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Abstract— Advanced capabilities planned for the next gener-
ation of unmanned aircraft will be based on complex new al-
gorithms and non-traditional software elements. These aircraft
will incorporate adaptive and intelligent control algorithms that
will provide enhanced safety, autonomy, and high-level decision-
making functions normally performed by human pilots, as well
as robustness in the presence of failures and adverse flight
conditions.

This paper discusses the characteristics of adaptive algo-
rithms and the challenges they present to certification for
operation in the National Airspace System (NAS). We provide
mitigation strategies that may make it possible to overcome
these challenges.

I. INTRODUCTION

There are serious barriers to the deployment of unmanned
aircraft having the advanced capabilities necessary to op-
eration safely and autonomously in the NAS, especially
for those based upon software including adaptive control
(AC) and artificial intelligence (AI) algorithms. Current civil
aviation certification processes are based on the idea that the
correct behavior of a system must be completely specified
and verified prior to operation. While systems based on
artificial intelligence and adaptive algorithms can be found
in military and space flight applications, they have had
only limited use in civil airspace due to the constraints and
assumptions of traditional safety assurance methods. These
barriers will delay or prevent the deployment of crucial safety
functions and new capabilities that could be of great value to
the public. A more complete version of the assessment and
results presented here can be found in [1].

We begin with an overview of the current certification
process for civil aircraft. As we later consider the character-
istics of adaptive and intelligent algorithms, this will provide
the background for understanding the challenges that the
certification process might present for deployment of these
algorithms.

Certification is defined in DO-178C [2] as legal recog-
nition by the certification authority that a product, service,
organization or person complies with the requirements. Such
certification comprises the activity of technically checking
the product, service, organization or person and the formal
recognition of compliance with the applicable requirements
by issue of a certificate, license, approval or other documents
as required by national laws and procedures.

The requirements referred to in this definition are the gov-
ernment regulations regarding the airworthiness of aircraft in
the NAS. Note that software itself is not certified in isolation,
but only as part of an aircraft.
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Certification differs from verification in that it focuses on
evidence provided to a third party to demonstrate that the
required activities were performed completely and correctly,
rather on performance of the activities themselves. Also
note that certification connects a product or design to legal
requirements for its safety. Therefore, it is possible for a
design to be safe but not certifiable if it is not possible to
produce the type of evidence required by the certification
process or if the certification authority is for some reason
not convinced of the adequacy of the evidence provided.

Military aircraft fall under an entirely different legal
framework. Civil aircraft certification differs significantly
from military airworthiness certification due to differences
in public safety expectations, operational requirements, and
procurement processes. Airworthiness of military aircraft is
defined in MIL-HDBK-516B. Military aircraft certification
is part of the procurement process, since the military branch
that is buying the aircraft is also responsible for certifying its
airworthiness as part of accepting the product. This partially
explains why some adaptive and intelligent algorithms have
been deployed in military aircraft for many years, but not
commercial aircraft.

In the U.S., the legal requirements for aircraft operating
in the NAS are defined in the Code of Federal Regulations,
Title 14 (14CFR), Aeronautics and Space. The purpose of
certification is to ensure that these legal requirements have
been met.

The important observation here is that any changes to the
certification process that we may eventually want to consider
to facilitate deployment of adaptive or intelligent systems
must still ensure compliance with 14CFR. A detailed review
of these requirements will be necessary to be sure that there
are no legal barriers to deployment of adaptive or intelligent
systems, in addition to any barriers related to the current
certification process.

II. ADAPTIVE SYSTEMS

Feedback control laws are designed to ensure stability,
reject disturbances, and improve specific response charac-
teristics of a dynamic system. If the dynamics of the system
are well-known and the disturbances well-understood, then
a single control policy may be designed that is robust to
all possible variations in the system dynamics. On the other
hand, if the system carries significant uncertainty or spans a
large range of dynamic behavior, then the potential variations
in the model may be so large as to prevent a single robust
control policy. In this case, it is necessary that the control
system be adaptive to changes that emerge in the system.
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Fig. 1. The roles of an adaptive intelligent system in closed-loop control.

Traditionally, the computational element designed to con-
trol the system is fixed. The characteristics of the system may
change significantly in response to changes in the mission,
environment, threats, or failures— all of which are uncertain.
However, the instructions that implement the “analyze and
decide” steps in Figure 1 are developed in some software
which is inherently deterministic, and that software is subse-
quently certified relative to the original system requirements.
This is not the case for systems including adaptive control
and artificial intelligence algorithms.

1) Adaptive Control: Adaptive Control (AC) refers to
control policy with 1) parameters that may be adjusted,
and 2) some mechanism for automatically adjusting those
parameters online based on measured performance.

Research in adaptive control dates back to the 1950’s, as
flight control engineers worked to design automatic control
policies for a new breed of experimental aircraft, most
notably the X-15 [3]. As these new aircraft were capable
of reaching higher altitudes and faster speeds, they stretched
the flight envelope beyond the point where a single control
policy could be used throughout.

Continued research in adaptive control theory has led
to a rich mathematical framework to support the design
and analysis of adaptive control algorithms. Several distinct
methods are discussed in Section III.

2) Artificial Intelligence: Artificial Intelligence (AI)
refers to a broad class of computational methods that are de-
signed to operate with intelligence, primarily by 1) learning
from experience, and 2) making decisions based on learned
information to achieve a goal.

This notion of intelligence is appropriate as we consider
the utility of AI in aviation, as well as a roadmap to certifi-
cation. Two of the characteristics, learning and adaptation,
are the main ingredients for both AC and AI methods,
providing the functional basis for enhancing performance and
robustness over traditional methods.

3) Nondeterminism: One other term that we should deal
with at the outset is nondeterminism. Adaptive systems are
sometimes characterized as being nondeterministic. Critics
may do this as a way to dismiss them as being impractical,
unsafe, or impossible to certify. However, this is an incorrect
generalization. There can be nondeterministic aspects to

certain adaptive algorithms, but we need to be precise about
the mechanism involved and whether or not it impacts safety
and certification considerations.

There is no explicit requirement for determinism in current
certification standards. We have identified the following types
of nondeterminism that may be relevant for our discussion:

a) Environmental nondeterminism: Most systems that
take input from the outside world and make decisions are
inherently dealing with nondeterministic data: we may be
able to bound the input values and predict their behavior
with mathematical models, but we cannot know in advance
all of the possible sequences of inputs.

b) Probabilistic algorithms: This includes algorithms
that are based on sampling a random process or probability
distribution. Mathematical techniques to bound the behavior
of these algorithms and prove their convergence would be
necessary if they were to be used in a certified system.

c) Uncertain existence of solutions: The existence of a
solution to a problem may be unknown, or the algorithm may
fail to find a solution within a fixed amount of time. Many
planning and optimization algorithms fall into this category.

d) Concurrency: Multi-threaded computations where
execution order impacts the result can lead to nondeter-
ministic outputs. Multi-threaded computations should either
be proven to be invariant to reordering, or synchronization
mechanisms should be used to constraint the ordering as
needed.

In the next two sections, we describe key characteristics of
various adaptive control and AI methods, and then examine
why these characteristics lead to certification challenges.

III. ADAPTIVE CONTROL ALGORITHMS

An adaptive controller, according to Astrom and Witten-
mark [3], is simply one “with adjustable parameters and
some mechanism for adjusting the parameters.” This includes
the traditional approach of gain-scheduled control which has
been used in commercial aviation for decades. With gain-
scheduled control, multiple control policies are designed a
priori at specific points within a multi-dimensional operating
space. For aircraft, this space is called the flight envelope.
Based on the aircraft’s flight condition within this envelope,
an appropriate set of control parameters (or gains) is selected
from the pre-designed set of control policies.

A. Gain Scheduled Control

A traditional feedback control structure with gain-
scheduling is shown in Figure 2. With gain-scheduling, the
adaptation method is a simple table lookup. In practice,
it is multi-dimensional space discretized into a grid of
distinct flight conditions, and a unique set of controller gains
designed for each grid point. As the aircraft state gradually
moves around within the flight envelope, the pre-computed
gains for the nearest set of flight conditions are used to
determine the appropriate gain values at the current flight
condition. This operation is typically done using a table
lookup with interpolation.
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Gain scheduling is widely used in certified avionics ap-
plications. However, there are still potential assurance issues
associated with it. For example, there are no performance
guarantees in between design points. Furthermore, it is
impractical to capture all possible model variations with a
finite set of grid points.
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Fig. 2. Feedback Control with Gain Scheduling

B. Indirect Adaptive Control

A block diagram for indirect adaptive control (IAC) is
shown in Figure 3. Here, the control signals and measured
response of the system are used to perform system identifi-
cation; this is where the online parameter estimation occurs.

The main difference between gain scheduled and adaptive
control is that in the adaptive system, the controller design
step is automated. An obvious advantage of the adaptive
system, therefore, is that it removes the burden of having
to design and store a large set of control gains. In order
for the adaptive system to provide the desired performance
characteristics, the parameter estimation step must converge
sufficiently fast. Characteristics of indirect adaptive control
include:
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Fig. 3. Indirect Adaptive Control (IAC)

Convergence rate: For indirect methods, parameter conver-
gence is more complicated as the correct value to which it
converges to keeps changing as the system identification con-
tinues to identify the model. Thus the rate is unpredictable.
Additionally, presence of noise or inadequate excitation
signal may make convergence slower.

High frequency dynamics: A large adaptive gain has the
potential to lead to high-frequency oscillations which can

excite the unmodeled dynamics that could adversely affect
robustness/stability of an adaptive control law [4]

Persistent excitation: The input signal must have proper-
ties for parameters to converge. Otherwise, the error goes to
zero but the parameters do not necessarily converge to their
correct values.

Transient effects: Choices of underlying design methodol-
ogy that leads to oscillation or ringing should be avoided.
Also, initial transients depends upon the initial values of the
estimator.

C. Direct Model Reference Adaptive Control

Figure 4 shows a direct form of model reference adaptive
control (MRAC). The command input is supplied to a refer-
ence model, which represents the desired dynamic behavior
of the system. The output of this reference model is the
desired response, which is compared to the actual measured
response of the system to give the error. Characteristics of
MRAC include:
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Fig. 4. Direct Model Reference Adaptive Control (MRAC)

Convergence rate: Parameters converge to the correct
value based on the reference model either gradually or
rapidly. This rate of convergence depends upon the value
of gain. For low values of gain the rate increases with gain
but for higher values of gain the behavior is unpredictable.

High frequency dynamics: Faster convergence requires
a large adaptive gain which has the potential to lead to
high-frequency oscillations which can excite the unmodeled
dynamics that could adversely affect robustness/stability of
an adaptive control law [4].

Lack of parameter convergence: The error goes to zero but
the parameters do not necessarily converge to their correct
values. The input signal must have specific properties for
parameters to converge.

D. L1 Adaptive Control

A relatively new methodology called “L1 adaptive con-
trol” (or L1AC) addresses the challenge of simultaneously
achieving both desired transient performance and guaranteed
robustness properties [6]. One representation (though not
representative of every possible architecture) of L1AC is
shown in Figure 5. Comparing this to the MRAC diagram,
the two main architectural differences with L1AC can be seen
clearly. Namely, a low-pass filter is applied to the control
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output at an appropriate location in the architecture, and the
estimated control parameters are fed to the reference model,
making it a state predictor.
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Fig. 5. L1AC - L1 Adaptive Control Structure

With the decoupling of estimation and control provided
by the L1AC scheme, the adaptive gain can be increased to
improve transient performance without introducing high-gain
feedback in the control channel. For a conventional MRAC,
the time-delay margin of the closed-loop system vanishes to
zero as the adaptive gain is increased. In contrast, the time-
delay margin for L1AC remains bounded away from zero,
guaranteeing a certain level of robust stability.

One possible issue associated with L1AC is related to
its compuational demands. The L1-adaptive control method
seeks to decouple the estimation loop from the control loop,
enabling the adaptive gain to be arbitrarily high. However,
the large adaptive gain leads to high bandwidth channels
in the estimation loop which requires fast processing. This
can potentially place unrealistically high demands on the
computer hardware.

E. Adaptive control with Neural Networks
The adaptation method for indirect adaptive control archi-

tectures can be executed with a neural network [7]. Neural
networks (NN), which are discussed in Section IV-B, are
effective at approximating continuous nonlinear functions,
which make them well-suited for system identification. This
represents the learning component of indirect adaptive con-
trol. When implementing a NN for adaptive control, the
network weights may be trained offline, or they may be
dynamically updated online. Characteristics of NN include:

Convergence For online neural networks, the convergence
rate for training has to be sufficiently fast in order to make
performance guarantees. Different types of optimization al-
gorithms may be used to train neural networks, depending
on the size and structure of the problem, such as gradient
descent, evolutionary algorithms, and simulated annealing.
While these methods have different convergence properties,
neural network training typically suffers from slow conver-
gence due primarily to the prevalence of flat regions of the
objective function and the large multi-dimensional space over
which the search must take place.

Transient effects Using a neural network that has not yet
converged as a means of performing system identification
can introduce undesired transient effects.

System'Controller'
(updated'gains)'

command' response'

control'
signals'

Controller''
Design'

System''
Iden8fica8on'

controller''
gains'

feedback'
signal'

Adapta8on'Method'

Neural'Network'
ONLINE&Training&

Fig. 6. Indirect Adaptive Control using a Neural Network with Online
Training.

Overfitting Poor generalization to new inputs is a common
issue with neural networks. THis can be overcome by train-
ing with diverse data sets that capture all dynamic conditions.

Adequacy of design The existence of solution is not
guaranteed.

F. Adaptive Control Summary

Although the field of adaptive control has matured signif-
icantly, there are still a number of issues that require further
research. Previous studies such as [5] and [8] identified
several open problems, some of which have been addressed
by modifying the architecture of some of the existing adap-
tive control technologies. The resulting approaches are L1-
adaptive control, and combinations of direct and indirect
approaches.

Remaining issues for adaptive control can be attributed
to the execution of methods in real time that deal with the
estimation and update of values, and they can be grouped into
convergence and values of adaptive gain. Online monitoring
methods need to be deployed to check the safety bounds and
assure stable transient response. Furthermore, the stability
criteria for traditional control do not apply to adaptive control
due to the nonlinear characteristics of adaptive control. It
should be reasonable to replace the phase margin with a
time delay margin as one measure of stability for adaptive
control.

Finally, it is important to consider the issue of non-
determinism. Because the adaptive gains are computed as
a result of a feedback process with stochastic inputs, their
values are inherently non-deterministic. For many, this is
immediately perceived as a negative characteristic of the
algorithm, and a stumbling block for safety assurance. How-
ever, at a recent autonomy workshop hosted by the AIAA
Intelligent Systems Technical Committee [9], it was observed
that in a traditional PID controller, the integrator state reaches
a steady value at a trim flight condition. Due to small
variabilities between aircraft and the stochastic nature of the
input signals provided to the controller, the internal value
of this integrator state is also non-deterministic. The reason
this is not perceived as a problem is because the internal
state is computed as a result of a stabilizing feedback law.
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Arguably, the same claim can be made for the gains in an
adaptive controller.

IV. ARTIFICIAL INTELLIGENCE ALGORITHMS

The field of artificial intelligence consists of a diverse set
of computational methods whose common trait is that they
are either grounded in or inspired by human intelligence. In
this section, we provide an overview of several different AI
methods and algorithms.

A. Machine Learning

Machine learning deals with the design and study of
systems that learn from data. The process by which learning
is achieved can take on many different forms. In general,
though, the purpose of learning is to improve the perfor-
mance of a task based on experience. In this sense, the
claim that learning has occurred is evidenced by the fact that
performance has improved after the gathering of experience.

In supervised learning, algorithms are trained on specific
input data sets that have a corresponding desired output. The
objective in this training phase is to generalize a function
or mapping from inputs to outputs which can then be used
to predict outputs for new, previously unseen inputs. With
unsupervised learning, the input data sets do not have a
corresponding desired output. Instead, the learning objective
is to discover structure in the data. Reinforcement learning
is focused on the use of intelligent agents to accumulate
knowledge and develop policies. As the agent takes action it
changes its state within the environment, producing an out-
come and an associated reward. Characteristics of machine
learning may include:

Stochastic processes The algorithms that implement the
discovery process can be stochastic in nature, explicitly as-
signing random values to algorithm parameters. The purpose
of injecting random numbers is to promote exploration of
new parts of the state space, and thereby improve learning.
The consequence, however, is that it prevents the algorithm
from being perfectly repeatable for the same set of input
data.

Convergence The convergence rate in machine learning
depends strongly on the stochastic properties of the input
sources, as well as the learning algorithms themselves. Some
algorithms that are used in reinforcement learning can exhibit
poor convergence properties, especially if the input signals
are noisy. Others, such as Q-learning and value-iteration,
have stronger convergence properties.

B. Neural Networks

Neural networks (NN) are computational models that are
inspired by the operation of the nervous system.

The network structure is composed of nodes (neurons)
connected by links. Each node has multiple inputs and a
single “activation” output. A representative mathematical
model for node j is given as:

aj = g

(
n∑

i=0

wi,jai

)

Here, ai is the activation value from a prior node, and aj
is the activation value of the current node j. The function
g is called the activation function, which is typically a hard
threshold or a logistic function. The input to the activation
function is a weighted sum of all of n inputs to the neuron,
where wi,j is the weight for using input i at node j.

Neural networks are known to be good at pattern recog-
nition, classification, clustering, and data fitting. Essentially,
the network can be designed by adding layers and defining
the weight values in order to approximate an arbitrary
nonlinear function. Characteristics include:

Overfitting This is a general phenomenon that can impact
any type of function approximator, including NN. A useful
analogy is using a higher order polynomial to fit data when
the trend is adequately captured by the lower order model.

Convergence With most NN structures, there is no time-
bounded guarantee that the training process will converge to
an effective classifier or other NN system. Designing NNs
remains essentially an art.

C. Expert Systems

Expert systems (ES) attempt to capture the knowledge and
experience of human experts and then use this information to
form rules that suggest the best response for a given state of
the world. Structurally, an ES is composed of a knowledge
base and an inference engine. The knowledge base stores
facts and rules about the environment that the system is ex-
pected to operate within. The inference engine applies rules
from propositional logic and uses search methods, such as
forward chaining or backward chaining, to compute solutions
based on information in the knowledge base. Characteristics
of ES include:

Completeness of knowledge base In order for the ES to be
effective, the knowledge base must be provided a sufficient
amount of information in the form of primitive rules for
the inference engine to work with.Subjectivity of knowledge
base Multiple experts may give contradictory inputs to form
the knowledge base. In such cases, it is an open question
of how to properly identify which set of rules is correct,
because the notion of correctness is not clearly defined. Long
run times Inference engines effectively apply some type of
SAT solver to check whether the input data is supported
by the rule base. For large knowledge bases, the solution
could take extremely long run times. This could render the
ES ineffective for operational settings in which a timely
result is needed.Stochastic behavior Some algorithms used
to implement the inference engine explicitly use random
numbers to search for satisfying solutions.

D. Fuzzy Logic

The concept of “fuzzy logic” was born in the 1960’s along
with the introduction of fuzzy set theory. In classical set
theory, the membership status of an element is binary – it is
either a member of the set, or it is not. According to fuzzy
logic, elements can have a partial “degree of membership”
within a set. The extent to which an element is in the set
is defined by a membership function, which is valued in
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the interval [0,1]. The application of fuzzy logic in control
systems has been proposed for a variety of applications, in
aviation [10].

The whole point of fuzzy logic is to provide an effective
way to deal with imprecision. Consequently, fuzzy logic
algorithms themselves are also grounded in ambiguity. The
fuzzification and defuzzification steps involve an arbitrary
mapping between precise numeric values and imprecise
conceptual states. These steps rely on the use of membership
functions, which could be fully defined a priori, or learned
during execution via machine learning. In either case, there
is no universal way of assessing the merit and quality of the
membership functions.

E. Planning and Scheduling

Automated planning and scheduling systems are designed
to find strategies or action sequences that achieve set goals.
Given a description of the possible initial states of the world,
a description of the desired goals, and a description of a set
of possible actions, the planning problem is to find a plan
that is guaranteed (from any of the initial states) to generate
a sequence of actions that leads to one of the goal states.
Planning problems can often also be reduced to equivalent
satisfiability and model checking problems, so solvers from
those research areas can also be used.

Planning and scheduling systems have been successfully
deployed in numerous real-world applications, including
control of satellites and space telescopes. However, they
generally include critical aspects that would make them chal-
lenging to certify. Most planners use deterministic algorithms
but solve problems that are at least NP-complete, which
means that their execution time on new problems is not
predictable. Many planning problems have no solution so
it is not possible to know whether a solution exists without
actually solving the problem.

F. Evolutionary algorithms

Evolutionary algorithms (EA) are a class of heuristic
methods that have proven very effective at solving global
optimization problems. The general process of solving an
optimization problem involves finding a candidate solution
that satisfies constraints, evaluating the utility of that solu-
tion, and then progressing to a better solution. In the context
of an EA, candidate solutions represent individuals in a
population, and the quality of each solution is measured
by a fitness function. The process of the EA begins by
generating an initial population (a set of candidate solutions),
which may be done randomly or through some deterministic
method – this represents the first generation. The fitness
of each individual in this generation is then evaluated, and
the best-fit individuals are selected for “reproduction”. In
the reproduction process, new individuals are created by
applying crossover and mutation operations to the fit parents.
Finally, the next generation is created by replacing the least-
fit individuals with the newly created offspring, and the
process repeats. Some examples of applications for civil
applications are trajectory optimization, departure and arrival

scheduling in air traffic control, and large scale coordinated
route planning by airlines. Relevant characteristics of EA
include:

Existence of solution Some optimization problems are
constrained to the point where no feasible space exists. The
constraints are sufficiently complex, though, that the non-
existence of a solution cannot be known until a solution is
attempted.

Randomness The crossover and mutation operations are
inherently random in nature. Random perturbations are ex-
plicitly introduced in order to create new candidate solution
sets.

Premature convergence EAs are susceptible to premature
convergence, where the algorithm converges with a subopti-
mal solution before reaching the global optimum.

G. Artificial Intelligence Summary

There are many other AI methods that we have not
covered, including Cognitive Architectures, Machine Vision,
Qualitative Physics, and Natural Language Processing. These
are addressed in the full technical report for the project.

Each of these AI methods have characteristics that make
them challenging to use in the operational setting of civil avi-
ation, which has requirements for safety assurance, resource
constraints, and time-critical performance.

Is there a solution? With planning, model-checking, and
optimization problems, the existence of a solution is not
guaranteed. For larger, more complex problems, it may take
a significant amount of computational resources and time to
reach this conclusion.

How long will it take to reach the solution? Many of the
AI methods are recursive or iterative in nature. The algorithm
must converge to a usable solution within a reasonable
amount of time in order to be useful in an operational setting.

Is the solution correct? Ambiguity is built in to in a
number of methods. The inability to precisely prescribe
correctness or incorrectness to the information used in the
algorithm or the results of the algorithm makes it difficult to
test and validate.

Can the solution be repeated? Several methods explicitly
inject randomness as part of the algorithm to improve con-
vergence and discovery, but the inherent drawback is that it
prevents the algorithms from being repeatable. This can lead
to challenges in testing and validation.

V. CERTIFICATION CHALLENGES

Having examined the characteristics of adaptive systems,
we will next consider how these characteristics can lead to
challenges in the certification process. Current civil certifica-
tion processes are based on the idea that the correct behavior
of a system must be completely specified and verified prior
to operation. The fact that adaptive systems change their
behavior at run-time is contrary to this idea in many ways. In
general, many AI methods have unique characteristics that
do not fit naturally within context of existing certification
guidelines. This is due to the fact that the certification
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policies, conceived decades ago and still in use today, were
not written with the needs and capabilities of AI in mind [10].

In this section we will use the characteristics of adaptive
systems that have been described to identify categories of
challenges that arise from those characteristics.

A. Comprehensive requirements.
One persistent challenge presented by adaptive systems is

the need to define a comprehensive set of requirements for
the intended behavior. The dynamic nature of these systems
can make it difficult to specify exactly what they will do at
run-time.

1) Complete description of desired behavior.: Require-
ments must be measurably complete in the sense that ex-
ecution of the test cases derived from them will provide
complete structural coverage of the source code (up to the
coverage metric required by the software assurance level).
Creating a set of requirements that completely describes the
desired system behavior and provides structural coverage can
be difficult even for conventional systems. Defining such
requirements for adaptive systems is likely the most common
and difficult challenge that we have identified in this study.

2) Decomposition of requirements.: System requirements
must be decomposed and allocated to hardware and software
in the system design. These allocated requirements must
together guarantee that the system-level requirements are
satisfied. Defining the necessary software requirements to
guarantee the stability, convergence, and boundedness is
a challenge that must be addressed for adaptive control
algorithms.

B. Verifiable requirements
Assuming that an applicant is able to define a comprehen-

sive set of requirements for an adaptive system, it may be
difficult to verify those requirements.

1) Availability of verification method.: One necessary
characteristic of a good requirement is that it must be
verifiable. This means that there must be some verification
method available that is appropriate for the artifact and the re-
quirements that are to be verified. Some of the components in
AI algorithms may present challenges of this sort. What are
the requirements for an inference engine and how should its
behavior be verified? How can we show that a rule database
in an expert system is correct? Furthermore, adaptive systems
often involve discrete and non-linear operations that may now
need to be verified analytically due to their complexity. Areas
where new verification approaches may be required include:

Verification of hybrid systems. This involves modeling
the discrete and continuous domains together to verify the
correctness of the overall system. It exercises the interaction
of these two domains so a more realistic model of the overall
system can be evaluated. Model checking of hybrid systems
has the potential to address trust issues with certain types
of non-linear behavior, and current research is continuing to
improve scalability.

Verification of non-linear systems. New decision proce-
dures to reason about non-linear operations are being devel-
oped and incorporated into advanced model checking tools.

2) Well-defined behavior.: Another important character-
istic of a good requirement is that it must be possible to
determine if a test (or analysis) produces the correct result.
This may be difficult to define a priori for some adaptive
systems.

3) Implementation language.: The implementation lan-
guage for AI software may present another challenge. Cur-
rent certification guidance assumes the use of imperative
languages like C/C++, while many AI algorithms are im-
plemented in functional languages like Lisp or ML. We are
not aware of any tools for computing coverage metrics for
functional languages. In fact, it is not clear that structural
coverage is a meaningful measure of completeness for func-
tional languages.

4) Structural coverage.: Structural coverage metrics are
a key certification objective to demonstrate completeness of
requirements, adequacy of test cases, and absence of unin-
tended behaviors. If structural coverage cannot be obtained
for the software in an adaptive system, some other methods
will be needed to satisfy the underlying objectives. DO-333
provides some direction as to how this might be done using
formal analysis in place of testing, but this has not been
demonstrated for an adaptive system.

C. Documented Design

Many certification requirements amount to providing de-
tailed documentation of the system. This may present diffi-
culties for some adaptive systems if they were not initially
developed with certification in mind.

1) Control of source code.: Many AI systems are based
on large open source libraries produced and revised over
time by many different organizations. This software would
need to be brought under active configuration control to pre-
vent unauthorized changes that could invalidate verification
results or add unintended functionality.

2) Traceability.: Traceability (among requirements, test
cases, and code) is an important element of the current cer-
tification process. Traceability may be difficult to implement
when software is based on open source libraries developed
by many different people and organizations.

D. Transparent Design

The certification process assumes a that perspicuous, trans-
parent design and software implementation is being pre-
sented for evaluation. Since the certification authorities must
be convinced that requirements have been met, they must (at
least to some reasonable degree) be able to understand the
artifacts and evidence that is brought before them. This may
be challenging in several ways.

1) Deterministic behavior.: As noted earlier in this report,
we have to be careful how we use this term. In many cases,
the adaptive algorithm itself is not nondeterministic. It is
just handling uncertainty in the environment or the vehicle
operating condition, in the same way that any control system
responds to its sensed environment. On the other hand, there
are some algorithms that make use of stochastic processes
as part of their computations. This may even be acceptable
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if there are accompanying proofs of convergence or correct
behavior. However, current certification process is based on
an expectation that algorithms are deterministic; that is, the
computed results, computation time, and resource utilization
are predictable at design time. Any real lack of determinism
will present challenges for current certification processes.

2) Conventional design artifacts.: Many AI algorithms
include unconventional design artifacts. By this we mean
computing methods, data structures, or languages that are
unfamiliar to certification authorities. Thus, there can be
an expertise gap between system developers and regulators.
This gap will make it difficult to convince regulators that
an adaptive system based on unconventional methodologies
satisfies certification requirements.

3) Complexity.: The complexity of conventional software
designs already stretches the capabilities of current verifica-
tion technologies, and can be very difficult for a reviewer
(or developer) to completely understand. Adaptive systems
include embedded models, solvers, and new algorithms that
greatly increase their complexity compared to conventional
systems. Just the amount of software involved can present a
significant challenge to understanding and verification, inde-
pendent of any more sophisticated measures of complexity.

4) No unintended functionality.: Another consequence of
complexity is that it is more difficult to demonstrate the
absence of unintended functionality. This is an important
objective of the verification process.

VI. MITIGATION STRATEGIES

In this section we discuss several potential approaches to
dealing with these certification challenges. There are three
questions to be asked in approaching certification of an
adaptive system:

1) Does the algorithm provide a significant benefit (in
terms of safety or performance) compared to current
approaches? In other words, is it providing a benefit
that cannot be accomplished using current approaches?
If not, an implementation based on traditional (non-
adaptive) technology is preferable and there is no need
to proceed further.

2) Is the algorithm dependable? Can we actually demon-
strate the safety of an aircraft that relies on this
algorithm? There must be some rational basis for
believing that the technology does what it claims to
do. If not, then there are fundamental issues with use
of this technology in a safety-critical application apart
from certification considerations.

3) Can we produce a convincing argument that the al-
gorithm is dependable? There may be barriers in the
current certification process to producing or presenting
this evidence, but in principle, we should be able to
modify our processes to accommodate this if there are
clear benefits to doing so.

If we have answered the first two questions affirmatively,
then it is worth considering what strategies might allow us
to achieve certification for an that aircraft includes adaptive

systems. The following sections describe mitigation strate-
gies that may provide a way forward for some of the adaptive
systems we have evaluated. Certification of adaptive systems
may require a combination of these strategies.

A. Education

In our experience, there can be an expertise gap between
developers and regulators when it comes to adopting new
technologies. In fact, the commercial aviation industry is
itself very conservative and (for good reason) usually re-
luctant to switch to the latest technology. However, we are
convinced that for some adaptive algorithms this reluctance
is unwarranted. Some approaches to adaptive control (such
as those based on the L1 methodology) have been proven to
be dependable and predictable in flight tests, and there seem
to be no actual barriers to their certification. In fact, the very
purpose of the adaptive component in these cases is to make
the aircraft safer to fly when unsafe conditions are encoun-
tered. The roadblocks appear to consist of misunderstandings
and misapplied descriptions (such as “nondeterministic”). In
this case, no changes to the certification process are required.
We would overcome the perceived barrier with a combination
of education and demonstrations that the new technology can
be certified using current processes.

B. Modified Certification Standards

Current standards assume static behavior specifications for
aircraft functions. It may be possible to relax this assumption
and other constraints in a principled way. The goal here
would be to modify our existing standards in a way that
retains the underlying safety principles, but also permits a
more dynamic software structure. In some ways, this can
be seen as analogous to the work undertaken in developing
DO-178C to accommodate new technologies such as formal
methods and model-based software development. The same
approach could be used to provide new guidance in the form
of a Technology Supplement directed toward certain classes
of adaptive systems.

C. New Certification Methods

Current standards impose a fixed and implicit rationale
for system safety. For example, [12] describes work to
identify and make explicit the assurance case argument
underlying DO-178C. Researchers in the UK [11] have
previously explored ways to justify the substitution of one
technology for another while maintaining the same level of
safety provided by DO-178B. The main idea was to show
that the new technology provided evidence that was at least
as convincing as the previous technology in terms of the
underlying (implicit) safety case. Certification approaches
based on the development of a safety case for the aircraft (in-
cluding its adaptive components) would in principle provide
more flexibility to use advanced algorithms, demonstrating
the safety of the adaptive algorithm by using the most
appropriate evidence, while not sacrificing safety. However,
there is much work to be done before applicants would have
sufficient expertise to produce an accurate and trustworthy
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safety case, and regulators would be prepared to evaluate
one.

D. New Verification Approaches

Current test-based verification processes will never be
sufficient to assess the behavior of adaptive systems. Factors
such as software size, complexity, unconventional artifacts,
probabilistic computations, and large state spaces have been
discussed as reasons for the difficulty of testing. Testing
will have to be replaced or augmented by analysis based on
formal methods or other mathematical techniques from the
control theory or computer science domains. An example
of a verification approach not currently allowed would be
a probabilistic analysis that shows that an algorithm is
sufficiently likely to converge to a solution within a given
deadline.

E. Architectural Mitigations with Certification Support

Suppose that we are to certify an adaptive function that
provides some advanced capability related to improved per-
formance or recovery from a failure or upset, but we are
unable to verify the behavior of the function with the required
level of assurance. In some cases it may be possible to bound
the behavior of the adaptive function by relying on a carefully
designed system architecture. The key idea is to be able
to treat the adaptive system differently based on when it
executes (e.g., during different phases of flight).

One approach is called the simplex architecture [13]. It
relies on three smaller, high-assurance functions: a system
status monitor, a simpler backup for the adaptive function,
and a switching function. During normal operation, outputs
from the adaptive function are used by the rest of the
system. If the monitor detects that the adaptive function is not
behaving correctly (e.g., it has not converged, or computed
new output before its deadline) or the system as a whole is
approaching a state in which correct behavior of the adaptive
function has not been verified, then the system will switch to
using outputs from the simpler backup function. There are
a number of technical challenges in this approach related
to defining the switching boundary and blending smoothly
from the adaptive function to the backup. For example,
unwanted and potentially unsafe transient effects could be
introduced if the transition mechanism were not designed
properly. However, the inherent advantage in this approach
is that, due to the architecture design, the safety of the vehicle
never depends soley upon the adaptive function. The adaptive
function is used during “normal” operating conditions and
switched off during “abnormal” conditions when it might
not be dependable.

An alternative approach uses a complex adaptive function
to recover the vehicle in the case of a catastrophic failure or
upset condition. In this case there is a conventional system
that is used during normal flight operation, and a high-
assurance monitor and switch that only invokes the adaptive
system when the vehicle would otherwise be destroyed. The
function of the monitor is to guarantee that the adaptive
function is never used during normal operations. This is

similar in concept to an airbag system in an automobile.
In contrast to the first approach, the adaptive function is
switched off during “normal” operating conditions and only
switched on during “abnormal” conditions (when the vehicle
would be lost anyway).

While such architectures have been demonstrated and
could be implemented with high-assurance, the current cer-
tification process does not allow for this type of reasoning
about time-varying levels of assurance.

F. Paradigm Shift: Licensing

Perhaps the most revolutionary approach to certification
for advanced, adaptive techniques is to depart entirely from
the current paradigm and instead emulate the techniques
used to train and approve human pilots or operators. Pilots
are licensed to fly based on demonstrating knowledge and
skill through hundreds of hours of training and evaluation.
Similarly, humans performing other critical tasks such as air
traffic control are trained and tested extensively before they
enter an operational role. Extending this licensing procedure
to autonomous software would lead to an analogous system
of gained trust. Certification would be eventually attained
through extensive, though not exhaustive, demonstration of
knowledge and skill by the advanced software systems.

This approach has several key advantages. A licensing
approach would focus more resources on the actual proven
performance of a system than its development methodol-
ogy/process. One of the criticisms of DO-178C is that it
focuses more on the the development process and producing
evidence of compliance, than on evaluation of the resulting
software. According to this argument, the current process
invests thousands of person-hours in creating reams of costly,
deeply intertwined documentation that may or may not have
a direct impact on system safety. In a licensing approach,
the investment emphasis would shift towards more extensive
training, testing, and revision of the actual safety-critical sys-
tem. High-fidelity simulations are already used extensively to
test both human and synthetic systems; a licensing approach
would just increase this focus.

Once high-fidelity simulations are developed to a sufficient
level to support the bulk of training and testing autonomous
systems, the cost of re-testing and re-licensing a new or re-
vised system would become dramatically lower than current
certification costs. Currently, certified avionics systems are
essentially cast in stone the moment they are certified. It can
cost more than $1M just to “open the box” and consider
making a change to a certified system, because of the costs
associated with re-certification.

A licensed system would not have an implied guarantee
of perfection, it would have a proven track record of per-
formance. Properly legislated, this could relieve a system
developer from the legal liability that threatens all advanced
technologies. Errors by human pilots are at least a contribu-
tory factor in most airplane crashes. How can we make it safe
for a company to deploy an autonomous system that could
avoid most of those crashes, even if it does not eliminate all
of them?
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The licensing barrier could be much higher for an au-
tonomous system than a human, of course, because the costs
are non-recurring. Once a piece of software is class-certified
to fly a particular aircraft, for example, it can be copied
essentially for free into all other similar aircraft. This is
simply not possible with humans – we cannot duplicate a
skilled senior pilot, and it takes decades to grow another one.
So instead of requiring a few hundred hours of simulation
training and live flight before licensing, as with people, an
autonomous system might be required to fly for hundreds
of thousands of simulated hours, and thousands of real
hours, encountering thousands or millions of faults and
contingencies, demonstrating competency far beyond what
any human could possibly show in a lifetime.

As with any testing-based validation, one key problem
with a licensing approach is that any test-based evidence
of acceptable behavior may be completely invalidated by a
change to the system. Human abilities are remarkably robust
to changing inputs– a person may experience a momentary
muscle spasm or a power glitch in a control system, and
will still retain the skills and abilities he had earlier. Only
major medical difficulties might interfere with a pilot’s
ability to fly. For example, you cannot disable a pilot simply
by saying something to him or her. In contrast, we can
reach into the “brain” of a software system and tweak it,
and the consequences can be vast and (in the worst case)
unintentional. A single line change to a software system
may have broad, inadvertent consequences. Consequently,
evolving or changing software is much more hazardous than
exposing a human to changes, or even asking a human to
change. Hence there is a need for relatively inexpensive,
high-fidelity simulation testing environments that can be used
to essentially re-test a full range of desired behaviors in both
nominal and off-nominal situations, prior to deployment of
any revised system.

VII. CONCLUSIONS

Certification of adaptive systems is currently an active
area of research, motivated in part by the demand for UAVs
with greater autonomy in both military and civil applications.
We have proposed several possible mitigation strategies that
could provide alternative paths to eventual certification (or
some equivalent demonstration of compliance with safety
regulations) if that is determined to be desirable and appro-
priate.

Based on discussions with a number of researchers and
industry control engineers, we believe that L1 adaptive
control can be implemented as part of an aircraft control
system and certified with no changes to the current process.
Approaches that are based upon architectural mitigations
may be realizable with relatively minor modifications to
the certification process. Some approaches that we have
discussed will require more extensive changes to the cer-
tification process, such as the use of run-time verification to
guarantee that the outputs of a planning algorithm are safe
for the guidance system to enact. A license-based approach
to autonomous control systems is clearly the most radical

departure from the current certification regime. However,
recent developments in autonomous cars show that this
approach may find public and governmental acceptance in
the near future.
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