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Abstract—Three experiments and a computational analysis were
conducted to investigate the effects of a delegation-type interface
on human supervision of simulated multiple unmanned vehicles.
Participants supervised up to eight robots using automated be-
haviors (“plays”), manual (waypoint) control, or both to capture
the flag of an opponent with an equal number of robots, using
a simple form of a delegation-type interface, Playbook. Experi-
ment 1 showed that the delegation interface increased mission suc-
cess rate and reduced mission completion time when the opponent
“posture” was unpredictably offensive or defensive. Experiment 2
showed that performance was superior when operators could flex-
ibly use both automated behaviors and manual control, although
there was a small increase in subjective workload. Experiment 3
investigated additional dimensions of flexibility by comparing del-
egation interfaces to restricted interfaces. Eight interfaces were
tested, varying in the level of abstraction at which robot behavior
could be tasked and the level of aggregation (single or multiple
robots) to which plays could be assigned. Performance was supe-
rior with flexible interfaces for four robots, but this benefit was
eliminated when eight robots had to be supervised. Finally, a com-
putational analysis using task-network modeling and Monte Carlo
simulation gave results that closely paralleled the empirical data on
changes in workload across interface type. The results provide ini-
tial empirical evidence for the efficacy of delegation-type interfaces
in human supervision of a team of multiple autonomous robots.

Index Terms—Automation, delegation, human–robot interac-
tion, Playbook, unmanned vehicles.

I. INTRODUCTION

ROBOTS and unmanned vehicles (UVs) with increasingly
sophisticated capabilities are being developed for use in

many aerial, ground, surface, and underwater environments.
Such robots can move and navigate autonomously, engage in
goal-directed behaviors, and communicate with and provide
feedback to human supervisors [1]. Human supervision is nec-
essary to manage unexpected events and to ensure that mission
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goals are met [2]. Close attention must therefore be paid to the
design of the human–robot interface, so as to allow for effec-
tive teaming, communication, and mission success. However,
interfaces for human–robot interaction are still largely being
developed ad hoc, based more on technological capabilities
than on mission requirements and the needs of the human users
[3]–[5].

Previous work in human–computer interaction can inform the
design of human–robot interfaces. Nevertheless, autonomous
robots are sufficiently different from most computer systems as
to require new research and design principles [6], [7]. Design ap-
proaches should be based on empirical and computational mod-
eling studies [8] rather than only on theoretical assertions, tech-
nology demonstrations, or field evaluations of prototype sys-
tems (although field studies are important in later stages of de-
velopment). We provide empirical evidence in this article from
three experiments that examined the effects of a delegation-type
interface [9], [10] on human performance in supervising a team
of multiple simulated robots.

Supervision of multiple robots is currently highly labor in-
tensive. For example, present day military UVs typically re-
quire several operators for each single vehicle employed. Con-
sequently, a goal for developers has been to reduce the operator
to UV ratio, so that a small group of human operators (M) can
control a much larger number ( ) of UVs that are more au-
tonomous and work cooperatively in teams [11]–[14]. However,
while reducing the : ratio may be a useful engineering
goal, it should be seen only as one potential enabler of overall
mission efficiency, rather than an end in itself. A more basic
issue is what types of operator interfaces lead to a greater prob-
ability of mission success for human–robot teams [15].

Studies of coordination between humans and automated
agents has revealed both benefits and costs of particular in-
terfaces [16], [17]. Overreliance, reduced situation awareness,
uncalibrated trust, mode errors, loss of operator skill, and
unbalanced mental workload are among the costs that have
been found to be associated with particular human–automation
interfaces [18], [19]. The costs are not inevitable, but are a
consequence of particular designs, and can be mitigated by
interfaces that provide feedback to the operator on automation
states [8], [16], communicate with humans in ways that follow
the norms of human-human communication [20], or support
human information-gathering activities [19]. Systems that
minimize human participation in higher level decision-making
processes by providing automated solutions can enhance
overall system efficiency and reduce operator mental workload,
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but only if the automation is completely reliable, a requirement
that can seldom be achieved in practice [21]–[24]. Further-
more, even if full automation of decision-making functions
can be made more reliable, the required computational and
engineering efforts may be considerable, with only diminishing
returns in benefits obtained. This was illustrated in a recent
study in which the tradeoff between the cost of developing
higher levels of automation and the resultant gain in efficiency
was examined using human telerobotic control of a simulated
“sheepdog” herding a group of simulated “sheep” [25].

These considerations suggest that the interface between hu-
mans and technology should be adaptive or adaptable, rather
than fixed or static [26]–[30]. In adaptive systems, decisions
to invoke automation or to change the degree of autonomy are
made by the system [28]. In contrast, in adaptable systems, such
changes are left to the user [30], [31]. The performance benefit of
adaptive compared to static automation is well documented [30],
[32]. However, because human operators may be unwilling to
accede to the authority of a computer system that mandates when
automation is to be used, user-adaptable automation has also
been considered. Billings and Woods [33] cautioned that adap-
tive systems can be problematic if their behavior is unpredictable
to the user. If the user explicitly invoked the automation, then
presumably the unpredictability will be lessened, assuming that
automation states and behaviors are made transparent to the user
[8], [17]. But involving the human operator in making decisions
about when and what to automate can increase mental workload.
Thus, there is a tradeoff between increased unpredictability
versus increased workload in systems where automation is
invoked by the system or by the user, respectively [9], [10].

Delegation-type interfaces can allow adaptable automation to
be implemented at a flexible and variable balance point in this
tradeoff space. Humans should be able to delegate tasks to au-
tomation at times of their own choosing, and receive feedback
on their performance. Delegation in this sense is identical to that
which occurs in successful human teams. Delegation interfaces
represent a particular type of real-time supervisory control [34]
wherein the human sets an objective, provides more or less de-
tailed instructions, and then tasks the automation to determine
the best method to proceed toward the goal within the delega-
tion instructions. Delegation architectures provide highly flex-
ible methods for the human supervisor to declare goals and pro-
vide instructions and thereby choose how much or how little
autonomy to delegate to automation on an instance-by-instance
basis. An example of such a delegation architecture is the Play-
book, which has been described elsewhere [9], [10]—so named
because it is based on the metaphor of a sports team’s book
of approved plays and the selection of these plays by the team
leader (e.g., the quarterback in American football) and executed
by the team members (the other players).

The Playbook uses a hierarchical task model to provide a
common language for a human supervisor to communicate
goals and intents and a Hierarchical Task Network planning
system [35] to understand, reason over, and either critique or
complete partial plans provided by the human. This form of
delegation interface permits the operator to “task” automation
(such as robots or UVs): 1) at several functional levels of ab-
straction [36]; 2) by providing goals, plans, and/or constraints

in any combination; and 3) by providing temporal, sequential,
or conditional constraints on task performance at varying levels
of depth.

Evaluations of different interfaces for human supervision of
multiple robots can be informed by studies employing objec-
tive measures of human performance and strategy use. Such
studies are still relatively rare [4], [26], [37]–[39]. In the present
studies, we examined the use of simplified forms of the Play-
book interface with the RoboFlag simulation environment [2],
[4], [40]. A delegation interface gave the user the ability to task
simulated robots, individually or in groups, at a minimum of
two levels of abstraction: by providing designated waypoints
for robot travel or by commanding higher level behaviors (or
“plays”). The RoboFlag simulation was modified to emulate a
typical UV mission involving a single operator managing a team
of robots. The mission goal was to send the robots from a home
area into opponent territory, access and obtain a specified target
(the flag), and return home as quickly as possible with minimum
loss of assets.

II. EXPERIMENT 1

One of the postulated benefits of delegation-type interfaces
such as Playbook is that they allow for flexible use of automa-
tion in response to unexpected changes in task demands, while
keeping the operator’s mental workload in using the automation
within a manageable range [9], [10]. In the first experiment we
therefore explored the use of a delegation interface in a multiple
UV simulation in which two sources of task demand were varied:
1) adversary “posture,” in which the opponent engagement style
was changed unpredictably between three types, offensive, de-
fensive, or mixed; and 2) environmental observability, by varying
the effective visual range of each robotic vehicle under the con-
trol of the operator. We hypothesized that the use of a simpli-
fied form of Playbook would allow users to respond effectively
to unexpected changes in opponent posture and to increased un-
certainty associated with limited visual range. We therefore as-
sessed changes in how users tasked and supervised robots (using
both manual control and the automation tools that were part of
the delegation interface) as a function of these two factors. We
also examined the effects of these factors on overall mission ef-
ficiency (success rate and time to completion) and subjective
mental workload and situation awareness.

A. Methods

1) Participants: Eight males and ten females between the
ages of 18 and 33 years served as paid participants.

2) Apparatus and Procedure: RoboFlag consists of hard-
ware robots developed to exhibit various forms of autonomous,
cooperative behaviors [40] in games against another robot team
such as soccer, “tag,” and “capture the flag.” The RoboFlag sim-
ulation, which was run on three separate personal computers
(PCs) communicating under TCP/IP protocol, accurately cap-
tures the actions and states of the actual robots on computer dis-
plays. The human operator used one PC while another ran the
opposing team and the third PC displayed a central processing
executive (the “Arbiter”) and collected the data. We modified
the RoboFlag simulation to allow a single operator (blue team)
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Fig. 1. Grayscale version of the RoboFlag simulation with simplified
Playbook interface for blue team operator at a single moment of time during
the mission. All six blue team robots (filled black circles with white rings) and
four of the red team robots (filled black circles) within current visual range
(merged gray circles) of the blue team are shown. Blue and red team flag
areas are shown as open black circles on the left and right sides of the display,
respectively, with the flags in each area being shown as filled white circles.
Play selection buttons are on the top right-hand corner, and robot state and fuel
status with corresponding assigned plays are at the bottom.

to compete against an automated opponent (red team) oper-
ating under scripted procedures that simulated different oppo-
nent “postures.” The field of engagement was divided into two
halves (see Fig. 1). The operator supervised six robots and had to
send some or all of them into the opponent’s field, capture their
“flag” (located in at the center of a circular area in the oppo-
nent’s half) and return safely to midfield, while simultaneously
protecting their own flag (also located at the center of a circle
in the home half). Each robot had a specified visual range of
approximately 300 in the forward direction of movement, as
represented by a circular ring of specified diameter around the
robot (see Fig. 1). The operator could control robots either man-
ually using point-and-click (waypoint) control, or through com-
manding “plays”—higher level aggregate behaviors. In this ex-
periment, three plays were made available, circle offense, circle
defense, and patrol border. In circle offense, a user-selectable
number of blue team robots traversed to the red team’s field,
positioned themselves around the red team’s flag circle, and at-
tempted to capture the flag. In the circle defense play, the des-
ignated blue team robots circled around their own flag to pre-
vent the red team from reaching and extracting their own flag.
Finally, in patrol border user-selected robots positioned them-
selves along the dividing line in the field of engagement in order
to defend their territory against incursions by the red team.

The opponent (red team) posture was varied to be offensive,
defensive, or mixed. In the offensive condition, all six red team
robots used circle offense to try to capture the blue team’s flag
and return it to the midfield line. When defensive, three red team
robots defended the midfield line (patrol border) and the other
three circled their own flag (circle defense) to prevent the blue
team from reaching their flag. In the mixed condition three red
team robots used circle offense and three circle defense (with

none on patrol border). These three opponent postures were
varied randomly and in an unpredictable (to the human oper-
ator of the blue team) way within each block of trials for a
given robot visual range. The human operator could assign any
number of the six blue team robots to an automated play or could
control them manually by giving the robot a waypoint to move
to (see Fig. 1).

Participants were trained by showing them the field of en-
gagement, how to select and move robots, and use the automated
plays. They were instructed that the only way a red team robot
could be seen was if they entered into the visual range of the blue
team robot, otherwise the red team robot was invisible to the blue
team operator. They were shown the objective of capturing the
opponent flag and crossing back into their own territory. Each
participant completed a training trial for each of the nine experi-
mental conditions. The objective in each condition was the same:
cross into the opponent area with one or more robots, capture
the opponent flag, and cross the midfield line while concurrently
defending their own flag from capture by the opposing team.
The mission was successfully completed when any one of the
blue team robots returned to its half of the field with the red team
flag. Participants were instructed to maximize the probability of
mission success while minimizing mission completion time.

In a within-subjects design, three robot visual ranges (low,
medium, high) were combined with three opponent postures (of-
fensive, defensive, mixed). Visual Range was inversely related
to observational uncertainty (e.g., low visual range=high uncer-
tainty). Each participant completed five trials in each condition
for a total of 45 trials. Visual Range was a block factor with
Opponent Posture randomized within each block. Participants
completed the National Aeronautics and Space Administration
(NASA) Task Load Index (TLX) [41] and three-dimensional
(3-D) Situation Awareness Rating Technique (SART) [42, pp.
3-1 and 3-17] after each of the three blocks. Objective perfor-
mance measures included the percentage of missions success-
fully completed and mission completion time.

B. Results

1) Overall Performance: The performance data were sub-
mitted to a 3 3 analysis of variance (ANOVA) with factors of
Visual Range (low, medium, high) and Opponent Posture (offen-
sive, defensive, mixed). There was a significant effect of Oppo-
nent Posture on mission success rate, ,

[see Fig. 2(a)]. Expectedly, the participants won 100% of the
simulated missions when the opponent stance was purely defen-
sive and no moves were made to capture the blue team flag. Ex-
cluding the defensive opponent posture condition, participants
won significantly more games, , , when
they played against the red team on offense ( ,

) than when that team split the robots in the mixed condition
( , ). Neither the effect of Visual Range
nor the interaction between Visual Range and Opponent Posture
were statistically significant for mission success rate.

A similar 3 3 ANOVA showed that mission com-
pletion times were significantly shorter when participants
played against the red team offensive stance ( s,

s) compared to the mixed posture ( s,
s), , [see Fig. 2(b)].
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Fig. 2. Effects of opponent robot team posture (offensive, defensive, mixed)
on (a) mission success rate, (b) mission completion time, and (c) completion
time for successful and unsuccessful missions.

The longest missions were those where the participants played
against the defensive stance ( s, s),
which was also the condition when a 100% mission success
rate was achieved. While participants had perfect success when
going against a purely defensive opponent, they also took over
twice as long to succeed. Conversely, participants had about
a 75% success rate when they went up against an offensive
opponent; however these missions were of the shortest duration.
None of the other effects were significant.

It is natural to question whether the mission completion times
were different depending on the mission outcome. The data
shown in Fig. 2(c) indicate that the mission completion times
were not significantly affected by mission success or failure for
the offensive posture and only slightly different when the par-
ticipants played against the mixed posture.

2) Strategy Usage: There were nine different states a robot
could transition to/from: inactive, unassigned, circle defense,
circle offense, patrol border, manual control, tagged, flagged
circle offense, and flagged manual. The percent of time that

Fig. 3. Effects of opponent posture and robot visual range (low, medium, high)
on proportional usage of manual control.

Fig. 4. Effects of opponent posture on proportional use of the three automated
plays.

the robots were under manual control was submitted to a 3
3 ANOVA. There was a significant interaction between Visual
Range and Opponent Posture, , . As
Fig. 3 shows, manual control was used less frequently against a
defensive posture and more frequently under the offensive and
mixed conditions. Furthermore, visual range mediated the use
of manual control. When the visual range was low, indicating a
higher uncertainty about opponent robot positions, manual con-
trol was used more often in the mixed condition. This was not
the case in the offensive or defensive conditions.

We also analyzed the amount of time the robots were directed
to perform a play. All plays were grouped so that the percent
of time the robots were functioning in a particular state could
be determined. This percent metric was submitted to a 3 3
ANOVA. There was a significant effect of Opponent Posture,

, . Plays, regardless of type, were
used most often and equally when the opponent stance was of-
fensive or mixed, but less often with a defensive opponent. In
a further analysis, the three plays (circle defense, circle offense,
patrol border) were included as an additional factor in the sta-
tistical analysis, yielding a ANOVA. There was a sig-
nificant interaction between the Opponent Posture and the type
of play used, , . Fig. 4 illustrates that
the circle defense play was the most utilized play compared to
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Fig. 5. Relative proportions of successful and unsuccessful missions, and the
robot control state for successful missions (circle offense or manual).

the other available plays, regardless of the opponent posture en-
countered. When the participants were faced with an offensive
or mixed posture opponent, they used the circle defense play far
more often than the circle offense or patrol border plays. While
the proportion of automated plays was similar in the offensive
and mixed conditions, the proportion was altered in the defen-
sive condition. Participants utilized the circle defense play less
often when they confronted a defensive opponent and increased
the use of the circle offense play.

Another aspect of user strategy concerns the capturing of the
opponent’s flag. Participants could either use the circle offense
play or direct robots manually to capture the flag and bring it to
the midline to complete the mission successfully. Alternatively,
the mission could end (unsuccessfully) with the opponent team
crossing the midline with the participant’s flag. Fig. 5 shows
the three possible outcomes for ending a game. There was a
potential nonindependence assumption violation in the factors
so a statistical analysis could not be performed. Rather, Fig. 5
provides a profile of the percent of successful and unsuccessful
missions, as well as the strategy that was employed for the robot
that won each game under the nine possible experimental con-
ditions. It is evident that participants preferred to use manual
control rather than the circle offense play for the robot that cap-
tured the flag and returned midfield to end the mission.

The profile examines only the end status of each mission. A
more sensitive measure that captures differences in strategies is
the percent of time the robots were in the “Manual Flagged”
state, which includes all instances in which the participant suc-
ceeded in the mission but also includes times when the partic-
ipant captured the opponent’s flag but was unable to cross the
midfield line. The difference in the two measures is subtle but
important. This measure illustrates the use of a strategy (in this
case, manual control) regardless of the mission outcome. A 3

3 ANOVA revealed that there was a significant interaction
between Visual Range and Opponent Posture for the percent
of time participants chose manual control to capture the flag,

, . As Fig. 6 illustrates, participants
utilized manual control most often when the opponent posture
was defensive, followed by the mixed posture and finally the
offensive posture. Regardless of the posture, participants used
manual control to capture the opponent’s flag most often when

Fig. 6. Proportional use of manual control strategy to capture the flag on
successful missions, as a function of opponent posture and robot visual range.

the visual range was high. Manual control usage under low and
medium Visual Range was not remarkably different when the
opponent posture was offensive or defensive but was clearly de-
marcated when the posture was mixed. This analysis shows that
the specific act of acquiring the flag instead of traversing the
field seems to have differentially affected the use of the manual
control strategy.

3) Mental Workload and Situation Awareness: The NASA
TLX and 3-D SART were administered after each block (vi-
sual range) of 15 trials. Overall subjective mental workload was
computed by averaging the six NASA-TLX subscales and sub-
mitted to a three-level, one-way ANOVA. There was a signifi-
cant difference in subjective mental workload, ,

, across the low, medium, and high visual range con-
ditions, with mental workload increasing as the visual range was
reduced. There was no significant difference between the sub-
jective assessments of overall situation awareness across the vi-
sual range conditions.

C. Discussion

Experiment 1 showed that the simplified delegation interface
allowed for effective user supervision of robots, as evidenced by
the number of missions successfully completed and time for mis-
sion execution. As expected, significantly fewer missions were
successfully completed when the opponent posture was mixed
rather than offensive. Nevertheless, users still had moderate
success (about 62%) and relatively short mission completion
times (about 51 s) in the mixed posture condition, which was the
most challenging because of increased opponent uncertainty.
These findings suggest, but do not prove, that delegation-type
interfaces, as exemplified by the Playbook interface [9], [10],
allowed users to respond effectively to unpredictable changes in
opponent posture by tasking robots appropriately. Further con-
firmation of this view requires studies in which more complex
versions of this type of interface are evaluated and compared
against less flexible (nonadaptable) interfaces. Nevertheless,
the findings add to the growing body of evidence pointing to
the efficacy of adaptive/adaptable interfaces [28], [30].

Adaptive automation is thought to allow for regulation of op-
erator mental workload and maintenance of situation awareness
[28], [30], [43]–[45]. With respect to mental workload, there
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was an expected effect of visual range. As the robot vision ra-
dius was reduced, uncertainty about opponent robot positions
and tactics increased and users reported greater overall work-
load. However, the experimental design we used did not allow
us to examine the effects of opponent posture on workload. Pre-
sumably users found it more difficult to complete their mission
when the opponent stance was mixed rather than purely offen-
sive. It would be interesting to examine in a future study whether
the Playbook interface would allow users to “balance out” the
variations in their mental workload in response to changes in
task demands in supervising multiple robots, as has been re-
ported in studies with other adaptive interfaces [45].

Of the different user strategies, the most general finding was
that manual control was used less frequently against a defensive
opponent than against an offensive or mixed posture. In addi-
tion, when uncertainty was high due to low robot visual range,
manual control was used more often in the mixed posture, but
not the case in the offensive or defensive postures. The combi-
nation of low visual range and a mixed opponent posture rep-
resented the most challenging condition to the user. The greater
use of manual control may reflect a greater perceived need for
redirecting robots from previously assigned plays in this case,
possibly due to the perception of the limitations of the automa-
tion to achieve the mission goal.

Experiment 1 provides a preliminary empirical evaluation of
the use of delegation-type interfaces [9], [10] for human super-
vision of multiple robots, since we showed that subjects made
appropriate use of many types of control methods depending on
context. The results are suggestive of the effectiveness of this in-
terface in allowing users flexible use of automation in response
to changing task demands.

III. EXPERIMENT 2

Experiment 1 provided an initial empirical demonstration of
the effectiveness of a delegation interface for supervision of
multiple UVs. However, unlike previous research on adaptive
or flexible automation [8], [28], a comparison to static delega-
tion was not made. Accordingly, in Experiment 2 we compared
the flexible delegation approach to fixed delegation approaches,
by providing users: 1) only manual control or 2) only automated
plays or 3) both types of control, under the same varying ad-
versary postures (offensive, defensive, mixed) manipulated in
Experiment 1.

We hypothesized that the use of the delegation interface
would afford users maximum flexibility, allowing them to de-
cide when workload was high (and therefore to use automation),
or when the automation was ineffective. Additionally, we antic-
ipated that the delegation interface would allow users to mount
a more effective response to variable opponent postures than
static control (manual or automated). As in Experiment 1, we
tested these hypotheses by measuring overall mission perfor-
mance indicators (success rate and time to mission completion)
and operator mental workload and situational awareness.

A. Methods

1) Participants: Five males and four females between the
ages of 19 and 33 years participated.

2) Apparatus and Procedures: These were identical to those
described in Experiment 1 with the exception that robot visual
range was constant (medium) and that the interface was varied
to be: 1) fixed, manual only; 2) fixed, automated plays only; or 3)
flexible, both manual/automated plays. In the manual only con-
dition, play selection was not available to the operator, who had
to rely solely on waypoint control. In the automated plays con-
dition, the operator could select any one of three plays available
(circle offense, circle defense, patrol border) but was unable to
use manual control (i.e., waypoint commands). When both op-
tions were available, the operator could use either method flex-
ibly, at will. The opponent posture was also varied as in Exper-
iment 1 to be offensive, defensive, or mixed.

A within-subjects design was employed, with three Delega-
tion Types (fixed manual, fixed automated, flexible, manual/au-
tomated) combined with Opponent Posture (offensive, defen-
sive, mixed), yielding nine conditions. Each participant com-
pleted five mission trials for each condition for a total of 45
trials. Delegation Type was a blocked factor while Opponent
Posture was randomized within each block.

B. Results

1) Overall Performance: There was a significant effect of
Opponent Posture on mission success rate, ,

. Expectedly, the participants won 100% of the games
when the opponent strategy was defensive and the red team did
not make a move to capture the blue team flag. There was no
significant difference between the offensive and
mixed conditions, where participants had success rates of 78%
and 79%, respectively. There were no other significant differ-
ences for this measure.

Opponent Posture significantly affected mission completion
times, , . Participants confronting an
offensive red team completed the mission faster ( s,

s) than against a mixed ( s,
s) or defensive posture ( s, s).

Further, there was a significant main effect of Delegation Type
on mission completion times, , . The
longest times were in the fixed automation condition (

s, s) compared to the fixed manual only
( s, s) and shortest times in the flex-
ible manual/automated condition ( s, s),
though these latter two did not differ statistically from one an-
other.

2) Strategy Usage: The percentage of time the robots were
commanded to use a particular play was included in a 3 (Oppo-
nent Posture) X 3 (Play used) X 2 (Delegation Type) ANOVA.
There was a significant interaction between these factors,

, . As expected, more automated
plays were used when plays were the only method of robot
supervision (see Fig. 7). However, given a choice, participants
did not utilize automated plays to the degree that they could
have. Further, the pattern of usage was consistent; circle defense
was used the most often followed by circle offense and patrol
border. The only exception to this pattern was in the automated
only condition when participants faced a purely defensive red
team, in which case they relied more on the use of the circle
offense play.
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Fig. 7. Effects of delegation type (fixed automation or flexible, both manual/
automated) and opponent posture on proportional use of automated plays.

Fig. 8. Effects of delegation type and opponent posture on subjective mental
workload.

Conversely, the percentage of time that robots were under
manual control in the manual only condition compared to when
both types of control were available was submitted to a 3 (Oppo-
nent Posture) X 2 (Delegation Type) ANOVA. There were sig-
nificant main effects for Opponent Posture, ,

, and Delegation Type, , . Op-
erators used manual control most often when playing against the
red team offensive posture (67.23%) followed by the mixed con-
dition (66.1%) and used manual control least often when playing
the defensive red team strategy (53.7%). Also, participants used
manual control 71.7% of the time when only manual control was
available compared to 53.0% of the time when both automation
and manual control were available.

3) Mental Workload and Situation Awareness: For the
subjective rating of mental workload, there was a significant
interaction between Opponent Posture and Delegation Type,

, . This interaction, illustrated in
Fig. 8, indicates that participants rated their mental workload
highest when they had both types of control available. Fig. 8
also shows that mental workload was rated higher in manual
control versus automated control in all except the mixed red
team posture, where the trend was reversed. Note, however,
that the increase in mental workload in the flexible condition
was relatively small, and the absolute values were in the low to
moderate range (30–55, in a scale from 0–100).

For the situation awareness rating, there was a signif-
icant main effect for each of the factors—Opponent Pos-

ture, , , and Delegation Type,
, . Participants rated their situation

awareness highest when the red team status was offensive
( , ) followed by the mixed posture
( , ) and reported the lowest rating when
playing against the defensive stance ( , ).
Furthermore, participants reported a higher level of situation
awareness for the manual ( , ) than the
automation only condition ( , ) or flexible
conditions ( , ).

C. Discussion

Operator usage of the delegation interface when flexibility was
allowed(the flexiblemanual/automationcondition)was different
than the manual only or automation only conditions, as revealed
by strategy usage of manual and automated control. Further, par-
ticipants used the delegation interface to adapt to unpredictable
opponent postures, as shown by the consistent defensive strategy
to oppose forces when they were in an offensive or mixed pos-
ture, and alternated offensive strategy usage when no opposing
robots were sent, as in the defensive posture. Even with the lim-
ited delegation interface used in this study, participants clearly
were able to adapt effectively to the situation, as shown by the
high rate of mission success ( 75%). Manual control use in the
flexible condition allowed participants the ability to overcome
less effective automation behavior, thereby decreasing mission
completion time, making it similar to the manual only condi-
tion and shorter than the automation only condition.

Another proposed benefit to delegation interfaces is the ability
to off-load tasks when mental workload is increasing, or to
intervene in robot actions if automated behavior is suboptimal
[9], [10]. Expectedly, situation awareness was highest in the
manual only condition as a result of decreased unpredictability.
Increased opponent posture difficulty (indicated by mission
completion time) resulted in lower situation awareness for the
defensive posture. Interestingly, in the flexible manual/automa-
tion condition, participants did not retain the situation awareness
benefits of increased robotic interaction, as previously described
for mission completion time. This could be due to the small
increase in mental workload associated with using the flexibility
to decide between when to use automation or manual control.

Note that the tradeoff between situation awareness and work-
load is complex. While the delegation approach [9], [10] pre-
dicts increased situation awareness about what automation is
doing (over fully automated approaches), the coarse-grained,
subjective situation awareness measure used in these experi-
ments was not focused on this parameter, but instead measured
general situation awareness. It is therefore quite possible that
the added workload required to decide and shift between control
strategies resulted in less capacity to maintain general situation
awareness relative to the automation only condition.

These results suggest an important conclusion. Automation
brittleness or adversary tactics may require manual control, but
this option involves a degree of workload, which could limit its
use. The Playbook interface allows an operator to choose an op-
erating point in this continuum of a tradeoff between the need
for intervention and increased workload. The operator has flex-
ibility in determining when automation is ineffective and can
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switch strategies when needed. By explicitly comparing a flex-
ible delegation interface against static control, as in previous
studies of adaptive automation [28], [32], the results of Experi-
ment 2 also confirm that the increased flexibility of user-adapt-
able interfaces such as Playbook results in system and human
performance benefits.

IV. EXPERIMENT 3

Experiment 2 showed that when operators had flexible access
to both automated plays and manual control, mission comple-
tion times were reduced compared to a less flexible interface
in which operators could only use automation. However, there
was an associated cost with this flexibility in the form of a small
increase in subjective mental workload. The third experiment
further investigated the dimensions of flexibility offered by the
Playbook interface. Of particular interest were two high-level
dimensions of adaptation flexibility: abstraction and aggrega-
tion. Abstraction can be thought of as variation along a dimen-
sion of a task hierarchy, where primitive robotic behaviors, such
as waypoint-to-waypoint movement, are at the lower level of
abstraction. More complex behaviors such as patrol border or
circle defense (continuous planned movement action and reac-
tion to events such as opponent attack) are at a higher level of
abstraction. An even higher level of abstraction would be to task
a group of robots to go on offense—which implies some mix
of offensive behaviors or plays. Aggregation can be defined as
the number of robotic agents to which particular tasks are as-
signed as a group. Low aggregation refers to commands given
to individual agents, whereas high aggregation means tasking
all agents with the same plays. An intermediate, and flexible,
level of aggregation is also possible where tasks can be given to
groups of robots smaller or equal to that of the whole team.

In Experiment 3 we varied the number of robots supervised by
the operator and had them compete against a similarly equipped
opponent (four versus four or eight versus eight robots) using
eight different interfaces representing different combinations of
the abstraction and aggregation dimensions. Four of these con-
ditions represented flexible (5–8), and the remaining four re-
stricted interfaces (1–4), as defined and identified in Fig. 9: re-
stricted interfaces are represented by the matrix cells within
the boxed lines, flexible interfaces are outside the box, in the
last column and bottom row. A full factorial combination of
these factors was not used, rather, only those conditions that
were important for our preplanned comparisons were included
(numbered cells in Fig. 9). We hypothesized that an increased
number of robots to supervise would reduce mission success
and increase workload. It was expected that the flexibility of the
RoboFlag interface would allow operators the ability to decide
when workload was high (in which case, use automation), or
when the automation was not effective due to limited observ-
ability or unpredictable opponent tactics (use manual control of
robots, thereby decreasing unpredictability) and adjust accord-
ingly. These benefits should not be available to operators using
more restricted interfaces.

A. Methods

1) Participants: Three males and nine females between the
ages of 18 and 27 years participated.

Fig. 9. All possible interface combinations of the dimensions of abstraction
and aggregation. Interfaces 1–4 (restricted) and 5–8 (flexible) were chosen for
investigation in Experiment 3.

2) Apparatus and Procedures: Of the eight interfaces se-
lected, four represented restricted (1–4) and four flexible inter-
faces (5–8). The three levels of abstraction ( axis, Fig. 9) ex-
amined included: waypoint control, plays (circle defense, circle
offense, patrol border), and superplay (higher level group plays
comprised of more than a single play, generally allocating mul-
tiple robots across plays to provide an overall “posture,” options
being offense, defense, mixed). The three levels of aggregation
( axis, Fig. 9) available were the selection of individual (only
one robot at a time), a subgroup (any number of robots, from one
to all), or only all robots. The numbered cells in Fig. 9 show the
selected interfaces that combined different levels of abstraction
and aggregation. According to this taxonomy, Interface 8 had
flexible control for both factors, whereas the other seven were
progressively less flexible. Participants used these interfaces to
supervise their robot team against an opponent robot team of
equal force (either four or eight robots). The opponent posture
was mixed, as defined previously. A within-subjects design was
employed using eight interfaces selected from the possible op-
tions shown in Fig. 9. These were combined factorially with the
number of robots controlled (four or eight). Interface type was
treated as a blocked factor, with the number of robots random-
ized within each block. Each participant completed two sessions
of four blocks each with ten trials for each block (five trials with
four robots, five with eight robots) for a total of 80 trials.

B. Results

1) Number of Robots: The number of robots controlled was
a significant factor in mission success rate as seen in Fig. 10,

, . The ANOVA indicated that
participants had more successful mission outcomes when they
were controlling four robots ( , )
than when they controlled eight robots ( ,

). Similarly, mission completion times were
8.27 s longer when eight robots were controlled compared to
four robots, , .

2) Restricted versus Flexible Interfaces: There was a sig-
nificant two-way interaction between the Number of Robots
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Fig. 10. Mission success rates for the eight interfaces representing combina-
tions of the abstraction and aggregation dimensions.

controlled and the Interface Type for mission success rates,
, . This interaction, depicted in

Fig. 11(a), shows that when there were four robots in the
team, mission success rates were significantly higher with the
flexible interfaces than with the restricted interfaces. However,
this benefit for the flexible interfaces was not obtained when
participants had to control eight robots. In fact, the success rate
was virtually unchanged between the interface conditions when
eight robots were controlled.

For mission completion times, there was a significant main
effect for the number of robots, , .
Missions were completed an average of 8.26 s faster when par-
ticipants were controlling only four robots compared to eight
robots, virtually mirroring the effects found previously.

3) Restricted Interfaces: Analyses within the restricted
interface conditions where the level of aggregation was “All”
(interfaces 3 and 4) gave a significant interaction between the
number of robots controlled and the two levels of aggregation
for mission success rate, , . This in-
teraction, illustrated in Fig. 11(b), reveals that when participants
had to assign all of the robots the same command, they achieved
greater success when superplay was used compared to when
only waypoint control was available. Further, while the number
of robots controlled did not affect the outcome when waypoint
control was available, the success rate was much higher when
participants controlled four robots compared to eight robots
when utilizing the superplay option. There was also a sig-
nificant two-way interaction for this comparison for mission
completion time, , . As illustrated in
Fig. 11(c), the missions that had only waypoint control available
for the “All” condition robots were shorter than the missions
that had only superplay available. Additionally, the number
of robots controlled had opposite effects. Mission completion
times were shorter in the waypoint condition when participants
controlled eight robots compared to when they controlled four
robots. Conversely, mission completion times were longer in
the superplay condition when participants controlled eight
robots compared to four. The percentage of successful missions

Fig. 11. Effects of number of robots and (a) interface type (restricted, flexible),
and of level of abstraction (waypoint, super play) on (b) mission success rate and
(c) mission completion time.

and the completion times suggest that participants were able to
achieve a higher success rate using the superplay over manual
control given that they were controlling all of the robots.

4) Flexible Interfaces: There were no significant differ-
ences between the different subtypes of flexible interfaces.
There were differences for the mission success rate and mission
completion times but only for the main effect of Number of
Robots. The percentage of successful mission outcomes nearly
doubled when the number of robots controlled was reduced
from eight (35.0%) to four (60.4%) under the flexible inter-
faces, , . Similar to the previous
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Fig. 12. Mean subjective workload for the eight interfaces representing
combinations of the abstraction and aggregation dimensions.

results, the mission completion times were significantly shorter,
, , when four robots were controlled

(42.19 s) compared to eight robots (52.37 s).
5) Mental Workload and Situation Awareness: Analysis of

the subjective mental workload ratings revealed that the main
effects of Number of Robots, , ,
and Interface Type, , , were sig-
nificant, as was the interaction, , .
Planned comparisons revealed that participants reported signif-
icantly higher mental workload, , , when
supervising eight robots ( , ) compared
to four robots ( , ) [see Fig. (12)]. Also,
participants reported higher workload ,
for conditions where only waypoint control was available (indi-
vidual waypoint, all waypoint, flexible waypoint) ( ,

) than when automated plays were available (in-
dividual play, all superplay, flexible play, flexible superplay)
( , ).

For situation awareness, a significant main effect was ob-
tained for Number of Robots, , .
Higher ratings were reported when four ( ,

) rather than eight ( , ) robots
were supervised. No other significant effects were found for
this measure.

C. Discussion

Experiments 1 and 2 demonstrated that a delegation-type in-
terface [9], [10] provides for effective human supervision of
multiple autonomous robots, in comparison to nonadaptable in-
terfaces. However, in the present study a more stringent test of
the efficacy of flexible delegation was conducted by pitting it
against a variety of more restricted interfaces. Overall perfor-
mance was reduced when participants had to supervise eight as
opposed to four robots. The results demonstrated that the effec-
tiveness of Playbook-like interfaces stems primarily from the
flexibility it affords the human user, compared to more restricted
interfaces. We defined two dimensions pertaining to flexibility,
level of aggregation and level of abstraction, and found that

when operators controlled four robots the interface having the
highest flexibility on these dimensions (the “Select–Select” in-
terface) led to more successful missions and shorter mission
completion time than the less flexible interfaces. This benefit
was reduced, however, when eight robots were supervised. At
this higher load, the performance benefit may have been coun-
tered due to the greater management workload demand imposed
by full flexibility.

The findings also point to the potential problems associated
with restricted interfaces (such as individual play, and all way-
point), which do not provide the operator the flexibility to real-
locate robotic resources or to compensate for suboptimal robot
behavior in response to unpredictable mission events. In gen-
eral, the results provide increasing empirical evidence that the
(most flexible) delegation-style interface provides benefits to a
single operator, by allowing the operator the ability to adapt and
respond to ineffective automation behavior at specific mission
times during the control of multiple UVs.

V. COMPUTATIONAL MODELING OF MENTAL WORKLOAD

The use of flexible delegation interfaces was associated with
efficient human–robot teaming performance, but at the cost of a
slight increase in workload. We carried out a cognitive simula-
tion analysis to account for the workload findings, using a task
network model involving a dissection of RoboFlag into subtasks
with sequential paths among the component tasks [46]. Fol-
lowing the task breakdown, a probabilistic model using a normal
distribution estimated completion times for each subtask. In the
next step, the cognitive resources associated with the comple-
tion of each subtask was simulated using the multiple-resource
model of Wickens [47], in which five types of resources are de-
fined: visual, auditory, cognitive, motor, and speech. Values for
each cognitive resource were assigned in a model using a pub-
lished database [48]. Monte Carlo simulation was then carried
out to provide quantitative values for total momentary workload
based on the estimated cognitive resources.

The task network model of the RoboFlag operator was
constructed considering three fundamental steps of the opera-
tors’ cognitive work: state recognition, decision-making, and
operation. We considered two major factors in the model that
would affect cognitive work across the different RoboFlag
interface types. One was the probability of the need for the user
to intervene manually in controlling robots in order to ensure
mission success. We assumed that this probability would, by
definition, be relatively high for the waypoint-only interface,
lower for play operations, and much lower for superplay opera-
tions. Also, we assumed a higher probability when eight rather
than four robots had to be supervised. The second factor was
the operator’s time for decision-making. We assumed that this
would be shorter when the number of operational alternatives
was small, and longer when the number was large. For example,
in the Select–Select condition, an operator should choose from
among three options, waypoint, play, or superplay, then select
the number of robots to which the option should be applied,
and finally execute the plan.

One thousand trials of Monte Carlo simulations were per-
formed for each of the eight interface types examined in Ex-
periment 3. To compare the results under the different condi-
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Fig. 13. Mean expected values of time-integrated workload from the
simulation analysis for the eight interfaces.

tions, the simulated operational time was set equally at 60 s.
Fig. 13 shows the mean expected values of the total time-in-
tegrated workload for each of the eight interfaces. As expected,
workload was higher when eight rather than four robots were su-
pervised. Also, workload was higher when only waypoint con-
trol was available (individual waypoint, all waypoint, flexible
waypoint) compared to when automated plays could be used,
with the exception that relatively low values were found for the
“All–Waypoint” interface. Finally, workload was high in the
“Select–Select” interface, particularly when eight robots were
supervised. These simulation findings closely parallel those re-
ported in the empirical data from Experiment 3 (see Fig. 12).

VI. IMPLEMENTING DELEGATION-TYPE INTERFACES FOR

UNMANNED VEHICLE CONTROL

The three experiments presented here provide the initial em-
pirical support for the efficacy of delegation-type interfaces in
supervising multiple UVs. Other ongoing work [49], [50] on
the implementation and application of such interfaces provides
further support for their use in complex human–robot systems.
This work has been conducted in a high-fidelity simulation em-
ulating multiple small UAVs (fixed and rotary wing) operating
in an urban environment to perform useful support services for
small units of infantry soldiers.

Sequential control of multiple air vehicles was empha-
sized, rather than concurrent and coordinated control as in
the RoboFlag studies presented previously. For example, one
“play” that has been implemented and tested is known as
“Watch Area” and allows an operator to very quickly com-
mand that surveillance images be provided for a designated
area within a given time interval. By making extensive use of
moderately smart default values, this play can be coarsely com-
manded in as few as three actions (mouse clicks on a desktop PC
or stylus taps on a PDA) and less than 15 s of interaction time.
Of course, this leaves much of the planning to be done by the
automation. The resulting plan, although guaranteed to adhere
to the constraints imposed by the operator, might nonetheless
not be exactly what the user wanted or would have chosen, in

which case the user can change the plan. The Playbook inter-
face also permits more detailed interactions and specification of
constraints including the designation of specific start and end
times for imagery, the area to be scanned and whether scanning
must be continuous or may be intermittent. This developmental
prototype is fully integrated with a high-fidelity flight control
system and provides closed-loop control of our simulated
vehicles, including the ability for the Playbook to monitor and
adapt plans in response to disturbances which might disrupt
travel times such as headwinds or engine malfunctions.

VII. CONCLUSION

When human operators are required to supervise multiple
UVs, as in the present studies, individual operator control of all
robots is difficult, mandating the use of automation. At the same
time, limitations in the reasoningcapabilitiesof semiautonomous
agents and the brittleness of some automated behaviors neces-
sitate intervention through human intelligence, indicating that
the human–robot interface must support multiple or adjustable
levels of interaction [26]–[30]. The results of the three experi-
ments reported here provide the initial empirical evidence that
delegation-type interfaces such as Playbook provide a flexibility
that enhances the performance of the human–robot team in
comparison to static or more restricted interfaces. While there
is considerable empirical support for the performance benefits
of adaptive automation [28], [30], [32], similar evidence for
efficacy when human users task automation—adaptable automa-
tion—has been lacking until the present study. We propose that
delegation type interfaces such as Playbook allow for such multi-
level interaction in a flexible manner that keeps human workload
within a manageable range. In turn, such interfaces can provide
for the effective coordination between humans and robotic agents
that is being sought in various operational contexts [51].

Delegation architectures allow the human supervisor to de-
clare goals and provide instructions and thereby choose how
much or how little autonomy to delegate to automation on an in-
stance-by-instance basis. Delegation interfaces have additional
features that provide for flexibility of supervision of automated
agents [9], [10]. Only the first of these features, the ability to task
robots at different levels of abstraction or depth, was examined
in the current series of experiments. Future studies should ex-
amine these other features, such as the ability to provide goals
or plans to the robots, or the possibility of constraining robot
performance at different and/or heterogeneous levels of depth.
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