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Identification and Significance of the Problem or Opportunity.   

Overview 

Problem 

There are a plethora of UAV interfaces these days, ranging from conceptual prototypes to fielded 

systems.  The cost of getting these interfaces ‘wrong’ is high – current UAV losses are occurring at 

unacceptable rates (over 100 times the rate for manned aircraft—Bone & Bolkcom, 2003).  Human 

factors are already cited as the most common cause of UAV accidents, at least in existing Army 

reports (Manning, et al., 2004).  Similarly, half of U.S. Marine UAV accidents were attributable to 

human factors (Fergusson, 1999).  Although specific data on Air Force platforms are not available to 

us, it is reported (CNN, 2002) that, since 1994, over half of the Predator R-1 fleet has crashed or been 

destroyed by enemy fire, with the majority of those occurring during testing and, therefore, not subject 

to enemy actions.  Errors that cited decision making and unsafe supervision are already involved in a 

greater proportion of UAV accidents than are the lower level perceptual and skill based factors which 

increased autonomy may assist.  Note too that these figures apply only to accidents; they say nothing 

of less severe forms of suboptimal performance of the human + machine system.  Even if the interface 

is usable, the Army’s current vision of employing UAVs as automated “wingmen” to support the crew 

of attack or scout helicopters requires that the human interaction with these vehicles impose 

substantially less workload than is currently the case for any UAV.  In short, the need to understand 

and design for the human role in supervising and delegating to teams of highly-capable, yet truly semi-

autonomous machine agents has never been greater.   

Solution to Date 

SIFT researchers pioneered (Miller & Goldman, 

1997; Miller, Pelican & Goldman, 2000) a human-

automation integration architecture called 

Playbook®, in which humans and automation 

share a task model – the possible ways to achieve 

an outcome, and what everyone is supposed to do 

in the play.  The user can select - either at a very 

high level, or if time permits and circumstances 

require, at much finer levels – how the tasks will 

be performed, and by whom.  Thus, Playbook 

allows precise control over delegation of tasks to 

automation.  We maintain that Playbook can be 

used as a testbed for examining different 

approaches to supervisory control.   

We developed a theory of Levels of Autonomy, expanding earlier work by Sheridan and Verplank 

(1978), and Parasuraman, Sheridan and Wickens (2000) to create a three dimensional model for 

characterizing levels of autonomy, where the dimensions are Authority X Abstraction X Aggregation 

– the LoA
3
.  The authority dimension captures how much independence the automation has with 

respect to decision-making – e.g., the need to ask permission vs. informing the user vs. full 

independence.  Abstraction captures at what level the automation is tasked – higher, more abstract 

tasks vs. finer-grained, more concrete tasks.  Aggregation captures how much of a resource is tasked 
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Figure 1.  Playbook Architecture for Tasking Interfaces 
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at a time – e.g., single platform vs. 

flight vs. swarm.  The intuitively 

reasonable claim is that there is a 

‘sweet spot’ within this LoA3 space 

that will result in optimized 

performance of the human+automation 

system with respect to various metrics 

of interest:  operator workload, 

situation awareness, appropriate 

reliance, and of course, mission 

outcome. 

 

Playbook supports operation in any region of LoA3 space.  That is, the task model can be defined to 

allow command of the automation with any level of authority, at any level of aggregation, at any level 

of abstraction in the hierarchy.  To make this an experimental testbed, it is simply necessary to allow 

the user – either the experimenter or the operator – to select the region in which s/he wants to operate.  

For the experimenter, this may involve ‘lopping off’ sections of the space to constrain the operator 

interactions and observe the results (as compared to another set of constraint conditions).  For the 

operator, this involves selection of what s/he considers the best interaction with automation.  Both of 

these user interactions provide information as to the ‘appropriate region of LoA3 space. 

This begs the question, “Appropriate in the face of what conditions?”  We expanded the concept to 

include a predictive mapping from what we believe are the core relevant factors to the appropriate 

region in LoA3 space.  The testbed we propose will allow experimental verification of our predictive 

model via simulation.  At the completion of Phase II, for the first time we will have a comprehensive 

theory supported by experimental results that 

shows how best to support our operators in their 

complex operational environments.  Better still, the 

model can be used to dynamically alter the LoA3 

space that the operator should use, as conditions 

change. Perhaps best of all, the move from 

experimental testbed to operational product is 

straightforward – the testbed environment directly 

uses the operational tool. 

We have identified the necessary modification and 

extensions to Playbook and created an initial 

prototype that shows promising results.  The 

remainder of this proposal will detail the 

underlying theory, results to date, and plans to 

achieve this vision. 
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Figure 2.  Selection and use of a region in LoA3 space results in  a 
predicted outcome against various metrics that can be verified via 
simulation. 

Situation 

Complexity

Operator 

Capabilities

UV 

Capabilities

Level of Autonomy

Possibilities Space

Authority

A
b
s
tr

a
c
ti
o
n

Agg
re

ga
tio

n
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the UV platform(s), we can predict the appropriate 
regions of LoA3 space. 
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Theory of Delegation Interfaces 

Our design for the supervision of multiple UAVs/UGVs is based on the concept of delegation (Miller 

and Goldman, 1997; Miller & Parasuraman, 2006) and implemented in SIFT’s Playbook® 

architecture (Miller, 2003; Miller, Funk, Goldman, & Wu, 2003).  Previous work on interaction 

between humans and automated agents, including unmanned vehicles, has revealed both benefits and 

costs of automation for system performance (Parasuraman & Riley, 1997; Parasuraman, Sheridan, & 

Wickens, 2000; Sheridan & Parasuraman, 2006). Automation is clearly essential for the operation of 

many complex human-machine systems. But in some circumstances automation can also lead to novel 

problems such as increased workload and training requirements, impaired situation awareness and, 

when particular events co-occur in combination with poorly designed interfaces, accidents (Degani, 

2004). Retaining the benefits of automation while minimizing its costs and hazards may require the 

interface between humans and robotic agents to be adaptable, rather than fixed and static. The 

performance benefit of adaptive compared to static automation is well documented (Parasuraman et 

al., 2000). However, if adaptation is executed without user approval or knowledge, the cost of system 

unpredictability may outweigh the benefit that automation provides. What is needed is a method that 

allows operators to explicitly task automation at times and in the fashion of their choosing—as in 

delegation to a human subordinate—using an interface that incorporates high-level communication 

between human and automation in a common language. Delegation-type interfaces represent this form 

of adaptable automation (Miller et al., 2003; Miller & Parasuraman, 2006). 

The key idea behind delegation in human-human contexts is that the supervisor generally has 

flexibility in the use of supporting agents. The operator can delegate bigger, coarser-grained tasks or 

smaller, more precise ones with more or less explicit instruction about their performance, depending 

on context and task demands.  Delegation architectures for human-automation interaction seek to 

provide highly flexible methods for the human supervisor to declare goals and provide instructions 

and thereby choose how much or how little autonomy to give to automation, depending on context 

and the current situation. 

Experimental Validation of the Delegation Interface Concept 

Prototype delegation systems for a variety of UV and other military applications have been developed 

(Miller et al., 2003; Parasuraman and Miller, 

2006). While prototype development is 

valuable, we believe that any interface 

concept must be validated experimentally in 

human-in-the-loop simulation studies (Miller 

and Parasuraman, 2007).  Our team has 

begun this validation for the delegation 

interface design concept in previous 

experiments using a high-fidelity 

simulation—termed RoboFlag—of multiple 

autonomous, mobile robots engaged in a 

game of “capture the flag”  (Parasuraman et 

al., 2005). 
 

Figure 4.  RoboFlag delegation interface 
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The simulated robots in RoboFlag move and navigate autonomously, exhibit cooperative behaviors, 

and act as a team with other robots to pursue the goal of capturing the opposing team’s flag (Figure 4).  

Parasuraman et al. (2005) modified the simulation to emulate a generic mission involving a single 

operator managing a team of UVs. The mission goal was to send the robots from the home area into 

opponent territory, which was populated with a red team consisting of the same number of robots. The 

target flag had then to be accessed, picked up, and returned to home territory without being tagged by 

the opposing robots. Individual human operators supervised up to eight robots using a simplified 

delegation interface. The interface allowed the operator to use automated behaviors or “plays” (Miller 

et al., 2003), as well as manual (waypoint) control, in pursuing the mission goal. Plays directed robots 

to engage in autonomous, cooperative behaviors in pursuit of a sub-goal; e.g., in “Patrol Border”, a 

user-selected number of blue team robots went to the border area, spaced themselves appropriately 

along the length of the border, and maneuvered to prevent red team robots from crossing.  

One of the postulated benefits of delegation-type interfaces (Miller and Parasuraman, 2007) is that 

they allow for flexible use of automation in response to unexpected changes in task demands, while 

keeping the operator’s mental workload in managing the automation within a reasonable range. To 

test this hypothesis, Parasuraman et al. (2005) varied two sources of task demand: (1) the adversary 

"posture," in which the opponent engagement style was changed unpredictably to be offensive, 

defensive, or mixed; and (2) environmental observability, in which the effective visual range of each 

robotic vehicle under the control of the operator was varied from low to high. Measures of 

performance included mission success rate, mission execution time, strategy use (plays vs. manual 

control), subjective mental workload, and global situation awareness. 

The results confirmed that the delegation interface allowed for effective user supervision of robots, as 

evidenced by the number of missions successfully completed and time for mission execution. In the 

most challenging condition (mixed posture with opponent uncertainty), users had moderate success 

(about 62%) and relatively short mission completion times. These findings suggest that the delegation 

interface allowed users to respond effectively to unpredictable changes in opponent posture by tasking 

robots appropriately. A second experiment conducted by Parasuraman et al. (2005) confirmed these 

results and also showed that the benefits resulted from the flexibility afforded by the delegation 

interface as implemented in RoboFlag. Specifically, the flexible delegation approach was compared to 

fixed delegation approaches, by providing users: 1) only manual control or 2) only automated plays 

or, 3) both types of control, under the same varying adversary postures (offensive, defensive, mixed) 

manipulated in the first experiment. It was hypothesized that the use of the delegation interface would 

afford users maximum flexibility, allowing them to decide when and how to use automation (e.g., 

when workload was and the automation was effective). The mission performance measures supported 

this hypothesis. Additionally, the flexible delegation interface allowed users to mount a more effective 

response to variable opponent postures than did the static control conditions (manual or automated).  

These results point to the potential for delegation interfaces to enhance mission effectiveness in multi-

robot supervision by a single operator.  But it has illustrated utility in allowing for effective 

supervisory control of multiple numbers of UVs, we have examined only a few of the dimensions of 

along which delegation control might vary and, of course, our (simulated) robotic capture-the-flag 

players are a far distance from real applications.  Additional work is needed to further validate the 

delegation interface concept, much less to apply it to complex, real-world, high-criticality domains 

such as military operations. The potential cost of delegation interfaces in terms of the workload 
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required to instruct automation also needs additional examination with objective as opposed to only 

subjective measures of workload.  Finally, delegation interfaces and application domains with a 

greater range of capabilities than the simplified interface used in the RoboFlag studies need to be 

evaluated—especially delegation interfaces and delegation scenarios appropriate to Army aviation 

domains. 

Background 

Our objectives for Phase I of this work were to use an innovative concept of the "space" of possible 

delegation interactions in an existing delegation tool to both formulate experimental manipulations of 

interest and to serve as the controlling architecture for an experimental testbed to enable those 

experiments.  In this section, we describe necessary background information, developed under prior 

work, for understanding our approach to this project:  this includes:  (1) the existing delegation tool 

(Playbook), (2) the “delegation space” concept (LoA
3
) and its role in characterizing dimensions along 

which different human-automation relationships may vary, and (3) our general concept for using 

Playbook and the LoA3 architecture to serve as an experimental testbed for researching the 

effectiveness of alternate human-automation relationships in this project.. 

Playbook Description and Status 

SIFT has pioneered a human-automation integration architecture, called Playbook
®
, based on a shared 

model of the tasks in the domain (Miller & Goldman, 1997; Miller, Pelican & Goldman, 2000; Miller, 

Funk & Goldman, 2004; Miller, 2005; Miller & Parasuraman, 2006; Parasuraman & Miller, 2006, 

Miller & Parasuraman, 2007).  The task model provides a means of communication about plans, 

goals, methods and resource usage—a process akin to referencing plays in a sports team’s playbook.  

A play can be “called” very quickly in a variety of contexts and then adapted to the current situation 

through the intelligence resident in the “system” (i.e., for a sports team, the players themselves; for a 

team of UVs, either in the UVs or in a ground control station).  Alternatively, a coach can adapt, refine 

or specify a play with minimal effort (since everyone knows the basic play “vocabulary” to begin 

with) if time permits or the situation requires. SIFT’s Playbook is designed to enable human operators 

to interact with subordinate systems with the same flexibility.  For Unmanned Vehicles (UVs), 

Playbook actively manages missions but enables the human to “call plays” at either a very high level, 

or to progressively “drill down” in the task decomposition to refine the way in which a particular 

instance of a play is to be carried out this time.  At whatever level the supervisor decides to delegate 

instructions to the UVs, Playbook then autonomously develops plans to accomplish those instructions 

within the user’s constraints.  If no such plan is feasible, Playbook states that as feedback and, in our 

more recent implementations, offers a close alternative that is feasible.  

The basic Playbook architecture is illustrated in Figure 1 and uses a task model to share information 

between the user, the user interface (UI) and a constraint-based planning engine (the Analysis and 

Planning Component—APC). The task model is both hierarchical and sequential.  When a task (or, 

approximately synonymously, a play) is activated, the model provides the system knowledge of all the 

required and optional methods that may be used to accomplish it.  The human operator expresses a 

more or less detailed command via the UI and the APC fleshes it out to an atomic, executable level for 

the devices to be used (e.g., UAVs).  Once an acceptable plan of atomic actions is created, it is passed 

to an Event Handling component, an outer-loop control system capable of making in-flight 
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adjustments to the plan. The Event Handling component sequences control algorithms that actually 

effect behaviors in the (possibly simulated) controlled vehicles. 

Shared Task Model and the Meaning of a Play 

Correctly capturing the semantics of plays is critical to acceptance of the Playbook.  Plays are, in 

essence, compressed commands and, when issued, the requestor has an expectation that the action 

taken will conform to his/her idea of the request’s meaning.  The Shared Task Model forms the 

‘language’ through which humans and automation communicate about task performance.  The Shared 

Task Model is a hierarchical decomposition of tasks that captures the functional relationships and 

sequential constraints between labeled ‘packets’ of goal-directed behavior.  A ‘play’ is an 

encapsulated set of behaviors—perhaps including alternatives—that provides a method of 

accomplishing domain goal(s). Plays are not scripted, static procedures, but rather dynamic templates 

that identify a range of behaviors.  Because plays (and their component tasks) are hierarchically 

defined, a very complex suite of behaviors can be efficiently referenced by asserting the label of the 

parent task.  Plays are largely synonymous with tasks, though they may represent a specific 

aggregation of lower level tasks with a defined label—a macro operator that can be adapted to the 

context in which it is ‘called’. Even when modifications to existing plays are necessary, or whole new 

plays need to be created, we can do this very quickly by modifying existing plays. 

Figure 5 shows possible expansions of a task we have implemented in prior work: Prosecute 

Target—tracking, designating and firing upon a target, with subsequent Battle Damage Assessment 

(BDA).  Each of the subordinate tasks itself is defined in terms of the subtasks that must be performed 

to complete the parent task.  This definition process repeats until an atomic task level is reached.  

Atomic tasks are those that are executable by a given platform.   
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Figure 5.  Play Example – Prosecute Target. 
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Task templates at all levels contain variables that must be set.  Some parameters must be specified by 

the human operator for the task to be executable.  Others can be set by either human or by the APC.  

Still others, generally at the lower levels of the task hierarchy such as flight control settings, can only 

be set by the APC or by real-time control algorithms themselves.  When the APC sets a parameter, it 

does so within constraints imposed by the task template, by the user, and by the need to develop a task 

series which accomplishes the goal(s).  Automated parameter settings take their values from the 

current context, have reasonable default values passed from other plays, or are set according to 

heuristics for efficiency, safety and likely plan success.   

In the multiple prior implementations of the Playbook concept (see Error! Reference source not 

found. below), we have used a variety of representations to encode play knowledge.  Thus, we are 

familiar with a variety of potential approaches, including object-oriented styles and even Prolog 

representations.  Ongoing work for a parallel, DARPA-funded program, Integrated Learning, is 

substantially revising and enhancing the capabilities of the underlying planning engine and 

representation. 

Analysis & Planning Component 

The Analysis & Planning Component (APC) is a central part of what we term ‘Playbook’.  The core 

of the APC is an enhanced version of a hierarchical task network planner known as SHOP2 (Nau, et 

al., 2004).  The APC evaluates the feasibility of alternate methods of satisfying requested plays. When 

given a high-level play request, the APC selects among various hierarchically organized methods to 

compose a feasible plan, then issues instructions to the execution environment (either simulation or 

UV platform) and monitors for necessary revisions during performance.  When given lower-level, 

more specific and detailed requests (such as a specific platform to use, paths to follow, or scan 

patterns), the APC reviews them for feasibility and either (a) reports if requested actions are infeasible 

(and enters into a negotiation about what modifications the user might be willing to make), (b) passes 

‘validated’ user requested plans to the execution environment and monitors their performance, or (c) 

fleshes out operator requests to an executable level.  The APC is designed to use special purpose 

planners as adjuncts to its planning process; the route planner currently in use for one of our programs 

is a GIS package modified to perform the route plan function.  

User Interfaces 

The Playbook architecture, with its shared task model, can support a wide variety of user interfaces, 

customized to different work domains.  Robust interaction with the shared task model, suitable for 

detailed tasking and/or negotiation over the tasks to be performed, might be suitable for pre-mission 

planning or mission control applications where the human has substantial time, minimal distractions 

and access to a large amount of display space.  An interface designed to support the creation or 

modification of novel plays would require both substantial time and space for the operator, as well as 

sophisticated tools for manipulating and storing play components—and would benefit from simulation 

components to examine the realization of the newly-defined play in alternate contexts.  By contrast, a 

playbook application designed for use in a time- and space-constrained domain, perhaps during real-

time execution of multiple concurrent tasks (such as UAV control by an aviator concurrently flying 

his own aircraft), would likely need to make use of a reduced number of highly “compiled” plays, 

perhaps with a few specifiable parameters, that the user could select or, perhaps, literally “call” (via 

voice actuation) while heavily loaded with other tasks.  Note that in each case above, the user is 



 SIFT TR 08-LOA3-01 
Delegation in LoA

3
 Space 

 

 Page 11 24 September, 2008 

 

manipulating the underlying task structure of the plays and communicating via that structure to the 

APC.   

To date, we have implemented a total of five partial prototypes of the Playbook system, each with a 

slightly different user interface to meet the needs of a slightly different domain of use.  The first four 

are described in Parasuraman and Miller (2006), and the latest (funded under funding from the 

Army’s Unmanned System Initiative) is shown as Figure 6.  These UIs serve to illustrate the range of 

interface possibilities using a Playbook approach. 

Playbook Benefits 

Playbook, and delegation-style interfaces in general, are postulated to overcome many difficulties 

associated with highly automated systems (see Miller and Parasuraman, 2007, for a review).  This is 

by virtue of their flexible, user-directed interaction style which requires the user to maintain enough 

situation awareness to 

make informed decisions 

about the level of 

automation support to use, 

and to provide specific 

instructions to provide to 

that automation at any 

point in time.  These 

problems include the well-

documented (see 

Parasuraman and Riley, 

1997, Parasuraman, and 

Byrne, 2003 and Billings, 

1997 for reviews) 

problems of loss of skills, 

loss of situation awareness, 

mis-tuned trust, 

unbalanced workload, lack 

of user acceptance and 

sub-optimal overall human 

+ machine system performance.   

In previous research described above (Parasuraman, et al., 2005) we obtained initial empirical 

evidence for the efficacy of delegation interfaces.  These findings provide support for the view that the 

delegation interactions allow for effective tasking of multiple robots while keeping the operator in the 

decision-making loop, without increasing operator mental workload, and allowing the human operator 

to adapt successfully to unpredictable changes in the environment. These benefits are important 

because traditional human-automation interfaces have often been found to result in significant system 

and human performance costs—including mode errors, user under- and over-reliance on automation, 

and reduced situation awareness (Parasuraman & Riley, 1997; Parasuraman, Sheridan, & Wickens, 

2000).  Such limitations are sometimes severe enough to result in catastrophic accidents, as evidenced 

by numerous analyses of aviation incidents, including unmanned aircraft such as the Air Force’s 

 

Figure 6.  Current PBJUI interface 
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Predator (Parasuraman & Byrne, 2003).  Hence, the development of appropriate human-automation 

interfaces is critical for effective human supervision of autonomous agents, including robots and 

unmanned vehicles. Playbook provides such an interface concept.  As Parasuraman et al.’s (2005) 

prior findings suggest, its benefits may be particularly apparent in situations of environmental 

uncertainty and where unexpected events occur, which can make pre-programmed automated 

behaviors ineffective. 

Open Questions in Playbook Use 

The history of human-computer interaction design is replete with instances of interfaces that were 

initially thought to be beneficial but were inadequately tested, with the result that they were found to 

be plagued with subsequent problems (Schneiderman, 1993). Recently, this has hit home in the UAV 

domain with research showing that higher levels of automation (Management by Exception, as 

compared to Management by Consent), assumed to be beneficial to the operator, actually degraded 

human+automation performance (Ruff et al., 2004) It is therefore important that the potential 

drawbacks of any new interface concept are also investigated, so that a balanced and contextualized 

view can be drawn of its effectiveness and usability.  

While Parasuraman et al. (2005) and a follow-up study by Squires, Trafton, & Parasuraman (2006) 

provide initial evidence for the efficacy of a delegation style interaction, this work has many 

limitations.  First, it used a simple form of delegating—involving only a single commandable behavior 

at a time rather than the complex, sequential and conditional behaviors which can be expressed in a 

Playbook play.  Second, it involved a simple and very short term task to be supervised by the human.  

Third, it did not explore variations in automation reliability, human concurrent workload, prior trust, 

or any number of other factors known to be important in automation usage decisions and overall 

performance (Parasuraman and Riley, 1997; Lee and See, 2004).   

Finally, although this prior research illustrated that human-machine delegation can provide benefits in 

some instances, it has not done much to discover the range where such interactions may and may not 

be beneficial.  Other research (particularly Kirlik, 1993) clearly shows that humans sometimes cannot 

make effective use of flexibility—e.g., when the workload required to decide how to use automation 

and/or to instruct it exceeds the benefit it provides.  The development of useful human-machine 

delegation will depend on our ability to accurately characterize the trade off space for when and how 

delegation interactions will provide enhancements to overall performance.   

Specific open questions for Playbook use that will motivate our investigations in this proposed work 

include: 

 The effects of various forms of uncertainty on managing assets in a delegation framework 
 Effects of task interruptions, especially those occurring during a time-critical tasking interaction 
 Effects of concurrent workload—do operators do a good job of managing tasks by their priority when 

some of those tasks may involve instructing (or putting off) subordinates 
 Management effectiveness—when (in terms of skill acquisition) are humans good at tasking?  Also, 

how do transitions work:  do effective managers stay effective when they get more or fewer assets? 
 Trust in a Playbook/delegation setting—how is it built?  Managed?  Destroyed?  There is substantial 

work on trust in traditional automation, and some in trust for adaptive automation, but virtually none on 
trust in automation in which the human user provides flexible instructions and observes performance as 
a result. 
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 How can/should performance monitoring be shaped given a set of tasking instructions?  What should 
the supervisor monitor?  How can the subordinate know when to inform the supervisor (about 
deviations)? 

 Effects of modalities/styles of communication; uncertainty of communications—while we have explored 
various user interface concepts for Playbook to date, these have not been systematically varied and 
their effects on performance under different contexts have not been measured. 

 Optimizing the timing of tasking instructions:  Does the machine have the right to say “don’t bother 
me”?  When does it have the right/duty to ask for further instructions? 

 Tradeoff between flexibility and time—under what circumstances is it less useful (in terms of ultimate 
performance) to have access to greater flexibility if exercising that flexibility incurs greater costs in terms 
of time and workload?  Are humans good at detecting those circumstances? 

Levels of automation (LoA) and LoA3 

In order to adequately address these questions, we need a delegation 
framework to structure the various possible implementations – a means of 

characterizing the appropriate level(s) of automation (LoA). 

In order to study alternate forms of delegation relationships and the situations in which they perform 

well or poorly, it will be helpful to have a “chart of the terrain.”  In this context, that chart consists of a 

description of the dimensions along which human-automation task performance and decision making 

authority relationships can vary.  Only then will we be able to characterize the different relationships 

that are available in different tools or contexts.  Only then will we be able to associate performance of 

a given relationship with a given context.  

Fortunately, there have been many previous attempts to characterize dimensions of human-automation 

relationships.  They have generally been referred to as levels of automation or levels of autonomy 

schema.  An LoA scheme is simply a way of dividing up, describing and easily referencing 

combinations of human and automation behaviors—each of them representing a defined relationship 

between human and automation. A LoA scheme can be used to characterize or describe the mix of 

human and automation control in a given system—usually in some less-to-more series of “levels”.  As 

such it is primarily of interest to theoreticians and, maybe, system designers. If an LoA scheme is to be 

used as a means of controlling a system and achieving work goals, multiple levels must be available to 

an operator and it must be possible to change or adapt among them on the basis of various aspects of 

context: user preference, current workload, criticality and expected user performance, etc. In other 

words, it must be an adaptive 

automation system. The 

issue with various schemes 

for levels of automation is 

the granularity and 

sensitivity with which they 

carve up the range of 

possible human/automation 

interactions to control a 

system.  

Sheridan (1987) proposed the best-known framework for LoAs, which we illustrate in Table 1.  

Sheridan’s initial work (Sheridan and Verplank, 1978) offered a one-dimensional spectrum of 10 

patterns of human and automation behavior and responsibilities ranging from no automation 

Table 1.  Levels of Automation (after Sheridan and Verplank, 1978). 

1. Human does it all 
2. Computer offers alternatives 
3. Computer narrows alternatives down to a few 
4. Computer suggests a recommended alternative 
5. Computer executes alternative if human approves 
6. Computer executes alternative; human can veto 
7. Computer executes alternative and informs human 
8. Computer executes selected alternative and informs human only if asked 
9. Computer executes selected alternative and informs human only if it decides to 
10. Computer acts entirely autonomously 
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involvement through increasingly autonomous behaviors from automation, to wholly automatic (no 

human involvement). This scheme has the advantage of being extremely easy to understand, use and 

remember, but it is not particularly sensitive and it has been criticized for confounding many different 

types of automation tasks or information processing functions in its several levels.  

Parasuraman, Sheridan and Wickens (2000) realized that this one-dimensional scheme failed to 

discriminate between some very different uses to which automation could be put. They characterized 

these uses in a second dimension (see Figure 7) — that of information processing stages or functions.  

They identified four processing stages: Information Acquisition, Information Analysis, Decision 

Selection and Action Implementation. They argued that more or less automation support can be 

provided for each of these functions within a single system and the pattern of high and low automation 

support for each of these four functions characterizes every aiding system.  

We have argued elsewhere (Parasuraman 

and Miller, 2003; Miller & Parasuraman, 

2007) that the two dimensional LoA 

scheme proposed by Parasuraman, et al., 

while a major improvement in sensitivity 

over one-dimensional schemes, remains 

too coarse-grained for many uses.  In 

particular, this scheme is not adequate to 

enable rich delegation interactions 

between human and automation because 

it doesn’t reference specific tasks that 

either entity may have responsibility for.  

In order to have the same kind of 

“conversation” about who should do 

what and how that human supervisors 

can have with intelligent human 

subordinates, machine automation needs 

to understand and be able to reason about 

the same kind of task-based, 

hierarchically and functionally organized knowledge structures that humans seem to use.   

Through its use of a Shared Task Model, SIFT’s Playbook® approach to delegation interactions is one 

approach that strives to achieve this interaction (Miller, 2003; Miller & Parasuraman, 2007). Playbook 

may not seem to provide a LoA architecture at first glance, but we would claim that Playbook’s task 

model, combined with its ability to allow a user to specify what automation does and what s/he will 

do, does the same thing that the prior LoA schemes do: it specifies relationships between human and 

automation.  Playbook does this, however, at a much finer level of granularity than previous schemes.  

Playbook’s task model serves as, essentially, a very fine-grained LoA spectrum, allowing users to say 

exactly what tasks they want automation to do and how rather than relying on setting a coarser-grained 

LoA . Furthermore, because Playbook’s task model is hierarchically structured, users can interact with 

it at higher or lower levels of functional detail—commanding high level functions or drilling down 

and making specific stipulations   
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Figure 7. Levels of automation by information processing 
phase for two systems (from (Parasuraman, Sheridan and 

Wickens, 2000.) 
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An LoA scheme of some sort is necessary to characterize differences in possible human-automation 

relationships and, therefore, whatever LoA scheme we decide to use for research into such 

relationships should include the dimensions we may wish to vary in experiments to determine which 

relationships are best in which contexts.  Too coarse a scheme will fail to provide the sensitivity to 

detect important differences.  Hence, the definition of an LoA architecture is at the heart of both any 

delegation approach and any series of experiments or tests designed to evaluate the appropriate range 

of human-automation interactions for a given context.  

Below, we first lay out a rich “three dimensional” LoA framework for human-automation 

delegation—our LoA
3
-- and then show how the Playbook can be used to configure, manage and 

adaptively command different regions in this “delegation space”—both by an operator at mission 

planning or even run time, and by an experimenter interested in setting up different experimental 

conditions for exploring effective combinations of humans and automation in the performance of a 

range of tasks. 

Three Types of LoA 

The LoA
3
 framework for describing human-automation relationships is based on understanding the 

dimensions along which such relationships may vary.  As described above, previous attempts to 

provide LoA frameworks have been criticized for confounding these dimensions.  LoA
3
 provides 

additional dimensions and finer resolution in describing human-automation relationships than prior 

LoA schemes provide, while still trying to retain a manageable, useful number of dimensions.   

We began the development of the LoA
3
 framework by asking ourselves when a human + machine 

system has more automation (or, alternatively, a higher “level of automation”).  This seems to be the 

case when any of three things is true: 

1. The automation can perform whatever it does more independently, with more authority; it doesn’t have 
to submit its decisions to a higher authority for approval or review.   

2. The automation can be tasked at higher, more abstract levels—that is, it can be relied on to make more 
of the decisions about how to execute a broader, higher-level task. 

3. The automation controls more resources or assets. 

These dimensions are not entirely independent.  Instead, they provide three views into the delegation 

relationship between a supervisor and subordinate and they together define a “delegation space” 

within which achievable relationships can be described.   

It is not surprising that prior efforts to characterize Levels of Automation express one or more of these 

dimensions.  Sheridan’s levels (as shown in Figure 1 above) say less about specifically what tasks or 

goals automation is performing, and more about the relationship between the human and the 

automation.  That is, the levels describe the automation in terms of the authority relationship between 

human and system.  Does the automation have the authority to do whatever it is it’s doing without 

prior approval?  If so, then it operates at Sheridan’s level 10.  If it can do whatever it does under its 

own recognizance but must report what it has/is doing to the user, then it is at Sheridan’s level 7, etc.  

This spectrum describes how human and automation relate to each other, but doesn’t say much about 

specifically what each of them is doing.  For convenience, we will refer to this characterization of 
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authority or autonomy relationships between human and automation as the Level of Authority 

dimension.  Examples of authority levels for a flight task managed by Playbook are shown in Table 2 . 

Table 2.  Authority level examples 

Authority Level Example 

Full  Allows the APC to begin execution of its preferred Overfly plan without either 

informing or seeking permission from the user.   

Inform  Allows immediate execution, but requires informing the user of the selected plan 

(a capability we already provide, to at least some level of utility).   

Override  Allows the APC to begin execution while informing the operator, but allows the 

operator the ability to jump in and override portions of the APC’s plan.  A trivial 

implementation of this capability would be to allow the operator to input novel 

waypoints or to “grab a joystick” and begin flying the aircraft.  The issues, which 

remain to be clarified, are whether or not it is technically feasible for the operator 

to override only a portion of the play and allow the rest to remain intact.  This is 

challenging and may not be feasible—the existence of a level of authority in no 

way guarantees that it is desirable or feasible.   

Recommend  allows the APC to present a recommended plan, but requires the operator to 

manually fly it 

Monitor  Involves the APC monitoring the human’s plan and execution of it for critical 

parameter completion such as time to target and fuel usage. 

By contrast, Parasuraman, et al.’s two-dimensional scheme adds some description of what the 

automation is doing, albeit in terms of four coarse-grained information processing categories.  It 

begins to describe what each of the actors is doing within a specified LoA—therefore it is a 

description of activity.  We argue that the activity dimension can be subdivided into many finer 

categories and represented by a hierarchical task model.  In other words, the four information 

processing stages are a coarse categorization of specific tasks.  Instead of saying that “information 

acquisition automation is high” we could more precisely say that automation is deciding how to direct 

and configure sensors and reporting those decisions to the operator.  For a more detailed elaboration of 

this argument, see Miller and Parasuraman, 2003; and 2007. 

Since we can use a hierarchical task model (itself an abstraction hierarchy where higher level tasks are 

abstractions comprised of their lower level “child” tasks) to characterize what human and automation 

are doing, we can refer to this dimension of automation activity or behavior as a Level of Abstraction.  

Automation can have responsibility for higher- or lower-level tasks within the task hierarchy.  Having 

responsibility for higher level (more abstract) tasks presumes responsibility for the tasks which fall 

below them (although the person doing the delegation retains the right to place constraints or 

stipulations on the range of decision possibilities about how to perform lower level tasks).  So a 

“Level of Automation” is, therefore, even in Parasuraman, et al.’s model, a combination of a level of 

authority and a level of abstraction—automation has responsibility for one or more tasks at a given 

level of abstraction and with a given level of authority.   

The Level of Authority x Level of Abstraction framework described above characterizes who is doing 

what and how they relate to each other.  Especially in military domains, however, authority 

relationships are frequently defined along resource lines as well as task or functional relationships.  
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Hence, we define a third dimension along which to characterize delegation—a Level of Aggregation
1
.  

The level of aggregation identifies how much (and/or which type) of resource each actor is authorized 

to use.  When a supervisor delegates a task to a subordinate, that subordinate will be granted authority 

over some set of resources (including access to his or her own time and energies). 

These three dimensions, Level of Authority, Level of Abstraction and Level of Aggregation, therefore 

define a Delegation Space of human-automation relationships within which delegation occurs and can 

be characterized.  In short, delegation means giving to a subordinate the responsibility to perform a 

task (with its subtasks), along with some authority to decide how to perform that task and access to 

some resources with some authority to decide how to use them to perform the task.  Thus, the three 

scales must be used to specify four variables which define the delegation space:  the level of 

abstraction and the level of authority on it, and the level of aggregation and the level of authority on it.  

Note that in most situations, if practical work is to be accomplished by the delegation relationship, the 

level of authority for the abstraction dimension must be matched by some reasonable degree of 

authority over resources on the aggregation dimension.  Failure to achieve this results in the lament, “I 

have the responsibility but not the resources.” (or the contrapositive, wasted resources). 

Figure 8 illustrates these 

relationships.  Imagine a set 

of tasks which can be 

performed in a domain, 

arranged in a hierarchical, 

abstraction relationship.  A 

supervisor controls some 

portion of those tasks—

which means s/he has 

authority over deciding when  

and how they need to be 

performed and when and 

how to use resources (which 

s/he also controls) to 

accomplish them.  When the 

supervisor delegates some of 

those tasks, s/he is delegating 

that control—over the 

decision(s) about how and when they need to be performed, and over the decision(s) about how and 

when to use allocated resources to accomplish them.   

The authority to make those decisions need not be complete.  The supervisor can assert constraints on 

how the subordinate makes those decisions and/or can require the subordinate to perform various 

degrees of checking and request approval before the proceeding with a plan, but there must be some 

authority to make those decisions handed over if there is to be any benefit from delegation.  Our LoA3 

                                                      
1
 The choice of the term “aggregation” here to refer to the part-whole dimension of objects in a system, as well as the reference to a means-

ends dimension of functions and sub-functions as an “abstraction” dimension, are conscious references to Vicente (1999) and Rasmussen’s 

(1984) framework for Cognitive Work Analysis, which use the terms in a similar fashion.  Plus, they provide nicely alliterative LOA 

abbreviations.  We do not otherwise claim to be using the Cognitive Work Analysis framework here.    

 

Supervisor’s TasksTasks delegated

to subordinate Supervisor’s 

resources
Resources delegated

to subordinate

Tasks
Resources

Supervisor’s TasksTasks delegated

to subordinate Supervisor’s 

resources
Resources delegated

to subordinate

Tasks
Resources

A
b

st
ra

ct
io

n

A
g

g
re

g
at

io
n

Authority is associated with how the subordinate is 

authorized to make task or resource decisions
 

 

Figure 8.  Delegation characterized by  

abstraction, aggregation and authority dimensions. 



 SIFT TR 08-LOA3-01 
Delegation in LoA

3
 Space 

 

 Page 18 24 September, 2008 

 

framework thus sees a “Level of Automation” (or, perhaps more accurately, a human-automation 

relationship) as a combination of tasks delegated at some level of abstraction with some level of 

authority and resources delegated with some level of authority to be used to perform that (and perhaps 

other) task(s).  The “level of automation” in a human-machine system increases if the level of 

abstraction, level of aggregation or level of authority (on either abstraction or aggregation) increases. 

Using the Delegation Space Model as an Adaptive Automation Architecture 

In preceding sections, we laid out a descriptive architecture for the space within which delegation 

interactions at various automation levels occur.  In this section, we will outline three ways in which 

the framework can provide utility. 

 Using the Framework as an Experimental Control Tool 
 Enhancing Abstraction Flexibility (and Putting it Under Experimenter Control) 
 Enabling Aggregation Flexibility (and Authority Over It) 

The theoretical approach outlined above can be used to very precisely describe very specific human-

automation relationships.  Our proposal is to also use this framework to both guide experimentation to 

explore different regions of the delegation space and to serve as an experimenter’s tool to allow 

flexible and precise control of the kind and level of automation an operator can access and use in an 

experimental trial with a Playbook interface.  This means giving the experimenter the ability to alter 

aspects of the task abstraction, the control authority and the aggregation of resources which the human 

and automation can jointly control.  In this section, we will illustrate how this can work within a 

Playbook framework, and the uses to which it can be put in experimentation. 

First, simply by aggregating low level behaviors (like waypoint following) and providing the planning 

intelligence to assemble them into contextually-appropriate, higher level, more complex and 

abstracted behaviors, Playbook gives the user alternate levels of abstraction to command automation.  

In previous Playbook implementations, the operator could flexibly decide to command at various 

levels of abstraction.  To enable experimentation exploring variations in control relationships along 

the abstraction dimension, we propose to create an experimenter’s interface to provide the ability to 

lock the operator out of one or more of these levels of abstraction on a task-by-task basis.  This would 

allow, for example, creating an experimental condition in which the operator only can only command 

Overfly plays (cf. Figure 9), or only Fly-to-Target or Fly-to-Waypoint subplays (i.e., command by 

inserting targets or individual waypoint sequences), or only Flight Control actions (via joystick 

controls), or has flexibility over only Overfly through waypoints (but not joystick commands), etc.  

This was accomplished in Phase 1, although the mechanism is unwieldy, and will need to be 

improved. 

But if this were all we did, we would only afford experimenter control over the abstraction dimension.  

In Phase 2, we will do more—providing control over authority and aggregation dimensions as well.  

To accomplish this, and thereby provide a very rich framework for experiments on alternate 

delegation styles, we will need to add two experimenter capabilities to the current Playbook—the 

ability to alter the level(s) of authority and the level(s) of aggregation that the Playbook operator has 

access to in a given experiment or setting.   

When one currently delegates a play or function to automation using Playbook, one is authorizing 

Playbook’s planning component to develop a plan for achieving that function and then submit it to the 

operator for approval.  If the operator approves, Playbook executes the plan.  This interaction style 
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represents an “Approval” 

level of authority for the 

delegation of tasks at the 

“Overfly” level of 

abstraction
2
.  Essentially, 

previous Playbook 

implementations have 

only used this single, 

homogenous level of 

authority for all tasks 

they gave the user access 

to.  These authority 

levels are fixed in the 

current system, but they 

need not be.  Figure 9 

shows a task 

decomposition that 

indicates some of the 

options that setting 

alternate authority levels within the abstraction dimension could afford.  To accomplish an Overfly 

task/function, four subtasks must be accomplished.  Currently, commanding at the Overfly level 

delegates the same level of authority to all subtasks (Approval), but this needn’t be the case.  An 

experimenter could configure an experimental run in which the operator delegates Full authority to 

Achieve Airborne (e.g., the automation can make it’s own decisions and execute them, without further 

operator review or approval, about how to get an suitable aircraft airborne), Approval authority to Fly-

to-Target, Monitor authority for Photograph Target, and Inform authority for Destage—or any other 

combination of tasks x authority levels that made sense, was feasible within the capabilities of the 

automation and was of interest to the experimenter. 

Although there is a tendency for delegated authority to increase at the lower levels of the task 

hierarchy, this need not be uniformly the case.  For example, let’s say that there is a specific 

subsubtask, deep within the definition of Photograph Target (perhaps the use of an active imaging 

device like Radar that might compromise stealth).  The automation could be given Full authority to 

plan and execute Overfly tasks—including all possible methods of accomplishing that parent task—

except for this specific “Activate Radar” task.  That task could be configured to have nothing higher 

than Approval authority (or even, perhaps, Monitor authority if it were an action the user had to take).  

In this case, Playbook would behave fully autonomously whenever it was asked to perform an Overfly 

play in all cases, except those where it deemed the use of the Activate Radar subsubtask desirable.  In 

those cases, it would ask the user for approval to perform that specific task. 

The above example illustrates the integration of Abstraction and Authority dimensions; a similar 

approach could work, together or separately, with the Aggregation dimension.  Instead of associating 

a level of authority with a specific task (a specific part of the Abstraction dimension), it could work by 

                                                      
2
 In fact, we have altered this slightly in some Playbook implementations—primarily through giving Playbook to right to automatically begin 

execution of the plan it creates, while retaining the right to override it once it has begun (Override authority level).   
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asserting an authority level on a specific resource (the Radar system) and therefore be asserted against 

the Aggregation dimension.   

Refining the LoA3 Architecture 

Populating the LoA3 Matrix 

Using the LoA
3
 framework requires that specification of points or regions in the LoA3 space be 

distinguishable and repeatable.  One to do this is establish values for each of the three dimensions of 

abstraction, authority, and aggregation, anchored by concrete examples. While this may seem to be an 

effort to quantify the scales, this need not be the case.  The LoA-abstraction dimension is inherently 

qualitative rather than quantitative, although if a hierarchical task model is used, then a particular level 

along this dimension can be specified by a sub-task number within the hierarchy. LoA-authority is a 

semi-qualitative dimension that can be assigned numerical values. For example, automation for a 

flight task with levels of None, Monitor, Recommend, Override, Inform, and Full would be given 

values such as 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.  Precise definitions of the flight task 

automation levels results in repeatable assignment of values across domains. Finally, LoA-aggregation 

is also a semi-qualitative dimension that can be assigned values (e.g., .25, .5 or .75 of all resources).  

The various levels in the LoA
3
 model can be combined to yield many possible human-automation 

schemes. Note, however, that the dimensions are not completely independent and that not all 

combinations are possible. For example, high LoA-abstraction—having automation fully responsible 

for carrying out a task, with no user involvement—would be incompatible with a value of “none” for 

LoA-authority or LoA-aggregation. 

Populating the automation levels as “a function of mission complexity, information processing stages, 

and operator competence and training”, previous approaches have used weighting factors that were 

used to determine appropriate LoAs. A related scheme was employed in another Army R&D program 

with which we were involved (Gacy, 2006). Briefly, weightings were developed for task importance, 

task connectedness, multitasking likelihood, expected workload, and the impact (on system 

performance) of automation. These weightings were combined with a very simple (though somewhat 

unique, see discussion below) one-dimensional LoA scale to formulate an “automation development 

priority”, given by the formula: 

Level of Automation x  

Impact of Automation x  

Multitasking likelihood x  

Task connectedness x  

Task Importance x  

Expected workload x 

100 

 

For example, task importance was given a rating by a SME given the understanding that a task would 

be rated high on importance if it involved combat operations or contributed to unit survivability or 

engagement of the enemy.  If so, then there would be a greater payoff of using automation for such a 

critical task, if available. Similarly, the expected workload associated with doing the task manually 
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was estimated, with the idea that high-workload tasks would particularly benefit from use of 

automation. SME ratings of low, medium, or high on these and the other weighting factors were given 

values of 0.5, 0.8, or 1.0, respectively. 

The LoA scale was given numerical values corresponding not only to the type of automation but also 

considering the development cost of the automation. This was apparently in response to a previous 

suggestion by Parasuraman et al. (2000), that the reliability and cost of a particular LoA should be 

taken into account by designers when considering automation in a particular system. For example, a 

highly reliable, nearly-fully automated system could be developed, but the cost (in terms of hardware 

and software engineering effort) might be so prohibitive as to make such a design option impractical. 

Wilson and Neal (2001) also examined the tradeoff between system performance and the cost of 

developing automation algorithms for human telerobotic control of a simulated “sheepdog” herding a 

group of simulated “sheep.” They showed that as a higher LoA was developed and applied to this 

system, there were diminishing returns in terms of system performance and a steep rise in 

programming cost. Reflecting these and other related considerations, Gacy (2006) used the following 

LoA scale values: No automation (manual performance) was given a value of 0.1, so that values could 

be compared among all tasks with no automation, if desired. Automation that provided decision aiding 

but kept the operator in the action response loop was given a value of 1, perhaps reflecting a value 

judgment (supported by some empirical research; see Parasuraman et al., 2000; Rovira et al., 2007) 

that this is an optimal form of automation. Partial automation, in which the task was shared between 

human and automation, was rated 0.7. Finally, full automation was rated 0.5, with the view that such 

automation would have the poorest payoff to development ratio. 

Combining the LoA value with the weightings yields the automation development priority index. The 

higher this value, the greater the benefit of using a particular LoA for a task. For example, for a 

decision aid automation tool that had medium impact for a high-importance task with low multi-

tasking likelihood, medium task connectedness, and high workload, the index would be 100 x 1 x .8 x 

1 x .5 x .8 x 1 = 32.  

Using this approach, Gacy (2006) determined a “top task” for automation (highest automation 

development index = 51) for a FCS mounted platoon: 

Task: Determine Movement Technique 

2 The Maneuver Battlefield Operating System 

2.2: Conduct Tactical Maneuver 

2.2.1 Employ Combat formations   

2.2.1.1 Employ Traveling Movement Technique 

 

Determine Movement Technique 

Automation Development Priority = 51 
 

The recommended LoA for this task was a decision aid, in the form of a route planner, combined with 

orders to determine best what type of traveling movement technique was needed, such as Traveling, 

Traveling Overwatch, or Bounding Overwatch.  
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While the reduction to a single value is appealing, the simplicity of the approach leads to some hidden 

assumptions and seemingly awkward formulations (e.g., the implicit value judgment about operator 

engagement in the task). 

Instead of adopting this model, we have considered the factors that would affect the choice of a 

particular region in LoA3 space, and realized that our formulation had a ‘missing link’. 

Missing Links 

It has become apparent as we have 

worked through Phase 1 that the 

LoA3 model has a serious 

omission if it is to be used (as we 

proposed) as the framework to 

develop an experimental testbed 

and use it to conduct experiments 

into human-automation delegation 

relationships. 

Figure 10 shows the formulation of 

the LoA3/Playbook testbed we 

proposed in Phase 1.  A point or 

region in LoA3 space is defined, and estimated in simulation.  This gives rise, either in informal 

demonstration, or in more formal experimentation, to several metrics that can indicate how 

appropriate that particular region would be as a 

selected LoA3.  This begs the question, 

“Appropriate in the face of what conditions?”  One 

of our advancements in Phase 1 of this work has 

been to flesh out an answer to that question and to 

develop a plan for incorporating it into our plans 

for Phase 2.  

Figure 11 shows the missing piece – there needs to 

be some explicit knowledge of, and repeatable 

representation of the environment in which you are 

operating to be able to predict what the appropriate 

region of LoA
3
 space would be. 

Mathematically, one could view this as a mapping 

:
3
 → 

3
, or 

 (Complexity, CompetenceOp, CapabilitiesUV) → (Authority, Abstraction, Aggregation). 

While the function is total – that is, every value of Complexity X CapabilitiesOp X CapabilitiesUV, (or 

C
3
 space) has an ‘answer’ or value in LoA

3
 space, the function is likely neither one-to-one nor onto – 

that is, there could be several values of Authority X Abstraction X Aggregation which are equally 

optimal answers in terms of the metric values which result, and there are likely values in the LoA
3
 

space which are appropriate for no point in C
3
 space. 
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Figure 12 shows several factors that we will consider as elements to characterize the ‘input space’ for 

such a predictive function.  In Phase II, we will more carefully elaborate this set of factors and a 

means to repeatably denote a 

particular input combination. 

The CLAMP
3
 model 

Together, the input factors of 

Complexity of the Situation, 

Competence of the Operator and 

Capabilities of the Automation (C
3 
); 

plus the operating range parameters 

of Level of Authority, Level of 

Abstraction and Level of 

Aggregation ((LA)
3
) as a Mapping 

for Prediction of Personnel 

Performance give the CLAMP
3
 

model.  The reader may note that 

there are not three ‘M’s in the 

acronym, making it somewhat 

flawed.  Nonetheless we like the 

association with the idea of getting a 

firm grip on the necessary factors 

involved in making the correct 

choices. 

Modify Playbook to Support Demonstration 

Defining Playbook Modifications for Use as an LoA3 Testbed 

We have determined that the following modifications to previous Playbook implementations will be 

necessary in order to use it as a testbed for exploring the LoA3 space of delegation alternatives: 

Enhancing Abstraction Flexibility (and Putting it Under Experimenter Control) 

To make this framework a reality, we intend to implement portions of the delegation framework as 

follows.  (Note that implementation of some of these capabilities has begun in Phase 1, while others 

are reserved for Phase 2, as will be described in subsequent sections.)  First, we will provide a UI, 

structured around a task tree expansion of the underlying Playbook Task Model, to enable an 

experimenter to selectively “turn on and off” levels of the abstraction hierarchy.  This allows 

experimenters to allow operators to command Overfly or waypoint commands only, or the 

intermediate level subplays.  This interface allows a range of flexibility to command across the 

abstraction levels (Overfly plays and intermediate subplays but not waypoint commands, etc.)   

Enabling Authority Flexibility over Tasks (Authority x Abstraction interactions) 

Next, we have decided to add some alternate (and experimenter selectable) levels of authority to these 

abstraction levels.  Providing multiple authority levels at the Overfly abstraction level should be 

comparatively straightforward.   
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Figure 12.  Typical factors for LoA
3
 selection 



 SIFT TR 08-LOA3-01 
Delegation in LoA

3
 Space 

 

 Page 24 24 September, 2008 

 

We provide the experimenter the ability to configure which of these authority levels is available for 

which tasks for the operator to delegate to automation for each experimental run—for example, 

allowing the operator Approval authority only for “Photograph Target” in one run, and only Monitor 

authority in the next.  Allowing the experimenter the ability to provide the operator flexible control 

across authority levels is more difficult, since it entails determining which levels of authority are 

supportable in Playbook connected to various simulation environments, but is clearly desirable. 

Enabling Aggregation Flexibility (and Authority Over It) 

Aggregation works analogously to Abstraction.  An early step will be to enable the assertion of 

variable authority levels (by the experimenter) on the use of specific UAVs.  For example, the APC 

can currently use any UAV it desires (that has not already been tasked) with Override authority, but 

we could configure this so that Full, Inform and Approval authority levels are settable—with regards 

to all or to any specific UAV.  Recommend authority could be achieved by allowing the APC to 

recommend UAV usage, and Monitor authority would allow the APC to critique the operator’s choice 

of UAVs.  We could provide the ability to set these authorization levels, against all or against specific 

UAVs, as a part of the experimenter’s UI.   

To the extent that there are existing groupings of resources, automation can be flexibly granted 

Authority for any group.  To the extent that it is interesting, new groupings can be defined, analogous 

to the insertion of new levels of abstraction in the task hierarchy.   

Automation Alternatives in Overfly Example 

In using this architecture with a comparatively simple Overfly play, we have defined at least three 

levels of Abstraction (Overfly Play, Intermediate Subplays, and Waypoint-level Sub-subplays) and 

seven levels of authority on the abstraction levels.  We have also identified at least three levels of 

Aggregation (UAV groups or teams, individual UAVs and UAV subsystems) crossed by the same 

seven levels of authority.  This provides a total of 3x7x3x7 (or 441) different human-automation 

interaction styles within the testbed.  While not all of these levels may be technically feasible or worth 

investigating, this illustrates how the proposed Playbook-based LoA3 enables the systematic 

investigation of a huge range of alternate human-automation interaction styles. 

Using the Framework to Configure Human-Automation Roles and Responsibilities 

The example above assumes that the experimenter has the control to turn on and off the abstraction, 

aggregation and authority levels for the operator either in an a priori, pre-mission setting or 

dynamically during mission execution.  There is however, great utility in changing that arrangement to 

give similar control to the operator.  To do this, we would provide an interface for the operator to 

configure the permissions with which automation may operate when asked to plan and/or execute a 

play.  This would be an action that the operator (or engineering support staff) would perform pre-

mission, typically during non-deployment down time, or at least prior to tasking a semi-automated 

asset(s).  It would represent a significant enhancement to the Playbook architecture we have developed 

to date and, we suspect, would substantially improve its commercialization potential.  There are a 

great many potential customers in the world who need to be able to interact with automation in a way 

that is both easy and yet predictable; more than there are who need to perform a wide range of 

experiments on human-automation interaction. 
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Playbook Modification Implementation 

While we have performed definition of multiple plays in multiple domains (see Error! Reference 

source not found. below), the internal representation used for play definition, shown in Figure 13 

reflects the input format of the planning engine, the Simple Hierarchical Ordered Planner (SHOP2).  It 

is not intuitive, and would not be suitable for manipulation by experimenters, who will need to modify 

this play structure (in some fashion) to implement constraints on authority, abstraction and 

aggregation selection.  Indeed, even within SIFT, coming back to revise a previous play definition is 

an error prone proposition, since there are multiple positional or subtle form differences that are 

meaningful to SHOP2.  In the Phase 1 effort, we have made a step toward improving this situation by 

adding explicit tags to portions of the Playbook form, shown in Figure 14, which are then translated 

by another module into the SHOP2 input format. 

This new format has the added advantage of combining several aspects of the definition which had 

been split across four files into a single location.  Still, this form requires a learning curve, and we 

have begun work to define a graphical authoring environment for simple play modifications. This will 

be more suitable for experimenter use in Phase II, since it will require a much smaller learning curve.  

More sophisticated changes would still, of course, require interaction with the complete textual 

representation. 

In addition, we have been implementing a node selection interface to allow specification of internals 

for an arbitrary step in the plan.  This is not complete, though we have remaining time and funds in 

Phase 1 to make further progress. 

 

Figure 13.  Previous Playbook representation 
 

Figure 14.  Enhanced Playbook representation 
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Demo/Eval LoA3 Testbed 

A first step in the demonstration/evaluation was to establish what we were interested in showing, 

albeit informally in Phase 1, and how we might go about showing those effects.  This led to the 

identification and elaboration of a number metrics that will be used in Phase II, some of which can be 

shown in the Phase 1 demonstration. 

Resolution Metrics 

The ability to vary the delegation approach across the LoA
3
 dimensions is only of passing interest if 

we are not able to assess the effects of various approaches on the known issues in human-automation 

interaction.  In the following section, we identify metrics which will be used to directly address – and 

resolve – those issues in our Phase 2 work.  We will term these “Resolution Metrics”.  Resolution 

metrics are used to directly measure the results of selecting a particular region within the LoA
3
 space. 

As Kaber and Endsley (2004) pointed out, determining the most adequate human-automation 

architecture is not a simple endeavor. Several factors need to be taken into account, including over- 

and under-reliance, out-of-the-loop performance (OOTLP), trust, workload, situation awareness, 

mode awareness and knowledge of automation state, and ultimately, human-automation performance. 

To be able to examine these topics effectively and determine the most appropriate human-automation 

architecture, it is necessary to consider a set of resolution metrics that can address each of these issues.  

Over Reliance and Out-Of-The-Loop Performance (OOTLP) 

Out of the loop performance (OOTLP) occurs when human operators are forced to manually intervene 

with the functioning of a system after a period of performing with the aid of an automated system. 

Prior research indicates that there are several problems associated with OOTLP. In general, human 

operators have difficulties in both detecting system malfunctions during automated control and 

regaining effective manual control (Wiener & Curry, 1980).  

There are different reasons for these two types of OOTLP performance decrements. Humans have a 

tendency to overtrust automated systems, particularly when the automated systems are highly reliable 

(Lee & See, 2004). Consequently, operators tend to be overly reliant on automated systems and fail to 

monitor their performance effectively, a phenomenon referred to as complacency (Parasuraman & 

Riley, 1997). Also, prior research suggests that operators require additional time and resources to 

reorient themselves after regaining manual control from automated control (Wickens & Kessel, 1981). 

This, in turn, limits their ability to actually perform the tasks that they are required to perform (Kaber 

& Endsley, 2004).  

In addition to these two factors, it is important to consider the notion that the type and amount of 

feedback that the automated system offers human operators is a contributing factor to OOTLP 

decrements (Endsley & Kiris, 1995). Different levels of automation support different amounts of 

feedback. For example, a full level of automation offers no direct feedback to the operator as far as its 

state or functioning. In contrast, lower levels of automation provide a greater amount of direct 

feedback to operators either by simply informing them of the current functions of the system or by 

requesting their permission before carrying out actions. Therefore, the level of automation used may 

ultimately serve as a contributing or a mitigating factor to OOTLP decrements.  

There are two potential ways in which to examine over reliance and OOTLP. One method consists of 

introducing random automation malfunctions and examining the accuracy and latency with which 
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human operators can both detect such malfunctions and make corrective actions by resuming manual 

control of the task. The other approach is to require operators to alternate between manual and 

automated control using a dynamic function allocation architecture. Prior research suggests that both 

of these approaches are effective ways of assessing over reliance and OOTLP (Endsley & Kaber, 

1999; Endsley & Kiris, 1995; Kaber & Endsley, 2004).   

Under Reliance 

Under reliance can also be problematic to the extent that human operators’ fail to take full advantage 

of the automation’s capabilities. One of the main reasons why humans may under rely on automation 

is lack of trust (Lee & See, 2004). Trust serves as a mediating factor between humans and automated 

systems.  It is a common error (cf. UAV Roadmap 2005) to say that it is desirable to maximize trust in 

automation.  This would result in the over-reliance situation above.  Rather, it is desirable to achieve 

an accurate belief about the automated system’s capabilities, or “appropriate trust”.   

There are at least two ways in which to effectively examine the issue of under reliance. One way of 

accomplishing this is to examine operators’ trust on the automated system. Trust in automation is 

typically defined as the attitude that a given automated system will aid in accomplishing an operators’ 

goal under conditions of uncertainty (Lee & See, 2004). As such, a typical method of measuring trust 

is through the use of self-report measures. For the purpose of this SBIR, we could either use single-

indicator measures of trust as previously used by other researchers (Muir & Moray, 1996) or a 

multiple-indicator scale specifically developed for this purpose (Jian, Bisantz, & Drury, 2000). 

Another method of more directly assessing the issue of under reliance is to quantify the proportion of 

time that operators perform each task with the aid of the automated system using a dynamic function 

allocation architecture. Furthermore, we could even generate a more sensitive automation reliance 

metric by taking into account not only the proportion of time of automation usage but also the level of 

automation selected by the operator.   

Workload 

The primary reason for automating tasks is to reduce operators’ workload, thereby allowing them to 

focus more of their resources on higher level strategic planning. However, automation does not always 

lead to lower workload (Parasuraman & Riley, 1997). Although automation may reduce the workload 

associated with performing certain functions, it may also increase operators’ workload by imposing 

additional monitoring demands, or by becoming unreliable at specifically those difficult times that the 

operator most needs assistance. Consequently, it is essential to examine the level of workload created 

by a given human-automation architecture to ensure that the task demands do not exceed operators’ 

capabilities, not only under nominal conditions, but more importantly under high complexity and 

uncertainty conditions.  

There are several ways of assessing operators’ workload, but the most frequently used are secondary-

task performance and self-report measures (Wierwille & Eggemeier, 1993).  Secondary task 

performance measures are based on the notion that humans have a certain amount of resources, which 

they can allocate to different tasks. The idea is that given a primary task, humans can still perform a 

secondary task provided that they have spare mental capacity. As workload on the primary task 

increases, however, performance on the secondary task deteriorates, thereby serving as an indicator of 

the amount of spare mental resources. A potential disadvantage of using this approach is that the 

secondary task can be intrusive, and it may also create an unrealistic working environment (Williges 
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& Wierwille, 1979). A possible way of overcoming this limitation is to use an embedded secondary 

task that is part of the overall working environment. In the case of monitoring and controlling 

unmanned aerial vehicles (UAVs), a candidate embedded secondary task could be a communication 

task facilitated through the use of a chat box. Prior research suggests that this could be an effective 

method for measuring workload in such a task environment (Cummings & Guerlain, 2004).  

Another method of measuring workload is using self-report measures, such as the NASA TLX (Hart 

& Staveland, 1988), the Subjective Workload Assessment Technique (Reid & Nygren, 1988), and the 

Workload Profile (Tsang & Velazquez, 1996). The main advantages of using these types of measures 

are that they are easy to administer, they have high face validity, and they are relative unobtrusive 

(Wierwille & Eggemeier, 1993). Potential issues of concern associated with these measures include 

reliability and measurement invariance (Bustamante, Bailey, Fallon, Newlin, & Bliss, 2005). 

Nevertheless, using self-report measures in conjunction with other workload assessment methods, 

such as secondary-task performance, can be a powerful way of assessing operators’ workload 

(Matthews, Davies, Westerman, & Stammers, 2000).     

Situation Awareness 

Maintaining a high level of situation awareness is essential for effective performance of complex 

tasks, especially when operators interact with automated systems (Endsley, 1996). One of the most 

effective methods of assessing operators’ situation awareness is the Situation Awareness Global 

Assessment Technique (SAGAT; Endsley, 1995). Similarly to the assessment of workload, in 

addition to the SAGAT, it may also be beneficial to complement the assessment of situation 

awareness with a self-report measure, such as the Situation Awareness Rating Technique (SART, 

Taylor, 1988).  

Mode Awareness and Knowledge of Automation State 

Prior research suggests that mode awareness and knowledge of automation state are essential 

components of effective human-automation performance (Sarter & Woods, 1995). In essence, both of 

these issues are intrinsically subsumed under the broader umbrella of situation awareness. As such, 

they can be effectively measured using a similar approach to that of measuring situation awareness. 

However, it is useful to separate situation awareness into categories of internal situation (vehicle 

health, automation mode, etc.) and external situation (opposing forces’ stance, environmental factors, 

etc.).  Situation Awareness is sometimes used to refer only to this external state.  We will use a 

modified SAGAT approach designed specifically to target aspects of internal state concerning mode 

awareness and knowledge of automation state.  

Current Demonstration Status 

As the Phase 1 effort is not yet complete (approximately 20% of time and funds remaining), the 

demonstration has not been completed.  We have obtained permission, and the requisite 

hardware/software to install MUSE at Dr. Parasuraman’s lab.  We have performed informal 

measurements, principally of learning curve and setup time, to see the effects of the different LoA3 

spaces for the two demonstration cases.  The differences for the learning curve and setup times are 

substantial.  We anticipate that demonstrations at NASA Ames and CSL will provide clear indications 

of other differences as well. 
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Conclusion 

We have presented a description of a testbed approach for examining various approaches to delegation 

as a means of supervisory control.  The testbed builds on existing Playbook software, using a three-

dimensional delegation space, the LoA
3
, to characterize the level of automation provided by the 

current Playbook testbed configuration.  We anticipate that any given context, characterized in terms 

of (1) situation complexity, (2) operator capabilities and (3) automation capabilities, can be mapped to 

one or more regions of LoA
3
 space which will result in optimized performance of 

operator+automation for that context. 
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