops the alternative paths. Infeasible alternatives are pruned
from consideration. The GUI then displays the conse-
quences of planning decisions to the user, who can retract
previous choices, or make better-informed decisions from
among the available, feasible choices.

In combination, feasibility checking and automatic plan ex-
pansion make it possible for the MAC to generate effective
plans with a minimum of user involvement. Continual fea-

sibility analysis minimizes the effort expended on dead-
ends while encouraging the user to specify the mission
critical aspects of the operation as early as possible. Once
these are stipulated, the development of the plan can be left
entirely to the MAC with the assurance that it will produce
a plan that is both feasible within its constraint knowledge
and in keeping the operator’s stipulations. If time permits
(or lack of trust demands), the user may provide increas-
ingly detailed instructions by selecting among available
plan alternatives, down to the lowest level primitive opera-
tors supported by the tasking interface.

Integrating Pre-existing Tools—Route Planning
A benefit of the architecture we have produced is that it en-
ables incorporating pre-existing tools into the task-based
environment that the interface provides. The effect is to
provide task-sensitive, intelligent behavior in tools that
were not built to include these capabilities. This feature is
illustrated in our work with UCAV mission planning by in-
corporating a Honeywell route planner.

The route planner generates optimal (i.e., lowest cost) paths
through digital models of actual terrain. The definition of
optimality can be tuned to the application. Prior to incorpo-
ration into our tasking interface, a human operator had to
deduce information about route start and endpoint parame-
ters from mission objectives and partial plans (perhaps rep-
resenting multiple alternatives) and then program them by
hand into the route planner. Similarly, results from multiple
route plans had to be interpreted and folded back into the
planning process.

The structure of the MAC provides a straightforward way to
incorporate specialty problem solvers like the route planner.
We encapsulated the route planner within parameterized
plan operators like a follow_terrain task. When that
task is selected (by either the MAC or the user) bindings for
start and endpoints of the route segment are inherited from
higher level tasks and passed to the route planner along
with cost parameters appropriate to the task (e.g., appropri-
ate weightings on flight time, fuel requirements, exposure
and threat levels, etc.). The route planner develops an opti-
mal route within these parameters and returns it to the MAC
along with new requirements on flight time and fuel usage.
The MAC will determine if these new requirements violate
constraints on the plan. If so, the route planner’s actions
will be undone. If no acceptable route can be found, the
user will be notified.

Integration and Operation
To be useful in the real world, our tasking interface must
bridge the traditional gap between analysis and execution.
Analytic capabilities developed in previous AI planners
have used simple, abstract task representations and have as-
sumed correct execution. Reactive planning and execution
systems are essentially high level programming languages.
Reactive systems coordinate the behaviors of sensors and
effectors to handle contingencies—but without support for
analysis of correctness. Honeywell is currently at work on

 5

Figure 4. The UCAV Tasking Interface prototype at startup.

Figure 5. Pop-up window for selecting the “Airfield Denial”
Task.

Figure 7. Second-level expansion of ‘Airfield Denial’ task.

an architecture, called CIRCA [12], that integrates projec-
tive and reactive planning with control actuation. CIRCA
bridges the analysis/execution gap by synthesizing provably
correct reaction programs to achieve high-level goals. To
date, however, little thought has been given to how an op-
erator will provide those goals. Our tasking interface fills
that gap.

At the bottom layer of our architecture, advanced control
algorithms provide for continuous vehicle control. These
algorithms provide several levels of functionality. The
highest level is the ability to fly specific flight segments
(e.g. close or loose formation, "pop-up" for weapon release,
rendezvous). At a lower level are guidance functions like
waypoint steering and terrain following. Finally, at the
lowest level are the attitude and rate stabilization control
functions. The plan created jointly by the human operator
and the MAC, along with reactive adaptations provided by
the event handling component, gives these control functions
the instructions they need. The result is a seamless ability
to task and control the automation functions in a wide vari-
ety of ways at the human’s discretion.

USAGE SCENARIO
The following scenario how a user might interact with the
tasking interface prototype we have developed to plan a
UCAV mission. Current and emerging UCAV interfaces ei-
ther require operators to remotely control the aircraft via a
dedicated cockpit mockup, or they rely on very high level
behaviors (e.g., Close Air Patrol circuits or waypoint-
designated routes) which can be easily but inflexibly com-
manded. The first approach provides high predictability
and adaptiveness, but at the cost of very high operator
workload; the second approach minimizes operator work-
load and provides highly predictable behavior, but only at
the cost of adaptiveness. Neither approach is sufficient for
usefully placing one or more UCAVs at the disposal of an
operator who is concurrently piloting his/her own aircraft.

Building on prior Honeywell control algorithms and simula-
tion work supporting scenarios of multiple uninhabited F-
16s, we have developed a tasking interface to enable a hu-
man leader to lay out a mission plan for the UCAV’s. This
interface will support the stipulation of full and partial plans
and constraints for the UCAVs either separately or in con-
junction. To date, we have concentrated on a ground-based
tasking interface due to its lighter demands on user, simula-
tion and interface design. However, we believe that with
suitable GUI modifications, this approach will be suited to
in-flight tasking as well.

Our prototype tasking interface as illustrated in Figures 4-9.
The interface illustrated in these figures is our current Play-
book GUI. This interface runs in conjunction with a proto-
type MAC, communicating via a Shared Task Model. The
MAC interacts with a specialty route planning algorithm.
Plans produced by this tasking interface can be ‘flown’ in
simulation using realistic control algorithms developed by
Honeywell’s Guidance and Control group.

Figure 4 (and, in larger format, Figure 9) shows the five
primary regions of the Playbook GUI. The upper half of
the screen is a Task Composition Space that the plan com-
posed thus far. At startup, this area presents the three top-
level tasks (or ‘mission types’) the system currently knows
about: Interdiction, Airfield Denial, and Suppress Enemy
Air Defenses (SEAD). The lower left corner of the inter-

face is an Available Resource Space, currently presenting
the set of aircraft available for use. The lower right corner
contains an interactive Terrain Map of the area of interest.
As noted above, some planning interactions can be more
easily performed or understood via direct, graphical presen-
tation against the terrain of interest. The space between
these two lower windows (empty at startup) is a Resource in
Use Space—once resources are selected for use, they will
be moved to this workspace, where they can be interacted
with in more detail. Finally, the lower set of control buttons
is always present for interaction with the system. This in-
cludes options such as “Finish Plan” for handing the partial
plan off to the MAC for completion and/or review, “Final
Route” for accessing the route planner to create a route
within constraints specified, “Print” and “Show Schedule”
for obtaining a Gantt chart timeline of the activities planned
for each actor, etc.

The mission leader would interact with the tasking interface
to, first, declare that the “task” for the day was “Airfield
Denial.” Most interactions with the Playbook GUI are via
mouse buttons. In this case, the three top-level mission task
boxes have “or” relationships between them, meaning the
pilot must select one. Figure 5 shows the pop-up window
when the user clicks on “Airfield Denial.”

From this pop-up menu, the human “tasker” can tell the
MAC to “Plan this Task” (that is, develop a plan using this
task) or indicate that s/he will “Choose airfield denial” as a
task that s/he will flesh out further. The pop-up menu also
contains a context-sensitive list of subtasks that the tasker

 6

Figure 6. Illustration of resource and target selection.

Figure 8. Stipulating subtasks under “Ingress”.

can choose to include under this task (only one is appropri-
ate at this level: “Suppress Air Defenses”).

At this point, having been told only that the task for the day
is “Airfield Denial,” a team of trained human pilots would
have a very good general picture of the mission they would
fly. Similarly, our interface (via the MAC and the Shared
Task Representation) knows what a typical airfield denial
plan consists of. But just as a leader instructing a human
flight team could not leave the instructions at that, so the
tasker is required to provide more information to instantiate
the high level task. Here, the tasker must provide the items
listed in the next block in the pop-up window in Figure 5
(e.g., a target, a homebase, etc.) and, as for all plans, the
specific aircraft to be used. S/he selects aircraft by clicking
on the available aircraft resources and moving them to the
Resources in Use Area. By clicking on “Choose Target”,
the user activates the Terrain Map and a subsequent click
there will designate a target location. The results of these
actions are illustrated in Figure 6.

The human leader could provide substantially more detail
(such as route, munitions, roles for the wingman, etc.) but
s/he could also hand the task off to intelligent human team
members at this point and let them develop the plan. The
tasker can do this as well, handing the task to the MAC via
the “Finish Plan” button. We will assume, though, that the
user wishes to provide more plan specifications.

The final option on this pop-up menu allows the user to
“Update Threat Information” for use in planning from a dy-
namically maintained, external database.

Both the tasker and the interface know, thanks to their
Shared Task Model, that any Airfield Denial plan must con-
sist of Ingress, Strike and Egress subtasks, in that order.
“Airfield Denial” may also include a Defense Suppression
subtask that runs in parallel with Strike. After the tasker se-
lects “Choose Airfield Denial”, the Task Composition
Space is reconfigured as in Figure 7 to show the next level
of options. The small arrows between the task blocks indi-
cate that all subtasks are sequential.

To provide detailed instructions about how to perform the
Ingress task, the tasker must choose it, producing the “ge-
neric” Ingress task shown in Figure 8. Note that this is not
a default method of doing “Ingress” so much as a generic,
uninstantiated template—corresponding to what a human
expert knows about how Ingress can or should be. A
trained pilot knows that Ingress can be done either in for-
mation or in dispersed mode and, in either case, must in-
volve a “Take Off” subtask followed by one or more “Fly to
Location” subtasks. Figure 8 illustrates the GUI after the
user selects “Formation Ingress”. The MAC automatically
fills in the set of steps it knows must be accomplished to do
Ingress in formation— that all aircraft must takeoff and
then fly to a specified location. In the event that there are
further specifications the user can or must supply, the MAC

will generate them in context-sensitive pop-up windows
(e.g., specifying the airfield to take off from.)

The user can continue to specify and instantiate tasks down
to the “primitive” level where the subtasks are behaviors the
control algorithms (see Figure 2) in our simulator can be re-
lied upon to execute in flight. Alternatively, at any point af-
ter the initial selection of mission task and its required pa-
rameters, the tasker can hand the partly developed plan over
to the MAC for completion and/or review by means of the
“Finish Plan” button. In extreme cases, a viable “Airfield
Denial” plan could be created with as few as five choices
(select aircraft, target, homebase, staging and rendezvous
points). If the MAC is incapable of developing a viable
plan within the constraints imposed, (e.g., if the user has
stipulated distant targets that exceed aircraft fuel supplies)
MAC will inform the user of these difficulties via pop-up
windows.

Figure 9 shows the completed plan provided by the MAC
after the stipulation of the Ingress task as described above.
The user has asked for a Final Route generated by the route
planner on the basis of the MAC’s inputs. This output is
presented in the Terrain Map window.

ACCOMPLISHMENTS AND CONCLUSIONS
Our prototype interface builds plans for 3 types of multi-
UCAV missions (corresponding to 3 top-level tasks). The
prototype was implemented with SICStus Prolog, Tcl/Tk,
and the daVinci graph visualization tool [4]. We imple-
mented our own HTN planner in Prolog and used the
SICStus Constraint Logic Programming for Finite Domains
module to maintain the constraint store. We built the illus-
trated version of the Playbook GUI using SICStus's embed-
ded Tcl/Tk interpreter and daVinci.

 7

Figure 9. Finished plan returned by the MAC after User specification of the Ingress task.

Other types of interfaces are entirely possible (see [11] for a
more ambitious, though unimplemented example illustrat-
ing more sophisticated interactions with the MAC and
shared task model) and we hope to explore their develop-
ment as we carry the tasking interface concept into alternate
domains and gain more experience with user interactions
with this type of automation.

Our approach to tasking interfaces builds a bridge of flexi-
bility between ‘pure’ direct manipulation interfaces where
the user is always in charge but must incur the associated
workload, and ‘pure’ intelligent agent automation where the
user is free from undue workload but at the cost of surren-
dering control and predictability to a system that may not
do what s/he wants. While operators of complex systems
are rarely comfortable giving over authority to automation
at all times, they are quite willing to use it when helpful.
Tasking interfaces are a method of allowing the operator to
remain fully in charge, yet of enabling almost full autonomy
for an aiding agent. Perhaps by requiring (and enabling)
automation to behave more like an intelligent subordinate,
operators will be more tolerant of its weaknesses and more
willing to let it show its capabilities in some settings.
Through use, then, users may become more familiar with
their automation’s strengths and weaknesses and, ulti-
mately, better at using it when it is needed.

ACKNOWLEDGEMENTS
This work was funded by a Honeywell Initiatives Grant.
The authors would like to that Dan Bugajski, Don Shaner

and John Allen for their help in the development and im-
plementation of the ideas presented.

REFERENCES
1. Billings, C. Aviation Automation: The search for a hu-

man-centered approach. Lawrence Erlbaum: Mahwah,
NJ, 1997.

2. Boy, G. Cognitive Function Analysis. ABLEX; Stam-
ford, CT, in press.

3. Erol, K., Hendler, J. and Nau, D. UMCP: A sound and
complete procedure for hierarchical task network plan-
ning. In Hammond, K. (Ed.) Artificial Intelligence
Planning Systems: Proceedings of the Second Interna-
tional Conference, (Los Altos, CA, 1994), 249-254.

4. Frohlich, M. and Werner, M. The daVinci graph visu-
alization tool, 1997. Available at
http://www.informatick. unibremen.de/~davinci.

5. Hentenryck, P. Constraint Satisfaction in Logic Pro-
gramming. Cambridge, MA: MIT Press, 1989.

6. Jaffar, J. and Michaylov, S. Methodology and imple-
mentation of a CLP system. Proceedings of the Fourth
International Conference on Logic Programming.
(Cambridge, MA: MIT Press), 1987.

7. Keller, K. and Stanley, K. Domain specific software de-
sign for decision aiding. Proceedings of the AAAI
Workshop on Automating Software Design. (NASA
Ames Research Center, July, 1992), 86-92.

 8

8. Layton, C., Smith, P, and McCoy, E. Design of a coop-
erative problem solving system for enroute flight plan-
ning: An empirical evaluation. Human Factors, 36(1),
1994, 94-119.

9. Maes, P. Agents that Reduce Work and Information
Overload. Communications of the ACM, 37(7), 1994.
31-40.

10. Miller, C. & Funk, H. Task-based Interface Manage-
ment: A Rotorcraft Pilot’s Associate Example. Proceed-
ings of the AHS Crew Sytems Technical Specialists
Meeting, (Philadelphia PA, September 1997).

11. Miller, C. and Goldman, R. ‘Tasking’ Interfaces: Asso-
ciates that know who’s the boss. Proceedings of the 4th
USAF/RAF/GAF Conference on Human/Electronic
Crewmembers, (Kreuth, Germany, September 1997).

12. Musliner, D., Durfee, E., & Shin, K. CIRCA: A coop-
erative intelligent real-time control architecture. IEEE
Transactions on Systems, Man and Cybernetics, 23,
(1993), 1561-1574.

13. Riley, V. Operator reliance on automation: Theory and
data. In R. Parasuraman and M. Mouloua (Eds.),
Automation and Human Performance: Current Theory
and Applications. Lawrence Erlbaum: Hillsdale, NJ,
1996, 19-36.

14. Scacchi, W. Modeling, Integrating and enacting com-
plex organizational processes: Approach and experi-

ence. In A. Seth (Ed.), Proceedings of the NSF Work-
shop on Workflow and Process Automation in
Information Systems: State of the Art and Future Direc-
tions, (Athens, GA, 8-10 May 1996). 18-23.

15. Sewell, D. and Geddes, N. A plan and goal based
method for computer-human system design. In D. Dia-
per (Ed.) Human-Computer Interaction—INTERACT
’90. Elsevier Science, North-Holland, 1990. 283-288.

16. Shattuck, L. Communication of Intent in Distributed
Supervisory Control Systems. Unpublished dissertation.
The Ohio State University, Columbus, OH. 1995.

17. Sheridan, T. Supervisory Control. In G. Salvendy
(Ed.), Handbook of Human Factors. John Wiley &
Sons, New York, 1987. 1244-1268.

18. Shneiderman, B., Direct manipulation for comprehensi-
ble, predicatable, and controllable user interfaces, Pro-
ceedings of the ACM International Workshop on Intelli-
gent User Interfaces ’97,(New York, NY, 1997) 33-39.

19. Vicente, K. J. Improving dynamic decision making in
complex systems through ecological interface design: A
research overview. System Dynamics Review, 12, 1996,
251-279.

20. Vicente, K. J. Cognitive work analysis: Towards safe,
productive, and healthy computer-based work. Erlbaum:
Mahwah, NJ, in press.

