
Toward Automatic Ontology Curation with Similarity-Based Reasoning

Scott E. Friedman, J. Benton, & Dan Bryce
SIFT, LLC

319 1st Ave North, Suite 400
Minneapolis, MN 55401

{friedman, jbenton, dbryce}@sift.net

Abstract

Building and maintaining large, reusable ontologies is a pre-
requisite for building automated systems that reason and plan
in a changing world. Unfortunately, our needs, best practices,
and mental models of the world also change. These factors—
in addition to common human mistakes— lead to model drift
over time in our computational models and ontologies. As a
result, ontologies contain direct inconsistencies, anomalies,
partial or duplicate descriptions, and erroneous constraints
between components. This paper presents ongoing develop-
ment on our system, Marshal, designed to help to curate on-
tologies and task models by making suggestions while users
write procedures and plans. We present experiments in three
ontology curation settings: (1) inducing new categories; (2)
detecting anomalous instances; and (3) classification of unla-
beled instances into an existing ontology. On each task, we
compare multiple similarity-based inference strategies, and
we show that structure-mapping produces favorable results
on all three ontology curation tasks.

Introduction
When users create and revise task models and ontologies,
they have a propensity for making mistakes, often through
directly introducing inconsistencies or failing to perform
proper maintenance between components. Users may con-
tinue using these models or ontologies with the risk that it no
longer matches its intended use, unknowningly introducing
risk to task execution. We call this phenomenon model drift.
Automatically discovering whether a change represents an
incompatibility with a model’s usage would help reduce the
risk associated with making model changes. This paper de-
scribes progress on Marshal, a system that assists users as
they extend task models and ontologies in order to prevent
model drift.

Marshal observes users as they author procedural models
and provides feedback on how they may improve. One of
Marshal’s hallmark contributions is its ability to adapt its
representation of the user’s task model to match how the
user constructs procedures or plans. Instead of constantly
reminding users of a violated constraint in their procedure,
Marshal can learn contexts in which the constraint is no
longer enforced. Marshal can also learn new features of the
task model by allowing users to enter semi-structured text
that describes steps. Marshal faces the major challenge of

readily distinguishing new terms from synonyms of known
terms.

In the work described in this paper, we seek out contex-
tual clues that help Marshal disambiguate. To do this, we
apply previously explored techniques for structure-mapping.
Structure-mapping matches a base description to find poten-
tial analogs in a target description, and constructs mappings
between the two. From there, Marshal can infer information
from the base to the target (e.g., category labels), thereby
generating assumptions about the target via the base. In the
context of Marshal, this provides the ability to help curate
an ontology. For instance, we can query a user whether
a newly introduced object (e.g., a Crew member sally)
would fit within a particular category or should be part of
a new (or super) category, dependent on that object’s us-
age. This will help detect mis-categorized entities, propose
new categorizations, and propose new categories altogether
based on instance similarity.

Though structure-mapping techniques have power in their
ability to represent and detect analogies between structures
of models, we explore other possibilities as well. A simpler,
and less computationally intensive approach involves com-
puting a vector of all predicates that describe each object
(e.g., sally), and then normalizing these vectors and com-
pare them using their dot product. We compared two vector-
based encodings and show that structure-mapping produces
favorable results on three ontology curation experiments:
(1) inducing new categories; (2) detecting categorization
anomalies; and (3) classifying unlabeled entities into a gold-
standard ontology.

We begin by describing the setting and research chal-
lenges involved in Marshal. We then describe background
relevant to Marshal, and we describe our experiments to sup-
port the above claims. We close with a discussion of the im-
plications and future work, including developing additional
strategies for Marshal.

Marshal
Marshal interfaces with the PRIDE knowledge entry inter-
face (Schreckenghost, Milam, and Billman, 2014) for sub-
ject matter experts— who have no knowledge representation
expertise— to specify procedures in Procedure Representa-
tion Language (PRL) (Kortenkamp, Bonasso, and Schreck-
enghost, 2007). PRIDE and PRL have been used to specify

diverse procedures, from using an EpiPen during a severe
allergic reaction to conducting repair and maintenance on
the International Space Station (ISS). PRL is converted to
PDDL (Boddy and Bonasso, 2010, Mcdermott et al., 1998),
which comprises the data for our three experiments.

As mentioned above, Marshal is designed to fix model
drift over time as well as make improvements/corrections
as non-technical users specify or modify a procedure. The
main module of Marshal operates by identifying executed
procedures and discerning potentially drifting constraints
from them.

Non-technical users use a graphical interface to specify
their procedure, so they do not type PRL or PDDL directly.
This means Marshal is not concerned with syntactic errors
such as typos, arity, or argument order; rather, Marshal must
address downstream semantic issues made by the user:

1. Ontology extension: if the user specifies categories (e.g.,
wrench and spanner) with similar extensions and af-
fordances in their procedures, Marshal should propose a
common super-category, if none yet exists.

2. Anomaly detection: if the user mis-categorizes an en-
tity (e.g., as category inhibit-command instead of
turn-off-command), then Marshal should detect the
anomaly and signal the user.

3. Classification: after Marshal detects an anomaly— or if
the user is unsure of the appropriate category— Marshal
should provide a prioritized list of categories for an en-
tity, using the remainder of the entity’s description as evi-
dence.
Our three experiments address these three challenges with

domain-general similarity-based reasoning techniques and
ontology comparison strategies described next.

Background & Related Work
Our work on Marshal uses PDDL for knowledge representa-
tion and leverages previous work in similarity-based reason-
ing and ontology comparison. We review these topics before
describing our approach.

PDDL
We represent our tasks using the Planning Domain Descrip-
tion Language (Mcdermott et al., 1998), a commonly used
standard for describing task planning domains and prob-
lems.1 PDDL uses relational descriptions of objects to rep-
resent facts and actions. We restrict ourselves to STRIPS-
based PDDL models, though we believe most of the tech-
niques we discuss in this work would be uneffected by more
complex variants of the language.

In our work, we focus only on PDDL facts and state infor-
mation (including the states and goal description). A PDDL
fact is a relation between objects, described by a predicate.
As an example, we can describe that a object ge-0 pos-
sesses an object brt 1 by writing (possesses ge-0

1Numerous repositories for PDDL planning domains
exist. The (perhaps arguably) best are hosted by the
websites of the International Planning Competitions
(http://www.icaps-conference.org/index.php/
Main/Competitions).

brt 1), where possesses is a predicate and ge-0 and
brt 1 are objects or entities. In PDDL, we specify a prob-
lem for a particular domain (consisting of actions) by pro-
viding an initial state by listing a set of facts about the world,
and a goal set. We must find an ordered set of actions that
make the entire goal set simultaneously true.

Graph Similarity & Generalization
Marshal builds on previous research on computational mod-
els of structure-mapping that have produced techniques
for describing and quantifying isomorphic (i.e., similarly-
structured) portions of relational knowledge across descrip-
tions (Falkenhainer, Forbus, and Gentner, 1989). These
techniques match entities and relationships between rela-
tional representations (a base and a target representation)
with three constraints:

1. One-to-one: An entity or relation in the base can map to
at most one in the target, and the reverse for target-to-
base. This constraint is part of the definition of a graph
isomorphism.

2. Parallel connectivity: If a base relation maps to a target
relation, so must each of their arguments, in order.

3. Tiered identicality: A relation can only map to another
relation with the same predicate.

Matching a base and target description according to these
constraints produces one or more mappings between the
base b and target t. Each mapping 〈Mb,t, sb,t〉 describes a
set of matched correspondences Mb,t between entities and
relations in b and t, and a similarity score sb,t that increases
monotonically with the elements in Mb,t. We convert sb,t
into a normalized score ‖sb,t‖ = [0, 1] by scaling it by the
average self-similarity score (i.e., the similarity score of a
description against itself) of the base sb and target st:

‖sb,t‖ =
2sb,t
sb + st

(1)

We use normalized similarity scores in all three experi-
ments to infer new categories, detect anomalies, and catego-
rize unlabeled instances.

We compute a generalization of the mapping by creating
new entities to represent heterogenous corresponding enti-
ties in Mb,t, and asserting new relations over those entities.
Consider the following relations in the base:

(crew sally)
(o2use-rate sally slow)
(has-iss-location sally intra-vehicle)
(possesses sally brt_1)
(possesses sally pgt_2)

and in the target:

(crew joe)
(o2use-rate joe fast)
(has-iss-location joe intra-vehicle)
(has-operator ssrms joe).

The resulting generalization contains the following state-
ments, including generalized entities (ge terms) and con-
stituent probabilities:

http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions

���

�����

������������

����

�����

�����

��������

�����

����������������������

��������

��������������

�����

�������������

�����

����������������������

�����������������������������

����������������

��������������

������

�����

������� ������ ������������ ������ ������������������ �����

�������������

��������

�

�����

�

����������

�

�����

�

����������

�

�����

�

������������

�

��������

�

����������

�

��������

�

����������

�

��������

�

����������

�

��������

�

����������

�

��������

�

����������

�

��������

�

����������

�

��������

�

����������

�

��������

�

�����������������

�

�������������

�

����������

�

��������

�

�����

�

Figure 1: Generalization of three relational graphs describing three crew instances: bob, sally, and joe. Relations are
colored according to frequency: light green statements occur over all three instances, and darker green statements occur over
two or one (darkest).

(crew ge-0) = 1.0
(o2use-rate ge-0 ge-1) = 1.0
(has-iss-location ge-0 intra-vehicle) = 1.0
(possesses ge-0 brt_1) = 0.5
(possesses ge-0 pgt_2) = 0.5
(has-operator ssrms ge-0) = 0.5

The probabilities on each statement are soft constraints on
similarity scores for future comparison against this general-
ization. Generalization can be performed iteratively, to gen-
eralize entire categories (e.g., crew) with arbitrarily many
instances. This process is called Sequential Analogical Gen-
eralization of Exemplars (SAGE) (McLure, Friedman, and
Forbus, 2015). We use a SAGE algorithm to generalize cat-
egories in our experiments. The results of sequential gen-
eralization over three crew instances are shown in Figure 1.
The generalization is shown as colored links, and the entities
comprising each generalized entity are shown beneath. Note
that some generalized entities have (none) rows where no
isomorphic entity was found, e.g., since joe does not pos-
sess any entities in this scenario.

Ontology Similarity
Since Marshal is designed to automatically curate ontologies
over time, we use established metrics to measure Marshal’s
accuracy in automatically clustering leaf categories and in-
ducing supercategories.

Previous research in unsupervised learning uses the Rand
index (RI) and adjusted Rand index (ARI) to measure clus-
tering accuracy (e.g., Liang and Forbus, 2014), and re-
search in ontology-learning uses the Onto-Rand index (ORI)
(Brank, Mladenic, and Grobelnik, 2006) to measure clus-
tering accuracy with respect to a supercategory lattice. We
report clustering results with all three measures. Since the
ORI uses a proximity metric between categories, we use the
following ancestor-based proximity metric δ(c, c′) between
two leaf categories of an ontology, where Supers(c) is the
set containing c and all super-categories:

δ(c, c′) =
|Supers(c) ∩ Supers(c′)|
|Supers(c) ∪ Supers(c′)|

(2)

Intuitively δ(c, c′) is 1.0 when c = c′, 0 when c and c′
share no ancestors, and (0,1) in all other cases.2 We use this

2We can also measure category proximity with tree distance,

ontology proximity metric within ORI for Experiment 1 and
as a classification accuracy metric for Experiment 3.

Evaluation
We conducted three experiments to validate Marshal’s ap-
proaches to ontology curation, including ontology induction
(Experiment 1), ontological anomaly detection (Experiment
2), and automated classification of new entities into an exist-
ing ontology (Experiment 3). All three experiments use an
ontology that describes procedures for the ISS. The ontology
contains 1774 instances of 420 concrete categories, and 230
additional abstract supercategories that have no instances.

We explore three similarity metrics in our experments for
the sake of comparison. We provide examples of each using
the description of sally from the previous section.

• Predicate vector: We compute a vector of all pred-
icates that describe the entity (e.g., sally), irrespec-
tive of argument index, such as 〈crew, o2use-rate,
has-iss-location, possesses〉. We normalize these
vectors and compare them with dot product.

• Weighted predicate-argument vector: We compute
a vector of argument positions that describe the en-
tity, such as 〈crew0 = 1, o2use-rate0 = 1,
has-iss-location0 = 1, possesses0 = 2〉. We nor-
malize these vectors and compare with dot product.

• Structure-mapping: We use structure-mapping graph
similarity as described above to compute the normalized
similarity score ‖s‖ of two relational descriptions.

These metrics are listed in order of efficiency, with graph
similarity being two orders of magnitude slower than the
others; however, all three computations are efficient enough
to analyze individual categories and classify individual enti-
ties online. All three similarity metrics compute a similarity
score [0,1], so these are interchangeable and can be com-
bined with a portfolio or weighted voting approach, as we
demonstrate in Experiment 3.

Exp 1: Ontology Induction
In lieu of having an incomplete user-generated ontology for
Marshal to extend, we provide Marshal with a set of labeled

but it does not support multiple inheritance as well, among other
complications (Brank, Mladenic, and Grobelnik, 2006).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

2)8" 8)15" 15)21" 21)28" 28)34"

%
"C
or
re
ct
"

#"Instances"in"Target"Category""

Anomaly"Detec6on"by"Category"Size"

Precision(SM)"

Recall(SM)"

Precision(Vec)"

Recall(Vec)"
0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0.0)0.2" 0.2)0.4" 0.4)0.6" 0.6)0.8" 0.8)1.0"

%
"C
or
re
ct
"

Delta,Proximity"of"Anomalous"Instance"to"Target"Category""

Anomaly"Detec:on"by"Category"Proximity"

Precision(SM)"

Recall(SM)"

Precision(Vec)"

Recall(Vec)"

Figure 2: Results for Marshal’s anomaly detection, where a single anomaly is seeded in a target category of varying size and
distance from the anomaly’s true category. At left: Effect of δ-proximity between the target and true category. At right: Effect
of the size of the target category.

example descriptions— like the snippets of crew instances
sally and joe shown above— and have Marshal recreate
all supercategories of a gold-standard ontology from these
instances and leaf categories. We had Marshal recreate the
ontology using each of the three representations and similar-
ity metrics described above.

For each of the three representation/similarity settings,
Marshal first generalizes all of the instances into their leaf
categories. For the two vector settings, Marshal sums and
then normalizes the vectors of the instances to calculate the
category vectors. For the structure-mapping setting, Mar-
shal uses a SAGE algorithm to generalize the instances into
categories, as shown for the crew category in Figure 1.

After generalizing each leaf category, Marshal uses a
greedy algorithm similar to (Liang and Forbus, 2014) to in-
duce new supercategories and incorporate categories into su-
percategories. Marshal computes pairwise similarity using
the three similarity metrics described above, and iteratively
selects the highest-scoring pair:

• If the highest-scoring pair are two categories without su-
percategories, it constructs a new supercategory and com-
pares it against all existing categories.

• If the highest-scoring pair are a leaf category and an in-
duced category, it adds the leaf to the induced category.

• If the pair contains exactly one category without a super-
category, it takes the complement’s supercategory.

• Otherwise, it continues with the next highest-similarity
pair until it has no more pairs to process.

Results are shown in Table 1. Rand index (RI) mea-
sures clustering accuracy regardless of the ontology, ad-
justed Rand index (ARI) corrects RI for chance, and the
OntoRand index (ORI) measures differences in ontological
proximity using the δ-proximinity distance. ORI is by far
the most meaningful measurement in this experiment, since
ORI evaluates the entire ontology lattice and RI/ARI only
measure sibling/co-clustering accuracy.

Table 1: Comparison of similarity metrics for ontology in-
duction, on Rand (RI), Adjusted Rand (ARI), and OntoRand
(ORI) indices.

RI ARI ORI
Pred Vec 0.913 0.311 0.743
Pred-Arg Vec 0.899 0.278 0.760
Structure-Mapping 0.940 0.251 0.785

Exp 2: Anomaly Detection
In our second experiment, we used the gold standard on-
tology from Experiment 1 for an anomaly detection task.
Here we are interested in local anomaly detection (i.e.,
identifying an anomaly within a category by looking at
within-category instances), since the next experiment in-
volves across-category comparison.

In this experiment, we iterate through every possible or-
dered pair of categories 〈c1, c2〉, where c1 6= c2, and use
each instance in c1 as a separate anomaly in the target cat-
egory c2. We also test Marshal with category c2 without
anomalies to see whether Marshal will identify false posi-
tives. In every case, Marshal attempts to find at most one
anomalous instance seeded into c2 using either structure-
mapping or predicate argument vectors, as described above.
3

For each anomaly detection round, instead of comparing
every instance to every other instance— which would incur
n2 similarity computations— we calculate each instance’s
omission score as the similarity of each instance i to the
generalization of all remaining instances. This incurs 2n
similarity computations: n computations to build the vector-
or-structural generalization G, and n computations to score
each i against G \ {i}. For a vector representation, Marshal

3This experimental setup is similar to the visual oddity task,
where subjects choose exactly one image that does not belong in
a set of images, and human performance has been modeled with
structure-mapping (Lovett and Forbus, 2011).

0.76%

0.78%

0.8%

0.82%

0.84%

0.86%

0.88%

0.9%

0.92%

0.94%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20%

An
ce
st
or
)P
ro
xi
m
ity

)(i
nt
er
se
c0
on

/u
ni
on

))

K)

KNN)Classifica0on)Proximity)

Vector%

Structure%

Combined%

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20"

%
"c
on

ta
in
in
g"
co
rr
ec
t"c
la
ss
ifi
ca
/o

ns
"

K"

KNN"Classifica/on"Correctness"

Vector"

Structure"

Combined"

Figure 3: Results for Marshal’s leave-one-out k-Nearest Neighbor classification of all instances into the gold-standard ontology.
At left: Proximity of Marshal’s highest-priority category to the true category, using δ-proximity. At right: Percent of trials where
one of Marshal’s three suggested categories was the true category (and not just a supercategory thereof).

computesG\{i} as a vector difference. For a structural gen-
eralization (e.g., Figure 1) Marshal trivially computesG\{i}
by removing the row for i (and all subsequent relations) from
the matrix of entities and relations that comprises G.

The instance with the minimum omission score is the least
similar to the remaining instances, but Marshal must also
prevent false positives. Consequently, Marshal only flags an
instance as an anomaly if its omission score is 1.5 standard
deviations less than the average omission score.

We compare the precision and recall of Marshal’s
anomaly detection results using vector (Vec) similarity and
structure-mapping (SM) similarity in Figure 2. We report
results over two independent variable. We report the effect
of δ-proximity of c2 and c1 on anomaly detection in Figure 2
(left). We also report the effect of the number of instances
in the target category c2 on anomaly detection in Figure 2
(right). Both similarity measures perform better in larger
categories, probably because higher cardinality allows Mar-
shal to form more coherent generalizations. Both similar-
ity measures have significantly better recall for distant cat-
egories. This is sensible, since the standard deviation will
be lower for ontologically proximal (and presumably, more
similar) categories.

Overall, structure-mapping (Precision=0.93, Re-
call=0.83) marginally outperformed vector similarity
(Precision=0.90, Recall=0.82), but structure-mapping
significantly outperformed vector similarity in precision and
recall for mid-size and mid-proximity settings, as shown in
Figure 2. Both settings produced unacceptable false pos-
itive rates in zero-anomaly categories: structure-mapping
incorrectly inferred an anomaly in 75% of zero-anomaly
categories; and vector similarity incorrectly inferred an
anomlay in 87% of zero-anomaly categories. These neg-
ative results are overshadowed by the number of correct
anomalies inferred in the rest of the experiemnt. We revisit
this result in our discussion.

Exp 3: Classifying into an Existing Ontology
In our third experiment, Marshal classifies every instance in
the problem into the existing ontology. Marshal is designed
to classify entities in a collaborative setting with a subject
matter expert, so Marshal should provide a prioritized list of
categories— including supercategories— to point the user
in the right direction. This means that we are not concerned
with fully-automatic, one-shot classification of the perfect
category.

We compare Marshal’s classification results in three set-
tings: (1) predicate-argument vector; (2) structure-mapping;
and (3) a combined approach, averaging the two former sim-
ilarity scores. For each of these settings, we evaluate clas-
sification accuracy and proximity with a simple k-Nearest
Neighbor (KNN) algorithm for k = [1, 20].

For each classification, Marshal calculates the top k in-
stances with the given similarity metric, and then performs
upward spreading activation from each of the k retrieved in-
stances’ categories into the supercategory lattice. The acti-
vation value is the [0, 1] similarity score, and the decay is set
to 0.25, determined empirically.

For the base case of k = 1, Marshal classifies an unla-
beled instance by retrieving the most similar instance and
asserting its category. Since decay is 0.25, Marshal is guar-
anteed to choose only leaf categories for k ≤ 4. For
k > 4, Marshal can choose both supercategories and leaf
categories.

Results of Experiment 3 are shown in Figure 3. Structure-
mapping outperforms the vector-based representation across
all k = [1, 20] in classification δ-proximity (Figure 3, left).
δ-proximity estimates average error distance in the ontol-
ogy, e.g., if Marshal chooses a supercategory or an incor-
rect sibling category. Structure-mapping also outperforms
the vector representation in absolute category accuracy (Fig-
ure 3, right), which measures whether any of Marshal’s three
highest-priority categories are the true category of the in-
stance.

A combined structure-mapping and vector-similarity ap-

proach performed almost identically to the structure-
mapping alone.

Conclusion & Future Work
This paper presented work in progress on Marshal’s ap-
proach to automatically improving and repairing ontologies.
We described empirical results for using similarity-based
reasoning to (1) inductively extend an ontology, (2) de-
tect anomalies, and (3) classify unlabeled instances within
an existing ontology. Our results indicate that performing
structure-mapping over relational graphs yields more accu-
rate ontologies, anomaly detectors, and classifiers than dot
product vector similarity.

The ontology used for our experiments contains 103 cat-
egories whose instances have identical predicate structure
to other categories’ instances. For example, the leaf cate-
gories orbit installed gap spanner [18-21-in] and
orbit installed gap spanner [30-45-in] are dis-
joint, but their instances comprise the same argument indices
of the same predicates, so they are not readily differentiable
by any of our similarity metrics. Thus, we do not believe
that similarity-based reasoning is a complete solution to ad-
dressing model drift— to the contrary, Marshal contains for-
mal planning methodologies as well— but our results sug-
gest that similarity is a practical component for collaborative
ontology curation.

Similarity-based inference also presented an unacceptable
false positive rates for anomaly detection in Experiment 2:
structure-mapping erroneously inferred anomalies in 75%
normal categories. This false positive rate might be im-
proved by combining the local anomaly detection (Experi-
ment 2) strategies with the KNN (Experiment 3) strategies,
e.g., to only flag an anomaly if it differs sufficiently from
its local category and also is sufficiently similar to another
category.

This paper explored different similarity metrics in isola-
tion as well as in a portfolio setting (e.g., Experiment 3), but
previous work (Forbus, Gentner, and Law, 1995, McLure,
Friedman, and Forbus, 2015, e.g.) indicates that these can
also be combined in serial, e.g., by performing vector dot
product as a coarse-but-efficient initial filter and then using
structure-mapping as a finer comparator. We are investigat-
ing this in the near future, since it holds practical benefits for
tractability when scaling to massive ontologies.

This preliminary investigation with Marshal uses only the
PDDL :init (i.e., problem initialization) and :objects
(i.e., instance declarations) clauses; however, PDDL also
contains action knowledge, goal knowledge, and de-
rived predicates that Marshal could also analyze to ex-
tend the ontology and classify instances. We believe
that action knowledge— with structured preconditions and
consequences— will be especially valuable for learning and
classification. We plan to extend Marshal’s similarity-based
reasoning to use these data and integrate the work presented
here with Marshal’s other reasoning components.

References
Boddy, M., and Bonasso, R. 2010. Planning for human execu-

tion of procedures using anml. In ICAPS 2010 Scheduling and

Planning Applications Workshop. ICAPS.

Brank, J.; Mladenic, D.; and Grobelnik, M. 2006. Gold standard
based ontology evaluation using instance assignment. In Work-
shop on Evaluation of Ontologies for the Web, EON. Edinburgh,
UK.

Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989. The
structure-mapping engine: Algorithm and examples. Artificial
Intelligence 41(1):1 – 63.

Forbus, K. D.; Gentner, D.; and Law, K. 1995. Mac/fac: A model
of similarity-based retrieval. Cognitive science 19(2):141–205.

Kortenkamp, D.; Bonasso, R. P.; and Schreckenghost, D. 2007. De-
veloping and executing goal-based, adjustably autonomous pro-
cedures. In Proceedings AIAA InfoSysAerospace Conference.

Liang, C., and Forbus, K. 2014. Constructing hierarchical concepts
via analogical generalization. In Proceedings of the Cognitive
Science Society.

Lovett, A., and Forbus, K. 2011. Cultural commonalities and dif-
ferences in spatial problem-solving: A computational analysis.
Cognition 121(2):281–287.

Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl - the planning
domain definition language. Technical Report TR-98-003, Yale
Center for Computational Vision and Control,.

McLure, M.; Friedman, S.; and Forbus, K. 2015. Extending ana-
logical generalization with near-misses. Proceedings of AAAI
2015.

Schreckenghost, D.; Milam, T.; and Billman, D. 2014. Human
preformance with procedure automation to manage spacecraft
systems. In Proceedings of IEEE Aerospace.

	Introduction
	Marshal

	Background & Related Work
	PDDL
	Graph Similarity & Generalization
	Ontology Similarity

	Evaluation
	Exp 1: Ontology Induction
	Exp 2: Anomaly Detection
	Exp 3: Classifying into an Existing Ontology

	Conclusion & Future Work

