
Offline Monte Carlo Tree Search for Statistical Model Checking of Markov
Decision Processes

Michael W. Boldt, Robert P. Goldman, David J. Musliner,
Smart Information Flow Technologies (SIFT)

Minneapolis, USA
email: {mboldt,rpgoldman,dmusliner}@sift.net

Abstract

To find the optimal policy for large Markov Decision Pro-
cesses (MDPs), where state space explosion makes analytic
methods infeasible, we turn to statistical methods. In this
work, we apply Monte Carlo Tree Search to learning the opti-
mal policy for a MDP with respect to a Probabilistic Bounded
Linear Temporal Logic property. After we have the policy,
we can proceed with statistical model checking or probability
estimation for the property against the MDP. We have im-
plemented this method as an extension to the PRISM proba-
bilistic model checker, and discuss its results for several case
studies.

Introduction
Model-checking has been very successful in identifying and
removing faults in conventional hardware and software. For
small problems, dynamic programming methods can give
exact analytic results. For large problems, where state ex-
plosion makes dynamic programming infeasible, we turn to
statistical methods.

We bring two contributions to the field of statistical model
checking:

Time-sensitive policies One weakness of state of the art
statistical model checking methods is that they typically
only consider memoryless policies. However, bounded-
time properties in general have time-sensitive optimal
policies. Our approach takes time into consideration
when learning the optimal policy.

Smarter sampling Seeing the success of Monte Carlo Tree
Search (MCTS) in fields like computer Go, we bring
MCTS to the field of statistical model checking. State
of the art MCTS methods do a good job balancing explo-
ration of the model with the exploitation of actions which
look promising. We use this property of MCTS methods
to take smarter samples while learning the optimal policy
for a model with respect to the property of interest.

Background
Markov Decision Processes
Definition 1 State-Labeled Markov Decision Process

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(MDP):1 a tupleM = 〈S, s̄, A, τ,L〉, where

• S is the set of states;
• s̄ ∈ S is the initial state;
• A is a finite set of actions;
• τ : S × A × S → [0, 1] is a transition function such that

for each s ∈ S and a ∈ A, either
∑
s′∈S τ(s, a, s′) = 1

(a is enabled) or
∑
s′∈S τ(s, a, s′) = 0 (a is disabled),

and ∀s ∈ S there is at least one enabled action;
• L : S → 2λ is a labeling function, mapping each state to

the set of atomic propositions (λ) true in that state.

Definition 2 Memoryless policy (scheduler) of an MDP: a
resolution of the nondeterminism over the actions in each
state, depending only on the current state. That is, a func-
tion σ : S × A → [0, 1] such that

∑
a∈A σ(s, a) = 1 and

σ(s, a) > 0⇒ τ(s, a) > 0, where a ∈ A and s ∈ S.

The optimal policy for a time-bounded property of an
MDP is not necessarily memoryless, as the optimal policy
can depend on the time left. See Figure 1 for a simple, con-
crete example.2 So, we consider time-sensitive policies.

Definition 3 Time-sensitive policy (scheduler) of an MDP:
a resolution of the nondeterminism over the actions in each
state, depending on the current state and the number transi-
tions taken so far. That is, a function σ : N×S×A→ [0, 1]
such that

∑
a∈A σ(t, s, a) = 1 and σ(t, s, a) > 0 ⇒

τ(s, a) > 0, where t ∈ N is the count of transitions taken,
a ∈ A and s ∈ S.

A deterministic policy is a policy where the range of σ is
{0, 1}. It is known that if there is an optimal policy for a
MDP, there is an optimal deterministic policy.

For the purposes of verification, we wish to assess claims
in probabilistic bounded-time linear temporal logic.

Definition 4 Bounded-Time LTL Syntax:

φ := p | ¬φ | (φ ∨ φ) | F≤nφ | G≤nφ | (φU≤nφ)

where:

• p ∈ L is a set of propositions;
• n is a positive integer;

1Definition follows (Henriques et al. 2012).
2We note that, equivalently, if one can modify the model, one

can add a time counter to the state space of the model.

s0

long 1L

short 1

S

long 20.1 long 3
0.1

fail

0.1

short 2
0.001

0.001

Figure 1: A simple partial model with a time-sensitive optimal policy. Starting at state s0, with the goal of reaching fail, with
available actions L and S, the optimal policy is to take action L if there are 3 or more time units left, and S if there are 2 time
units left.

• F is the eventually modal operator, meaning φ will be
satisfied at some point before n steps;

• G is the always modal operator, meaning φ will remain
true for all of the next n steps;

• U is the until modal operator, meaning the expression on
the left will remain true (at least) until the expression on
the right becomes true.

For more details on LTL, see, e.g., (Emerson 1990).
Probabilistic Bounded LTL (PBLTL) adds a probability

modality, P , so assertions are of the form, P (φ) ≤ ψ where
φ is a Bounded-Time LTL expression and ψ is a probability
threshold For example, P (F≤12(fail ∨ deadlock)) ≤ 0.1
can be read: “there is less than a 10% chance of reaching
a failure or deadlock state within 12 time steps.” In most
cases, the verification challenge is to prove that the system
will not reach an unsafe state, within a given time, and with
greater than a certain probability.

Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) algorithms build a search
tree using random samples to heuristically find optimal de-
cisions in a given domain (Browne et al. 2012). MCTS has
found much success in fields like computer Go. Inspired by
its success in these related fields, we apply MCTS to sam-
pling large MDPs.

MCTS involves four stages:
Select Start at the root node of the tree, and use a policy

called the Tree Policy to choose actions until it finds a
node with a child that is not yet in the tree.

Expand Add a child to the tree based on the available ac-
tions on the selected node.

Simulate Take a sample of the domain from the newly ex-
panded node, using a policy called the Default Policy to
choose actions.

Backup Propagate the result of the sample through the tree
nodes it followed.
Upper Confidence Bound for Trees (UCT) is the most

popular MCTS algorithm. It treats the choice of action in
the Tree Policy as a multi-armed bandit problem (?), using
the UCB1 equation to choose which action to execute in a
given state. The equation is:

UCT = arg max
i∈A

Xi + 2Cp

√
2 lnn

ni

where

• Xi is the mean reward3 from sampling action i so far;
• n is the number of times the current node has been visited;
• ni is the number of times child node i has been visited;
• Cp is a constant exploration factor, for which the value

1/
√

2 satisfies the Hoeffding inequality when rewards are
in the range [0, 1].

This equation balances exploitation of actions with rela-
tively high observed reward against exploration of actions
which have not been visited much. The first term, Xi, tries
to exploit actions with high rewards so far. ni in the denom-
inator of the second term tries to explore actions which have
been under-explored.

Statistical Model Checking MDPs
For small MDPs, one can use dynamic programming (like
value iteration) for model checking PBLTL properties. For
large MPDs, however, state space explosion makes dynamic
programming infeasible, so we must turn to statistical meth-
ods, like those found in (?).

Kearns et al. use statistical methods to find a near-optimal
policy for infinite-horizon (discounted) MDPs with respect
to maximizing rewards (Kearns, Mansour, & Ng 2002).
Their method involves sampling each action a large, con-
stant number of times, based upon the desired accuracy. Las-
saigne and Peyronnet use Kearns’ method to find a policy,
then use that policy to perform statistical verification on lin-
ear temporal properties (Lassaigne & Peyronnet 2012). The
complexity of these methods are not affected by the size of
the MDP, but are exponential in the time horizon.

One of our research goals is to find a near-optimal pol-
icy with fewer samples, by using MCTS to choose actions
instead of sampling every action and relying on the law of
large numbers.

Henriques et al. introduced statistical model checking of
PBLTL properties of MDPs (Henriques et al. 2012). Their
algorithm alternates between using Q-learning to improve
upon its policy with respect to the property, and performing
statistical model checking on the learned policy. If the pol-
icy is good enough to (dis)prove the property, the algorithm
stops and the property is (dis)proven. Otherwise, it might be
the case that it has not learned the optimal policy yet, so it
tries to improve the policy by sampling the MDP more.

One shortcoming of that method is that it only considers
memoryless policies. In general, PBLTL properties require

3With respect to our PBLTL properties, a reward is 1 if the prop-
erty is satisfied in a sample, and 0 if it is not.

a policy with memory, as they can depend on the time left.
See Figure 1 for an example.

Approach
Our approach uses UCT to learn a policy for an MDP, trying
to maximize a given PBLTL property, and uses that policy
for statistical model checking.

To learn the policy, we build a MCTS tree where each
node represents a state and a particular time, and each edge
represents a transition to a state for the next time step. Since
this is an MDP, each move includes both a non-deterministic
action and a probabilistic transition.

The root of the tree corresponds to the initial state of the
model at time zero. From there, we use the UCT algorithm
for the select and expand steps of MCTS. For the simulate
step we use a uniform random action. For the backup step,
we update two pieces of data on each node in the path: (1)
increment n—the number of times the node has been vis-
ited, and (2) if the sample satisfies the property, increment
r—a cumulative rewards counter. From this data, we can
calculate the mean reward from sampling for a node, simply
r/n.

Currently, our algorithm takes the number of learning
samples/expansions to perform as an input parameter. Af-
ter it takes the given number of learning samples, it stops
expanding the tree and starts taking samples for statistical
model checking. It chooses actions for these samples greed-
ily in the MCTS tree, i.e., the action which maximizes ex-
pected value. Formally, it chooses the action:

arg max
a∈A

∑
s′∈Ca

τ(s, a, s′)
rs′

ns′

where

• A is the set of actions,
• s is the current state,
• Ca is the set of children of the current MCTS node reach-

able by action a,
• rs′ is the cumulative rewards in the MCTS node corre-

sponding to the child node corresponding to s′,
• ns′ is the number of times the child node corresponding

to s′ has been visited.

Note that it may be the case that the tree does not cover
all states encountered by samples. When a sample falls off
the tree, if there is another node in the tree with the same un-
derlying model state, we use the greedy action in that node.
If no node has the same state, we fall back on a uniform
random action. In future work, we would like to analyze the
frequency and effects of falling off the tree more thoroughly.

With these samples from the greedy policy, we can use
standard statistical model checking techniques to evaluate
probabilistic queries about the property. See (?) for an
overview of statistical model checking methods.

Experiments
We have implemented our approach and evaluated it on sev-
eral domains.

Name Backoff States Transitions
wlan0 0 6,063 1,0619
wlan1 1 10,978 2,0475
wlan2 2 28,598 57,332
wlan3 3 96,420 204,744
wlan4 4 345,118 762,420
wlan5 5 1,295,336 2,930,128
wlan6 6 5,007,666 11,475,916

Figure 2: Sizes of Wireless LAN models.

Implementation
We implemented our approach as extensions to the PRISM
probabilistic model checker (Kwiatkowska, Norman, &
Parker 2011). PRISM includes a discrete-event simulation
engine, which we use to traverse MDP models for sampling.

For our properties, we use the PRISM extension from
(Henriques et al. 2012) which adds support for checking
satisfaction of PBLTL properties to PRISM.

As an optimization, we collapse identical states at the
same depth in the tree (i.e., at the same time step). This
saves memory since there is only one copy, and improves
accuracy by aggregating results across different paths to the
same state.

Aside from this one improvement, we did not attempt to
optimize the CPU or memory consumption of our imple-
mentation; we leave optimization and performance analysis
to future work.

Results
To study the effectiveness of our algorithm, we varied the
number of samples used for policy learning, and used the
learned policy to compute the expected value of the proba-
bility of the property using 1000 samples.

Wireless LAN This domain is from a PRISM case study
of the IEEE 802.11 Wireless LAN protocol (Kwiatkowska,
Norman, & Sproston 2002). The protocol involves a ran-
domized exponential backoff for retransmission of collided
packets, to avoid repeated collisions. To scale up the size of
the domain, we increase the maximum backoff value from 0
to 6. See Figure 2 for the size of the models in this domain.

The property we analyze is the probability of having two
collisions within 100 time steps. The underlying probability
of this property is the same across the varying maximum
backoff parameter.

The results for this model are shown in Figure 3. We see
that 100,000 learning samples are sufficient to get very close
to the underlying probability, regardless of model size. This
indicates that, even though the size of the model grows by
several orders of magnitude, the MCTS used for learning
the policy focuses in on the important parts of the space and
finds a good policy.

IEEE 802.3 CSMA/CD This is another network proto-
col for avoiding collisions from the PRISM case studies
(Kwiatkowska et al. 2007). In this case, we scale up the

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 10 100 1000 10000 100000 1e+06

P
ro

b
a
b

ili
ty

 e
st

im
a
te

Number of samples for learning

Wireless LAN

wlan0
wlan1
wlan2
wlan3
wlan4
wlan5
wlan6

True probability

Figure 3: Results for Wireless LAN domain.

Name Proc., Backoff States Transitions
csma2/2 2 , 2 1K 1K
csma2/4 2 , 4 7K 10K
csma2/6 2 , 6 66K 93K
csma3/2 3 , 2 36K 55K
csma3/4 3 , 4 1,460K 2,396K
csma3/6 3 , 6 84,856K 147,200K
csma4/2 4 , 2 761K 1,327K
csma4/4 4 , 4 133,301K 258,474K
csma4/6 4 , 6 [Timed out]

Figure 4: Sizes of IEEE 802.3 CSMA/CD models.

model both by the number of processes sending messages
over a shared bus, and by the maximum backoff after a col-
lision. See the model sizes in Figure 4. Note that PRISM
timed out building the model for the largest example we gave
it.

We analyze the property that all processes send all their
messages within 100 time steps, with fewer than two colli-
sions. In Figure 5, we show our algorithm against the largest
model for which we have the true probability. Even with
over 133 million states, our algorithm finds a near-optimal
policy in 1 million samples.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1e+06

P
ro

b
a
b

ili
ty

 e
st

im
a
te

Number of learning samples

IEEE 802.3 CSMA/CD 4/4 model

Probability estimate
True probability

Figure 5: Results for IEEE 802.3 CSMA/CD 4/4 model.

Name Probes States Transitions
zeroconf1 1 31,954 73,318
zeroconf2 2 89,586 207,825
zeroconf4 4 307,768 712,132
zeroconf6 6 798,471 1,833,673
zeroconf8 8 1,870,338 4,245,554

Figure 6: Sizes of IPv4 Zeroconf Protocol models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1e+06

P
ro

b
a
b

ili
ty

 e
st

im
a
te

Number of learning samples

zeroconf1

Probability estimate
True probability

Figure 7: Results for 1-probe IPv4 Zeroconf Protocol model.

IPv4 Zeroconf Protocol The IPv4 Zeroconf Protocol, an-
other PRISM case study example, dynamically configures IP
addresses in an ad-hoc network, to avoid setting up static IP
addresses for each device or a DHCP server (Kwiatkowska
et al. 2006). The state size is scaled up by the number of
probes it sends out before claiming an IP address. The sizes
of the models are in Figure 6.

Our algorithm does not perform well on the Zeroconf
models. As seen in Figure 7, even on the smallest model
with under 32,000 states, the probability estimate from the
learned policy is nearly 0.1 below the true probability. We
need further investigation to understand why our algorithm
fails to find a near-optimal policy for this model.

Conclusions and Future Work
We have presented and implemented an algorithm using
MCTS to learn a near-optimal policy for an MDP for a given
PBLTL property. We have collected and presented results
for several case studies of varying size and difficulty. Our
algorithm works very well for most models, while there is
room for improvement on others.

We would like to derive a mathematical bound on the
quality of the policy learned via MCTS. We will explore
combining the near-optimality guarantees of the policy
learning in (Kearns, Mansour, & Ng 2002) with the regret
bounds of UCT in (Kocsis & Szepesvári 2006).

Another, perhaps related, improvement would be to dy-
namically determine when to stop policy learning. Perhaps
the bound on the quality will give us a number of samples
required for a given confidence level, or we could investigate
methods like Wald’s sequential probability ration test to tell
when to stop sampling (Wald 1945).

We have not optimized the efficiency of our algorithm.
Since samples are independent, we could take multiple sam-
ples in parallel. We could also look into extracting the opti-
mal policy from the MCTS tree for reuse without recomput-
ing the greedy action for each node.

We are also currently investigating using online MCTS
methods for sampling. Here, instead of performing MCTS
offline and learning a policy to use for statistical model
checking, we use online MCTS to directly take samples for
statistical model checking, eliminating policy learning.

Acknowledgments
This research was sponsored by the Air Force Office of Scien-
tific Research and AFRL via FA9550-12-1-0146. In addition, we
would like to recognize Dave Parker for his guidance working with
PRISM. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense
or the U.S. Government.

References
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowl-
ing, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;
and Colton, S. 2012. A survey of Monte Carlo tree search meth-
ods. Computational Intelligence and AI in Games, IEEE Trans-
actions on 4(1):1–43.
Emerson, E. A. 1990. Temporal and modal logic. In van
Leeuwen, J., ed., Handbook of Theoretical Computer Science
(Vol. B). Cambridge, MA, USA: MIT Press. 995–1072.
Henriques, D.; Martins, J. G.; Zuliani, P.; Platzer, A.; and Clarke,
E. M. 2012. Statistical model checking for Markov decision pro-
cesses. In Quantitative Evaluation of Systems (QEST), 2012 Ninth
International Conference on, 84–93. IEEE.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large Markov deci-
sion processes. Machine Learning 49(2-3):193–208.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In Machine Learning: ECML 2006. Springer. 282–293.
Kwiatkowska, M.; Norman, G.; Parker, D.; and Sproston, J. 2006.
Performance analysis of probabilistic timed automata using digi-
tal clocks. Formal Methods in System Design 29:33–78.
Kwiatkowska, M.; Norman, G.; Sproston, J.; and Wang, F. 2007.
Symbolic model checking for probabilistic timed automata. In-
formation and Computation 205(7):1027–1077.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011. PRISM
4.0: Verification of probabilistic real-time systems. In Gopalakr-
ishnan, G., and Qadeer, S., eds., Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), volume 6806 of
LNCS, 585–591. Springer.
Kwiatkowska, M.; Norman, G.; and Sproston, J. 2002. Proba-
bilistic model checking of the IEEE 802.11 wireless local area
network protocol. In Hermanns, H., and Segala, R., eds.,
Proc. 2nd Joint International Workshop on Process Algebra
and Probabilistic Methods, Performance Modeling and Verifi-
cation (PAPM/PROBMIV’02), volume 2399 of LNCS, 169–187.
Springer.
Lassaigne, R., and Peyronnet, S. 2012. Approximate planning
and verification for large Markov decision processes. In Proceed-
ings of the 27th Annual ACM Symposium on Applied Computing,
1314–1319. ACM.

Legay, A.; Delahaye, B.; and Bensalem, S. 2010. Statistical
model checking: An overview. In Runtime Verification, 122–135.
Springer.
Mahajan, A., and Teneketzis, D. 2008. Multi-armed bandit prob-
lems. In Foundations and Applications of Sensor Management.
Springer. 121–151.
Wald, A. 1945. Sequential tests of statistical hypotheses. Annals
of Mathematical Statistics 16(2):117–186.

