
HACKAR: Helpful Advice for Code Knowledge and Attack Resilience

Ugur Kuter, Mark Burstein, J. Benton, Daniel Bryce, Jordan Thayer and Steve McCoy
Smart Information-Flow Technologies

319 1st Ave N., Suite 400, Minneapolis, MN 55401-1689
114 Waltham Street, Suite 24, Lexington, Massachusetts 02421

{ukuter,mburstein,jbenton,dbryce,jthayer,smccoy}@sift.net

Abstract

This paper describes a novel combination of Java program
analysis and automated learning and planning architecture to
the domain of Java vulnerability analysis. The key feature of
our “HACKAR: Helpful Advice for Code Knowledge and At-
tack Resilience” system is its ability to analyze Java programs
at development-time, identifying vulnerabilities and ways to
avoid them. HACKAR uses an improved version of NASA’s
Java PathFinder (JPF) to execute Java programs and identify
vulnerabilities. The system features new Hierarchical Task
Network (HTN) learning algorithms that (1) advance state-
of-the- art HTN learners with reasoning about numeric con-
straints, failures, and more general cases of recursion, and
(2) contribute to problem-solving by learning a hierarchical
dataflow representation of the program from the inputs of the
program. Empirical evaluation demonstrates that HACKAR
was able to suggest fixes for all of our test program suites.
It also shows that HACKAR’s can analyze programs with
string inputs that original JPF implementation cannot.

Introduction
To write robust and secure code, programmers must know
the input and output specifications of each imported and re-
mote function the program uses. This knowledge often goes
beyond documented information and presents some unique
challenges. For example, the common C++ library function
sscanf can be used to parse arguments to a UNIX proce-
dure; however, unless a sufficiently large buffer is provided
(e.g., larger than any possible input string), the transmission
of external inputs through that call can cause an exploitable
buffer overflow. User-provided inputs must be truncated in
the calling code written by the programmer, in a way consis-
tent with the size of the buffer they provide. The problems
only get worse if the function being called is complex or
uses such insecure functions internally. Developers desper-
ately need tools that will help them identify and address such
vulnerabilities.

This paper describes a novel program analysis, automated
planning, and machine learning architecture for discover-
ing security vulnerabilities, errors, and exceptions in Java
programs. Program analysis for discovering vulnerabili-
ties presents several challenges to state-of-the-art AI for-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

malisms, algorithms, and systems. First, traditional AI plan-
ning and learning techniques are mostly symbolic, while
program analysis require numeric and unbounded modeling
and reasoning. Second, state-of-the-art AI techniques typi-
cally assume finite domains; however, programs are intrin-
sically infinite. Third, programs can create new objects dur-
ing their execution, while most AI systems assume a closed
world in their models.

We have developed a system called Helpful Advice and
Coding Knowledge for Attack Resistance (HACKAR) that
addresses these challenges. Throughout the development
cycle, HACKAR provides suggestions to programmers on
how to make their programs more secure and can work with
opaque external library calls. HACKAR integrates into
Eclipse R© as a plugin for Java program analysis. HACKAR
includes (1) our improved version of Java PathFinder (JPF)
(Havelund and Pressburger 2000; Visser et al. 2003; Visser,
Pasareanu, and Khurshid 2004) for simulating execution of
Java programs and generating program path constraints, (2)
an incremental learning algorithm for Hierarchical Task Net-
works (HTNs), (3) a variant of our HTN planner SHOP2
(Nau et al. 2003) for generating code advice to fix any vul-
nerabilities discovered during executions and learning.

We used HACKAR to analyze Java programs with math-
ematical computation, file operations, array vulnerabilities,
buffer overflow and underflows, program logic errors, and
string computations. Our experiments demonstrated that
HACKAR is able to identify vulnerabilities caused by the
inputs to the program, which JPF’s concrete and state pro-
gram analysis techniques cannot analyze. HACKAR suc-
cessfully produced suggestions on how to avoid those vul-
nerabilities, in scenarios that are beyond the scope of JPF or
other static or dynamic analysis tools.

HACKAR Architecture
Program analysis is the process of automatically analyzing
the behavior of programs. HACKAR is concerned program
analysis as the programmer is writing a Java program, to
identify vulnerabilities that could be caused by the inputs
to the program, and to suggest advice to the programmer
on how to eliminate those vulnerabilities. Almost half of
the 2010 Common Weakness Enumeration (CWE)’s Top 25
software weaknesses arise from library misuse, unexpected
side effects of functions, and insufficient input sanitization

PROTECT:	 Code	
Simula2on	

SHOW:	 Hierarchical	
Workflow,	 Explana2on,	
and	 Repair	 Learning	

AIDE:	 Sugges2on	
Planning	

Hierarchical Task Network (HTN)
representation of the source

Current
program(possibly
incomplete)

Code Advice to the User
Vulnerability highlights

Code replacement
Code insertion

Suggestion history

HACKAR	 Eclipse	 Plugin/	
Programming	 Environment	

Different possible
execution traces of the

program

Each trace carries:
Statements/expressions executed
Program block indicators
Concrete data read and written
Symbolic branch constraints

Program	
Models	

Vulnerability	
Models	

English	 Bug	
Descrip2ons	

Model Library

Safety constraints/bounds on the values
of program variables, function/procedure
parameters

New, safe learned code blocks for
accomplishing same I/O of the subroutines
and functions

Figure 1: HACKAR high-level functional overview.

(http://cwe.mitre.org/top25/).
As an example, consider what happens when the user cre-

ates a string consisting of an SQL statement to an external
database and feeds that statement with an array of values that
are not specified properly.
Example 1. Suppose that HACKAR is given a function with

the following code fragment:1

. . .
int[] results = 0,1,2,3;
results = external.computeResults(results);
for (int i = 0; i < results.length; i++) {

int dbCount = helper.queryForInt(
"SELECT COUNT(FORENAME)

FROM CUSTMR
WHERE FORENAME=’" + results[i] + "’",

(Object[]) null);
assertTrue("found in db", dbCount == 1);

}
. . .

The above code illustrates an instance of a situation
known as SQL Injection: if the programmer does not ensure
the contents of the results array are set properly, arbitrary
SQL commands can be executed against the database.

HACKAR dynamically tests programmer’s code during
development at the function level to identify inputs leading
to vulnerabilities. By examining inputs at the function level,
HACKAR captures a workflow representation of the pro-
gram automatically, and utilizes that workflow in order to
propagate the outcomes of the vulnerability analyses from
the low-level functions to the high-level user procedures.

Figure 1 shows HACKAR’s functional architecture
and its components: dynamic test and execution genera-
tion, hierarchical workflow learning, and automated multi-
suggestion planning. Each component shares a common
program representation, and their own private models.

The program to be analyzed is first processed by the
PROTECT component, which performs dynamic test-and-
execution generation. For example, above, computeRe-
sults is an external function that does a computation over

1Adapted from http://www.ukcert.org.uk/javasecurity.pdf.

an integer array and returns the resulting integers as its out-
put with one exception: computeResults returns an array
of end-of-line characters, if the input contains non-positive
integers. PROTECT generates test inputs for this program.
Some of these test inputs will enable the program to suc-
ceed and others will fail it, enabling PROTECT to discover
the conditions for the exception.

PROTECT also produces a AI planning domain descrip-
tion from the execution of the Java bytecode of a pro-
gram. A planning domain description consists of action
models (i.e., action names, parameters, preconditions and
effects), as described in the subsequent section. The execu-
tion traces and action models are passed to the next compo-
nent, HACKAR’s hierarchical workflow learning system,
SHOW. Learning generalizes the structure in the traces, i.e.,
the control flow of the program, into hierarchical task and
data flows. Learning can create new hierarchical models of
the program that differ from the original source code.

The output of the hierarchical workflow learning is a set
of procedural descriptions of how to achieve tasks and func-
tionality in a program. HACKAR uses the well-known Hi-
erarchical Task Network (HTN) formalism to represent this
output. We will describe HTNs in later sections. The learned
HTNs are passed to HACKAR’s multi-suggestion genera-
tion component, AIDE. This component is an automated
HTN planner that generates plans, i.e., program traces, with
the learned HTN knowledge. The hierarchical plans con-
stitute an explanation of the vulnerability. An explanation
carries the following information to the programmer:

In function SQL_Example:
failure point: helper.queryForInt
vulnerability point: computeResults
explanation: computeResults generates a non-

numeric ASCII character with a negative integer as
input. queryForInt uses the character instead of its
integer encoding to create the SQL query.

As the programmer writes more code, this explanation
would be revised and dropped eventually when HACKAR
cannot justify the particular vulnerability as above.

AI Planning Formalisms
HACKAR uses PDDL (Planning Domain Description Lan-
guage), the standard language for writing AI planning prob-
lems (McDermott 1998; Fox and Long 2003; 2001), to
model Java program statements as planning actions, en-
abling our AI learning and planning algorithms reason about
programs naturally.

PDDL is an action-centered language; at its core it pro-
vides a simple standard syntax for expressing the actions, us-
ing pre- and post-conditions to describe the applicability and
effects of actions. The language separates the descriptions
of parameterized actions that characterize domain behaviors
from the description of specific objects, initial conditions
and goals that characterize a problem instance. This is par-
ticularly useful for HACKAR, since program statements are
usually parameterized. The pre- and post-conditions of ac-
tions are expressed as logical propositions constructed from

predicates and argument terms (objects from a problem in-
stance) and logical connectives.

These formal capabilities are particularly important for
HACKAR: each action model corresponds to single Java
program statement in the source program, describing the
program variables and possible values used by that state-
ment, preconditions which specify the conditions under
which the statement was executed in those output traces, and
the values produced of the execution of the statement.

PDDL can be used to represent primitive program state-
ments, however it’s not very suitable to represent compound
program blocks, control structures such as branches and
loops, and program methods. To model such constructs,
HACKAR uses the Hierarchical Task Network (HTN) for-
malism (Erol, Hendler, and Nau 1994; Nau et al. 2003) on
top of PDDL. HTN formalisms vary in terms of how they
represent procedural descriptions, but all of them consist of
the following abstract formalisms: the initial state (a sym-
bolic representation of the state of the world at the time that
the plan executor will begin executing its plan) and the goal
task network (a set of tasks to be performed, along with
some constraints over those tasks that must be satisfied).
HTNs specify two main kinds of knowledge artifacts: meth-
ods and operators, described below.

Operators in HACKAR planning are represented in
PDDL. The names of these operators are designated as prim-
itive tasks (i.e., tasks that we know how to perform directly).
Any task that does not correspond to an operator name is a
nonprimitive task. Each method is a prescription for how to
accomplish a non-primitive task by decomposing it into sub-
tasks which may be either primitive or non-primitive tasks.
A method consists of three elements: (1) the task that the
method can be used to accomplish, (2) the set of precondi-
tions which must be satisfied for the method to be applicable,
and (3) the subtasks to accomplish.

Code Trace and Test Generation
HACKAR learns HTN methods and operators from pro-
gram execution traces, which are generated by its PROTECT
component. PROTECT uses Java Pathfinder (JPF) (Havelund
and Pressburger 2000; Visser et al. 2003; Visser, Pasareanu,
and Khurshid 2004) to execute programs, and a customized
JPF listener to capture alternative program paths, resulting in
different execution traces. The Symbolic PathFinder (SPF)
extension of JPF enables symbolic execution of programs
that can compute program inputs that guarantee execution
of each program path. SPF executes Java methods by com-
puting the constraints that must be satisfied by each program
branch. SPF computes assignments to the method input pa-
rameters that satisfy the constraints by encoding and solving
a Satisfiability Modulo Theory (SMT) problem. By negat-
ing the constraints imposed by a particular branch, SPF can
explore each branch of a program.

PROTECT uses a custom JPF listener that reports the start
and end of each of line of code and the entry and exit of
each method. The listener records the data consumed and
produced by each line of code, and the data passed to and
returned by each method. From this hierarchical summary

of program execution, the SHOW component in HACKAR
learns operators and methods that describe the program. The
data consumed and produced by lines of code map to oper-
ator preconditions and postconditions. The data passed to
and returned by methods map to HTN methods.

Most SMT solvers used for reasoning over program con-
straints can natively handle symbolic data involving inte-
gers and floating point numbers. However, strings are often
a fundamental limitation for SMT solvers. Though JPF’s
SMT solver can handle some rudimentary string operations,
it cannot handle strings in general. To mitigate this issue, we
use the well-known test case generation abilities offered by
symbolic execution and combine it with a novel approach to
test generation for strings that can take user-specified gram-
mars on string inputs. The grammar-based theories help
JPF reason with possible successful and failure test bound-
aries; i.e., they specify “interesting” program input values
that might cause the program to fail or make the program
complete its execution successfully.

Hierarchical Workflow Learning
The objective of hierarchical workflow learning is to learn
the dataflow in the original program, as well as the causes of
potential vulnerabilities highlighted by program execution,
and generalize those dataflows in order to infer ways to fix
the program. HACKAR uses the mathematical and struc-
tural foundations in HTN formalisms as a formal, high-level
Java specification language for the program structures such
as Java methods, program blocks, and statements.

Given the program execution traces generated by JPF, and
the PDDL models for the primitive Java statements as plan-
ning actions, HACKAR’s SHOW component learns HTN
methods that represent compound Java program blocks.
More specifically, the learning system represents a program
block with its “parameters” as a planning HTN method, as
described above. A Java method can be naturally translated
into an HTN method definition, in which the Java method’s
name and parameters is the task for the HTN method and
the statements and calls to the other functions in the Java
method constitute the subtasks for the HTN method. For
each other program blocks, such as a loop or a branch, that
does not have a name or parameters explicitly in the source
program, SHOW creates a special task symbol. The param-
eters of this task are generated by collecting all the program
variables that are not defined locally in the block. Using this
translation, SHOW learns an HTN method for any program
block in a Java program.

SHOW learns both the task semantics and HTN methods
from input traces for specific tasks. Unlike most of the ex-
isting HTN learners, SHOW learns the semantics of tasks;
i.e., the applicability conditions and effects of Java meth-
ods or other program blocks. This enables HACKAR to
reason about possible vulnerabilities and their fixes seman-
tically and correctly. Given program execution traces gen-
erated by PROTECT, SHOW produces a knowledge base of
HTN methods in a planning domain incrementally; that is,
it successively updates its knowledge base when presented
with new program execution traces for the same program

without requiring a large set of training data to be given a
priori as in most traditional machine-learning algorithms.

The fundamental computation in SHOW is based on the
well-known goal regression technique (Reiter 1991). Goal
regression works toward finding some set of atoms g′ such
that, if we reach a state s in which they hold, we know a
procedure to transform s′ into a state s in which our goals
g hold. In classical goal regression, the procedure would be
a plan, but in our case, it is a task network that represents
a Java program block. Given a set of goals g and a task
network w, we can find the set g′ = R(g, w), extending the
regression operator defined in (Reiter 1991):
• If w is the empty task network, then R(g, w) = g.
• If w contains a single primitive task t (i.e., a pro-

gram statement), which corresponds to the action a =
(t,pre(a), eff(a)), then R(g, w) = (g \ a+) ∪ pre(a),
where a+ denotes the positive effects in eff(a) (i.e., ef-
fects that do not make a fact false in the state of the world).

• If w contains a single nonprimitive task (t pre(t) eff(t))
for which we have an indexed method instantiation m =
(t pre(m) subtasks(m)), then R(g, w) = (g t+) ∪
pre(m), where t+ is the positive effects in eff(t).

• If w contains two or more tasks 〈t0, t1, . . . , tnrangle,
then R(g, w) = R(R(g, tn), 〈t0, t1, ..., tn−1〉) .

The value of R(g, w) is the minimal set of atoms that must
be true in a state s′ to guarantee that w will be decomposable
resulting in a plan that produces a state s where g holds.

SHOW uses several mechanisms from our previous work
in HTN learning (Hogg, Muñoz-Avila, and Kuter 2008;
Hogg, Kuter, and Muñoz-Avila 2009; 2010). It uses a gen-
eralization of goal regression, called hierarchical goal re-
gression, that can regress goals both horizontally (through
the primitive actions) and vertically (up the task hierarchy).
In hierarchical goal regression, a logical formula can be re-
gressed over either a primitive action or an indexed method
instance for a nonprimitive task. In the case of the former,
the regression is performed using the preconditions and ef-
fects of the action in the same manner as traditional goal
regression. In the case of the latter, the regression is per-
formed over the postconditions of the annotated task and the
preconditions of the method learned for that task.

Code Advice Planning and Ranking
In order to produce a new planning problem to produce
a new Java program, AIDE uses the new HTN methods
learned by SHOW, which specify improved versions of the
vulnerability-prone methods in the program. The new HTN
methods typically describe to program blocks with safety
guards on values before their execution, such as checks that
an index is in-bounds, or that a read length isn’t larger than
the size of the buffer.

We have extended SHOP2 (Nau et al. 2003) with a tech-
nique, which we call blacklisting. We provide SHOP2 with
a list of methods that should only be used if no other means
to solve the problem exists. These blacklisted HTN meth-
ods correspond to program fragments which SHOW has dis-
covered contribute to vulnerable behaviors in the underly-

ing Java program. The hope is that by avoiding meth-
ods we know to be unsafe in favor of learned alternatives,
HACKAR, and AIDE specifically, can produce safer ver-
sions of programs by avoiding behavior automatically deter-
mined to be unsafe.

AIDE performs two planning epochs on the input HTN
methods representing the program. In the first epoch, it
uses the HTN methods that correspond to the original pro-
gram, including the blacklisted methods. This generates the
control-and-data-flow of the program that leads to vulner-
abilities. In the second epoch, AIDE plans for the same
program using the learned, vulnerability-free methods pro-
duced by SHOW as well as a blacklist of the unsafe methods
that lead to the detected vulnerabilities. Thus, the first plan-
ning epoch produces a hierarchical execution tree represent-
ing the original flawed program, while the second produces
an execution tree representing a program built with methods
designed to avoid the original vulnerability.

AIDE is able to produce a diff, or a patch, by consid-
ering these two execution trees by walking the both from
their roots. This procedure generates the suggestions to
fix the program as follows: during the tree walk, AIDE
compares each subtree in the two execution trees, starting
from the roots and following the control flow of the pro-
gram. When AIDE detects two different subtrees, it com-
piles the applicability conditions on both trees generated by
SHOP2 and extracts those conditions stemming from the
new, vulnerability-free HTN method that do not exist in the
original one. These applicability constitute the safe-guard
SHOW has learned for that particular program block to pro-
tect it against the discovered vulnerability. AIDE returns
to the user the safe applicability conditions as a suggestion
to modify the program, along with the program block that
needs to be protected.

Evaluation and Validation
HACKAR is implemented in Common Lisp and integrates
Java PathFinder (JPF), which is written in Java. The test
cases (i.e., Java programs) for our experiments were devel-
oped based on MITRE’s CWE (Common Weakness Enu-
meration) and CVE (Common Vulnerability Enumeration)
databases that outline potential vulnerabilities in systems
and programs written in Java, C, C++ and other program-
ming languages.2 We have identified several vulnerabil-
ity/weakness types based on the latest CWE/CVE: division
by zero errors, initialization exceptions, stack-overflows
with intensive mathematical computing such as Euclidean
GCD computations, file I/O errors, overflowing system file
handlers, array indexing errors, buffer overflow and under-
flow scenarios, bad conditional/switch statements, casting
errors, and multiple vulnerabilities that are dependent on
each other or may be unrelated from each other.

We generated our test programs synthetically (i.e., gener-
ated by a script) as well as manually (i.e., written by a Java
programmer). The manually constructed programs fall into
two categories: those generated by HACKAR developers

2MITRE CWE/CVE: http://cwe.mitre.org.

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

Ar
ray
Ac
ce
ss	

Sim
ple
Nu
ll	

Im
po
ssi
ble
Ca
st	

Fil
eH
an
dle
Sp
aw
ne
r	

My
Ar
ray
Lis
t	

Int
Ba
g	

Pro
du
ctS
erv
let
	

Div
isio
nB
yZ
ero
	

Re
so
urc
eP
roc
es
so
r	

Dim
en
sio
ns
Fix
ed
	 	 	 	
	 	

Ar
ray
Lis
tN
ull
	

Ba
dS
wi
tch
	

Un
ch
ec
ke
dR
etu
rn	

Ov
erfl
ow
Fro
mF
ile
	

CP
U
	 T
im

es
	 (s
ec
s)
	

Figure 2: HACKAR’s scability performance.

to illustrate (or test) specific portions of the HACKAR pro-
cess, and those written by Java developers with no knowl-
edge of HACKAR or JPF, including variants of open-source
Java programs available on the Web (e.g. portions of the
Amazon Web Services code library).

The core criteria in our experiments was to remove vul-
nerabilities from Java programs. The quality of the evalua-
tion was measured in terms of the following factors:

• whether HACKAR can find a sound correction to a vul-
nerability 90% of the time;

• whether HACKAR can find the earliest correction in
90% of the time; and

• average running (CPU) times in seconds to find a correc-
tion is below 5 seconds.

Experiments with HACKAR
Comparative evaluation of the HACKAR system is difficult
because we have not found a similar system that can dynam-
ically test inputs of the programs and perform vulnerability
analysis over execution traces of them. Hence we performed
our evaluation of HACKAR against well-defined, easy-to-
measure performance metrics.

Figure 2 shows the average CPU times of the end-to-
end HACKAR system to generate a suggestion/correction
to a vulnerability. HACKAR generated correct sugges-
tions for all of our experimental programs. On average,
the system identified the vulnerabilities and returned sug-
gestions in 1.5 seconds, excluding three of our experimental
programs where HACKAR’s run-times were above 20 sec-
onds, and in one case, it was 209.27 seconds. We analyzed
HACKAR’s behavior and concluded that generalization is
not strong enough on programs with loops and HACKAR’s
learner’s state models become very large. Since our plan-
ning algorithms use the same models, they produce sugges-
tions very inefficiently. We’re currently working on a new
HTN learning algorithm to address this generalization issue.

We have also evaluated HACKAR on programs that in-
clude multiple vulnerabilities. Our experimental programs
for this case included scenarios with unrelated errors, se-
quential exceptions, and cascading vulnerabilities with de-
pendencies among them. Figure 3 shows the results of

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

Se
qu
en
&a
l	

Fa
lse
	

Da
taS
et	

Ba
d_
if_
oc
clu
sio

Ca
sca
din
g	

Un
rel
ate
d	

Dis
joi
nt	
ran
ge
s	

Sid
e	 e
ffe
cts
	

Co
ord
ina
ted
	

CP
U
	 T
im

es
	 (s
ec
s)
	

Figure 3: HACKAR’s scability performance over programs
with multiple vulnerabilities..

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

Unrelated1	 Unrelated5	 Unrelated10	 Unrelated50	 Unrelated100	

CP
U
	 T
im

es
	 (s
ec
s)
	

Figure 4: HACKAR’s scability performance over synthetic
programs with multiple unrelated (i.e., independent) vulner-
abilities, as a function of the number of exceptions in the
programs.

the experiment. HACKAR generated correct suggestions
in under 4 secs on our programmer-written scenarios. Com-
pared to the previous experimental suite, which include
programs with single vulnerability, the system performed
slower, due to more complex nature of workflows in the
multiple-vulnerability programs.

We have also generated synthetic program suites for eval-
uating HACKAR on multiple-vulnerability analysis. When
errors were sequential, HACKAR was able to generate cor-
rect suggestions under a second. Figure 4 show the results of
these experiments on programs when the errors were unre-
lated (i.e., independent). The rate of performance of the sys-
tem increases with the number of the independent errors in
the programs. The fundamental reason for this performance
degradation is that there are larger number of possible causal
explanations to learn when programs have independent er-
rors. This is a similar research issue as in Diagnosis prob-
lems (De Kleer and Williams 1987), and we are currently
working on ideas to borrow from that literature.

Standalone evaluation of JPF within HACKAR
We have also performed an evaluation of the generaliza-
tions we made to the vanilla JPF. Most notably, we per-
formed an ablation study in order to evaluate the impact of

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	

IsI
nt	

IsW
ord
	

IsG
rey
	

Ad
d	

Re
ge
xM
atc
h	

IsA
na
gra
m	

Sim
ple
Ca
lc	

CP
U
	 T
im

es
	 (s
ec
s)
	

JPF	 Symbolic	 Pathfinder	 HACKAR	 Test	 GeneraDon	

Figure 5: Comparison of the JPF’s performance on pro-
grams with string inputs with our JPF-variant that uses
grammar-based string generation. The original JPF was only
able to generate test cases for the program “IsWord,” which
contains only primitive string comparison operation.

our test-generation algorithms we integrated in JPF. Figure
5 shows the results of the experiments, where we compared
HACKAR with JPF using our grammar-based test genera-
tion over strings and with JPF without those new techniques.

JPF’s test input generation algorithms (Visser, Pasareanu,
and Khurshid 2004) allow simple string operations in sym-
bolic and concrete execution, but cannot handle string inputs
and operations in general. Our experiments showed that the
new grammar-based algorithms we have incorporated into
JPF alleviate this shortcoming; HACKAR with the new al-
gorithms were able to generate execution traces for all of our
programs with string inputs, whereas JPF was able to handle
only one of the programs.

Additional experiments with JPF demonstrated that JPF
can require considerable time to execute programs with
many paths. In such cases, we impose a limit on the number
of paths executed. We are currently researching alternative
search strategies to quickly identify a subset of the most im-
portant program execution paths. By important paths, we
seek those that are qualitatively different and exhibit either
error-free or erroneous program behavior.

Conclusions and Future Work
We have described HACKAR, our novel architecture that
combines program analysis and AI techniques in a unique
way in order to discover vulnerabilities in Java programs and
learn how to fix them. The learned information is returned
to the programmer during development time as suggestions
on how to protect his/her program. Experiments show that
HACKAR can provide correct suggestions for fixing pro-
gram vulnerabilities in 100% of our experimental suite, and
it does so within a few seconds in most of the scenarios.

We are currently working to generalize HACKAR’s
scope of programs to include analyzing complex Java ob-
jects and external library calls/execution within Java pro-
grams. The latter is particularly useful for mobile apps writ-

ten in Java or Java-like languages such as Android programs
and in Web service analysis.

HACKAR can also be used for autonomic analysis and
reasoning problems, where a program can monitor itself
against potential vulnerabilities. As a near-future work,
we’re investigating this prospective research direction based
on the technologies in HACKAR.

Acknowledgments. This research is funded by Contract
N00014-12-C-0239 with Office of Naval Research (ONR).
The views expressed are those of the authors and do not re-
flect the official policy or position of the U.S. Government.

References
De Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults.
Artificial intelligence 32(1):97–130.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Semantics for hi-
erarchical task-network planning. Technical Report CS TR-3239,
UMIACS TR-94-31, ISR-TR-95-9, University of Maryland.
Fox, M., and Long, D. 2001. PDDL+ level5 : An extension to
PDDL2.1 for modeling domains with continuous time-dependent
effects. technical note, University of Durham.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research (JAIR).
Havelund, K., and Pressburger, T. 2000. Model checking java
programs using java pathfinder. International Journal on Software
Tools for Technology Transfer 2(4):366–381.
Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2009. Learning hier-
archical task networks for nondeterministic planning domains. In
IJCAI-09.
Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2010. Learning methods
to generate good plans: Integrating htn learning and reinforcement
learning. In AAAI-10.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-MAKER:
Learning HTNs with minimal additional knowledge engineering
required. In AAAI-08.
McDermott, D. 1998. PDDL, the planning domain definition lan-
guage. Technical report, Yale Center for Computational Vision and
Control.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research (JAIR) 20:379–404.
Reiter, R. 1991. The frame problem in the situation calculus: A
simple solution (sometimes) and a completeness result for goal re-
gression. In Lifschitz, V., ed., Artificial Intelligence and Mathemat-
ical Theory of Computation: Papers in Honor of John McCarthy,
(Ed.). Academic Press.
Visser, W.; Havelund, K.; Brat, G.; Park, S.; and Lerda, F. 2003.
Model checking programs. Automated Software Eng. 10(2):203–
232.
Visser, W.; Pasareanu, C. S.; and Khurshid, S. 2004. Test input
generation with java pathfinder. ACM SIGSOFT Software Engi-
neering Notes 29(4):97–107.

