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The U.S. military is researching capabilities for collaborative and highly autonomous 
unmanned aircraft systems to conduct missions in denied or contested airspace, where 
multiple teams of aircraft would work together under the supervision of a single 
operator. One of the key challenges in this paradigm is the need for an effective 
human-system interface (HSI): one that could provide sufficiently detailed command 
and control authority and monitoring of plan execution for the entire system without 
overwhelming the operator. Another interesting challenge is the need to proactively 
find and approve multiple contingency plans, effectively granting the highly 
autonomous agents more freedom to operate when communication to the human 
supervisor is denied. This paper describes our recent efforts to design and develop a 
combined human-system interface and contingency planning tool that addresses these 
challenges. We present the design of our SuperC3DE system, provide examples of how 
certain interface components and contingency planning methods would be used in a 
notional scenario, and discuss key takeaways from formative evaluations by subject 
matter experts. 

Nomenclature 
HSI = Human-System Interface 
SCOPE = Supervisory Contingency Plan Evaluator 
CPA =  Counter Plan Analysis 
HPR =  Hierarchical Plan Repair 
CSI =  Contingency Status Inferencing 
FIT  =  Fusion/IMPACT Testbed 
TAP  =  Team Autonomy Planner 
UAV  =  Unmanned Aerial Vehicle 
XINT  =  Mobile Interdiction 
IPOE  =  Intelligence Preparation of the Operational Environment 
AMASE  =  AVTAS Multi-Agent Simulation Environment 
AVTAS  =  Aerospace Vehicles Technology Assessment and Simulation 

I. Introduction 
n 2014, the Defense Advanced Research Projects Agency (DARPA) launched the Collaborative Operations in 
Denied Environment (CODE) program. CODE’s main objective is to develop and demonstrate the use of 

collaborative autonomy for systems of unmanned vehicles. Various CODE participants from industry are providing 
the technology components necessary for vehicles to perform autonomous planning and control, and to leverage 
each other’s resources opportunistically during mission execution. The expectation is that this collaborative 
autonomy will enable teams of unmanned vehicles to overcome the challenges of denied communications and more 
capable adversarial systems. 

In support of this vision, Smart Information Flow Technologies (SIFT, LLC) has designed and prototyped 
Supervisory Control for Collaboration and Contingency Delegation (SuperC3DE). SuperC3DE provides an 
integrated and holistic suite of human-computer interaction and intelligent decision-support tools. The system is 
designed to enable a single human operator to effectively command, monitor, and supervise a system of many 
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unmanned aerial vehicles (UAVs) at once. The CODE operational environment also poses a unique set of challenges 
from a human-system interaction perspective: 1) maintain situational awareness (SA) of a complex, multi-
actor, largely autonomous force with much less than full attentional capacity under conditions of high 
workload; 2) interact with and maintain supervisory control over highly autonomous vehicles even when they are 
out  of communications; 3) make informed use of highly autonomous capabilities without surrendering all human 
oversight and control; and 4) achieve this level of SA with potentially reduced screen size and resolution, and in 
potentially harsh operational environments (vibration, noise, operators wearing gloves, etc.). 

Our approach to addressing the above challenges builds on more than a decade of research into a 
human-automation interaction approach we call Playbook®1. Plays are not scripted behaviors, but rather 
constrained templates for action that offer a constrained range of actions for subordinates. Thus, playbooks are 
a convenient, human-familiar, and efficient way of delegating or transferring bounded authority, responsibility, 
and resources to a subordinate by codifying a supervisor’s intent. In Playbook implementations, this play-based 
delegation has improved overall performance in unpredictable contexts2 and reduced human workload 
relative to both static and autonomously adaptive systems3. 

Our research has culminated in the adoption of a Playbook-like delegation approach by portions of the 
Supervisory Control and Cognition Branch of the 711th Human Performance Wing at the Air Force Research 
Laboratory (AFRL). Our approach was employed in a three-year exploratory development and demonstration 
effort known as FLEX-IT4 and, currently, is being expanded by the multi-force Autonomy Research Project 
Initiative (ARPI) known as IMPACT5. Both efforts have constructed play-based delegation HSIs that are 
similar, in many respects, to those needed for CODE. We have participated in both efforts and drew on the 
results, prior designs and some existing software implementations as the starting point for our CODE HSI. 

Building on the Playbook paradigm, SuperC3DE provides a comprehensive, multi-view HSI that integrates 
play-calling and play-status visualization directly into the map display. To complement the core HSI, 
SuperC3DE also provides a computational evaluation and advisory component, the Supervisory Contingency 
Plan Evaluator (SCOPE). SCOPE emulates the process of planning deliberation between a supervisor and 
subordinate, serving to enhance understanding, both for machine and human operator, of their shared plan. 
SCOPE uses counter-planning techniques to: 1) examine plans for contingency upset conditions or 
breakdowns, 2) identify plan “patches” or repairs that remove those breakdowns or reduce their likelihood, and 
3) projects vehicle behavior (even in conditions of comms denial) from a complex suite of initial contingent 
plans. SCOPE also evaluates and compares alternate plans, providing a structured framework for the human 
operator to quickly examine tradeoffs. 

This paper discusses some of the key design concepts of the SuperC3DE system. We first provide a 
brief overview the HSI and SCOPE designs, along with an overview of our testbed environment. We then 
walk through the lifecycle of using the HSI to call, execute, and monitor a play, focusing our attention on a 
select subset of HSI components. Next, we provide a summary of evaluation results from subject matter 
experts that reviewed our design. Finally, we conclude with a summary of lessons learned through these 
evaluation sessions and offer suggestions for future research efforts that may benefit other programs with 
similar HSI challenges. 

II. Overview of the SuperC3DE Design 
Figure 1 below illustrates our proposed architecture for both the CODE system overall and for the portions 

of it we emphasized in our Phase 1 effort ( depicted in yellow or gold). The two novel components 
developed for our SuperC3DE effort include a Playbook-based HSI and SCOPE. The blocks in red and 
green represent other CODE software components that our system either interacts with directly or that 
must be modeled in some way to close the loop and drive the simulation. SuperC3DE components interface 
directly with the Team Autonomy Planner (TAP), which is the component responsible for collaboration and 
plan generation for the team of UAVs. Plans generated from the TAP are then executed by the autonomy and 
execution modules in the individual vehicles. To support demonstrations and evaluations of our designs, we 
needed a simulation environment to emulate vehicle and world telemetry data. This was provided by 
additional work performed at AFRL in the form of the Fusion/IMPACT Testbed (FIT)5,6,7. Fusion7 is a 
framework for the development and experimentation of user-interfaces that enable various types of human 
interaction with autonomous, intelligent agents. Designed and developed by AFRL Wright Patterson AFB, 
Fusion uses an instrumented, play-oriented user interface (UI) and connects to an extensible Java-based 
simulation framework that provides a configurable simulation of multiple air and ground vehicles, as well 
as access to various automation services to govern the behavior of those vehicles. IMPACT5,6 uses the 
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Fusion environment and adds a number of unique computational and display components. FIT builds upon some of 
the Playbook-related HSI elements that are part of IMPACT, including the Play Creator, Playble, and Play Status 
tiles. SIFT had participated in earlier development efforts for both Fusion and IMPACT and we were granted 
permission to use both in our development of the SuperC3DE design. Together, the capabilities of FIT enable 
development and closed-loop demonstration by providing both an extensible platform for implementing new 
HSI designs, as well as a configurable simulation environment for UAV flight dynamics and control software.  

 
Figure 1: High-Level SuperC3DE Architecture 

A. HSI: Human-System Interface 
Our primary goal with the HSI design was to provide a comprehensive, integrated approach to human interaction 

with and supervisory control over the CODE system. The focus was not to develop specific HSI components or 
widgets, but rather to arrive at an overarching design that integrates all CODE functionality for user awareness, 
control, and trust. We used a play-centered design to both command and maintain SA of multiple UAVs (up to 
30+ in our designs). The final design was configured for a single touchscreen of variable size with mouse-based 
control and touch interactions, and allowed for voice input and output. The integrated HSI consisted of the 
following primary components: 

 
1. Navigation Menu Bar/Button 
2. Map Display** 
3. Timeline Display** 
4. Notification Pane 
5. Imagery Review Pane 
6. Play Calling/Review Panes 

(Play Creator) ** 
7. Play Quality Pane 
8. SCOPE Breakdown/ 

Repair Table** 
9. Active Play Pane (Playble) ** 

 
Figure 2 shows a preliminary layout 

of the above-listed HSI components. 
The layout evolved over the project as 
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** These components evaluated as part of a Formative Review, summarized in Section V. Boldface components also presented in 
Section IV. 
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Figure 2: Preliminary Layout of the Primary HSI Components
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new components were developed, and as we gained a better understanding (through formative reviews and 
evaluations) of how the operator would prefer to use screen real estate during different modes of operation. The HSI 
is designed to support both pre-mission planning, as well as monitoring and supervision during mission execution. 

In this paper, we present only a selected subset of the above-listed HSI components. Features of each component 
are presented in the context of how they might be used in a notional scenario (see Section III). 

B. Supervisory Contingency Planning Executive (SCOPE) 
SCOPE is an auxiliary advisory component which incorporates unique counter-planning and hierarchical 

plan repair capabilities in order to analyze plans, identify possible breakdown cases, and generate alternative 
courses of actions to avoid those breakdowns and preserve the original plans as much as possible. As 
illustrated in Figure 3, SCOPE consists of four primary components: Contingency Plan Analysis (CPA), 
Hierarchical  Plan  Repair (HPR), Contingency Status Inferencing (CSI), and Alternate Plan Evaluation (APE). 
CPA uses counter-planning techniques on plans produced by any automated planning system to identify how 
disturbances could cause  failure. The HPR 
component performs additional   planning and/or re-
planning to identify the relaxation or substitution of 
constraints in the initial plan to make it robust to 
disturbances identified by CPA. Under comms denial, 
CSI determines what contingent  portions  of  a plan 
are likely to be active at any point, in  order to better 
understand what information a user needs to maintain 
awareness of that plan. The APE module applies a 
scoring method that takes a set of plans and a set of 
plan-evaluation dimensions as input, and ranks those 
input plans based on the score it computes across the 
input dimensions for the plans and their associated 
contingencies. Plan evaluation dimensions include 
metrics such as probability of success, number of 
assets required, fuel usage, duration, and possibly 
others. 

APE enables a quantitative comparison of plan 
alternatives, which might be generated by the human 
operators, CODE planners, SCOPE itself, or some 
combination, along several possible evaluation 
dimensions. The plans are ranked according to the 
aggregate score of the weighted dimensions, and the 
ranked plan alternatives are displayed for the human 
operator to visually explore and choose tradeoffs.  
 A fundamental element of SCOPE’s analysis 
methods are CRAMs – Contingency and Repair 
Analysis Models. CRAMs are graphical models of plans that specify probabilistic, resource, and causal 
dependencies between actions. We have developed this formalism by extending the causal models used by the 
AFRL’s Causal Analysis Tool (CAT)12. In SCOPE, CRAMs extend CAT’s causal models to include resource 
modeling (e.g., fuel usage, duration, and others). CRAMs allow the causal information in the plans and in the 
contingencies to be used in a semantically consistent way to estimate other entries, which the plan representations or 
the human modelers choose not to provide.  

FIT: Fusion/IMPACT Testbed 

1. Fusion and IMPACT 
Fusion is a framework for the development and experimentation of user-interfaces that enable various types of 

human interaction with autonomous, intelligent agents. Designed and developed by AFRL Wright Patterson AFB, 
Fusion uses an instrumented, play-oriented UI and connects to an extensible Java-based simulation framework that 
provides a configurable simulation of multiple air and ground vehicles, as well as access to various automation 
services to govern the behavior of those vehicles. 
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Figure 3: High-Level SCOPE Architecture 
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Fusion can connect to many different simulation environments or external services, using diverse 
communication protocols from STANAG 4586 to JSON and others. In addition, Fusion’s highly modular and open 
architecture makes it possible to develop custom components for both the HSI and vehicle autonomy purposes.  

The graphical layout of the baseline Fusion screen design is a map-based view that fills the screen with a 
notification bar along the top, a feedback bar along the bottom, and individual tiles that may be dynamically shown 
or hidden. These elements are shown in Figure 4. The notification bar is used to display messages and alerts, and can 
be expanded to pull up a Fusion control panel for managing the tile and canvas layout. The feedback bar is used for 
automation feedback, as well as for speech control and response. For example, a press-and-hold on the feedback bar 
triggers speech recognition to process voice commands. We used this feature to call plays via voice. Both the map-
based canvas and floating tiles are used to implement specific UI controls. All of the HSI components that we 
developed in Fusion for Phase 1 were implemented either as map-based icons or tiles.  

!

!
Figure 4. Example of the Fusion Layout  

 
Since 2014, SIFT has been actively involved with the IMPACT program, a multi-agency coordinated ARPI. The 

focus of our work on IMPACT was to extend the functional capabilities of the HSI concepts we previously 
developed under our FLEX-IT project in active collaboration with AFRL, and which we implemented in Fusion. 
The collaborative work on IMPACT has brought together a number of unique autonomy-related components into the 
Fusion environment.  

In designing the SuperC3DE HSI, we built upon some of the Playbook-related HSI elements that were part of 
IMPACT, including the Play Creator, Playble, and Play Status tiles. For each of these graphical UI widgets, we 
made extensive modifications for our own HSI designs and added extensions to support CODE concepts. The HSI 
designs are discussed in detail in Section 6. 

2. AMASE Simulation 
AMASE was developed by the Aerospace Vehicles Technology Assessment and Simulation (AVTAS) 

laboratory at AFRL Wright-Patterson8. The motivation for AFRL’s development of AMASE was to provide a 
common and extensible simulation framework for researchers across several different organizations to use in their 
development and evaluation of control algorithms for teams of UAVs. The Java-based application is provided with a 
NetBeans IDE, including a library of tools and a network interface to connect to external applications. The 
simulation framework organizes vehicles and other entities as separate models, where each model is simulated with 
a set of distinct modules. The attributes of each vehicle and the initial state values for a simulation run are 
configured through a scenario EXtensible Markup Language (XML) file. AMASE provides a configurable 
kinematic flight module to simulate the basic physics of UAV flight, as well several controlling modules to provide 
a core set of commonly used functions, such as gimbal control, camera control, waypoint navigation and loitering. 



!

Each of the vehicle modules responds to mission commands or vehicle action commands that are issued as messages 
from other modules in the system. 

Data transfer in AMASE includes 1) data read from and written to XML files, 2) data exchanged between 
software modules within AMASE, and 3) data exchanged between AMASE and other applications over a network 
connection. For all of these cases, AMASE uses the Lightweight Message Construction Protocol (LMCP) to 
represent objects. The main purpose of LMCP is that it defines a serialization protocol for data types, allowing a 
common set of objects to be used between software components implemented in a number of different programming 
languages. The LMCP package making tool provided with AMASE automatically generates the methods to serialize 
and de-serialize all built-in and user-defined LMCP objects, which enables us to pass any LMCP-based object 
between AMASE and its client without incurring any additional work.  

LMCP is a generic, domain-independent protocol, and provides the underlying structure for all of the data 
objects that are passed to/from the AMASE application or between its modules. Building on top of LMCP is the 
Common Mission Automation Services Interface (CMASI). CMASI is a specific type of Message Data Model 
(MDM) that uses LMCP. It was developed with the goal of providing a standard of communication between 
software tools that perform automated or semi-automated command and control of unmanned vehicles. As such, 
CMASI includes an assortment of specific data structures that define the commands, objectives, and constraints 
associated with UAV missions and tasking9.  

3. Plan Representations 
The HSI design is built around a play-calling paradigm that assumes a hierarchical plan structure with branching 

logic. This type of branching plan representation is consistent with DARPA’s open architecture vision for CODE 
and with the planning approaches being developed by the system integrators. In addition, SCOPE uses two specific 
artificial intelligence (AI) planning formalisms to internally represent CODE plans and user plays. It uses the 
Planning Domain Description Language (PDDL) to represent primitive program statements and hierarchical task 
networks (HTNs) to represent conditionals, loops, methods, and classes in Java programs. 

The architecture diagram in Figure 4 illustrates which types of plan representations are used by different 
components of the SuperC3DE demonstration system. We stubbed the TAP by simply creating a set of our own 
handwritten plans, assigning a unique ID number to each plan so it could be referenced and loaded in the course of 
performing demonstrations. For the executive and vehicle simulation in AMASE, these static plans were expressed 
using a custom extension of the CMASI protocol. SCOPE, on the other hand, stored a separate instance of each plan 
as an HTN. 

 
Figure 5: Plan Representations Used by SuperC3DE Components 
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4. SuperC3DE Extensions to AMASE 
We developed several extensions to the core AMASE software to enable automatic execution of the branching 

plans that were formulated for the various Phase 1 demos. The diagram in Figure 6 illustrates a subset of the core 
AMASE modules that we interfaced with on the right side of the figure, along with the set of SuperC3DE extensions 
that we developed on the left. Note that this diagram shows the architecture for a single vehicle, which is applied 
uniformly to all UAVs in the simulation. The SuperC3DE Executive (hereafter SCExecutive) extends the AMASE 
EntityModule class, and thus it behaves just like another AMASE module. As the diagram shows, the SCExecutive 
manages all interactions with other native AMASE simulation modules. 
!!
!

! !
Figure 6. AMASE Simulation Architecture with SuperC3DE Extensions  

!
The SuperC3DE Executive Plugin (hereafter SCExecPlugin) is used to programmatically generate plans for 

execution. It listens for a Plan Request message that may come either from the Fusion application, if it is connected, 
or from a SuperC3DE client (hereafter SCClient). The SCClient was developed to expedite development and testing 
of the simulation and SCExecutive. This allowed us to develop and test the SCExecutive software using only the 
AMASE simulation, rather than having to continually interface with the full HSI in Fusion during this process. As 
features in the SCExecutive reached completion, we performed fully integrated tests and demonstrations by 1) 
launching the HSI in Fusion, 2) issuing commands to the SCExecutive in AMASE, and 3) observing plan execution 
by viewing telemetry in the Fusion HSI. 

When the SCExecPlugin receives a Plan Request message, which includes a plan ID, it programmatically 
generates the hierarchical branching plan associated with that ID, and then sends the SCPlan object back to the client 
in a Plan Response message. This plan generation service was used by the Fusion-based SuperC3DE HSI to emulate 
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the type of interaction it would have with a TAP component. At this point, the client now has a SCPlan object that it 
can send to the SCExecutive for execution. 

The SCExecutive class stores one SCPlan at a time, where each SCPlan data structure includes a linked-list of 
uniquely numbered SCActions, and where the first action to be executed has an ActionID of 0. Each SCAction in a 
SCPlan is extended from the generic SCAction type to be a specific type of action, such as FlyWaypoints or 
SearchAreaForTarget, for example. Every SCAction also has an array of ExitData structures to facilitate branching. 
Each ExitData block provides the conditions under which the current action should be terminated and identifies the 
next ActionID to switch to. The executive issues commands to execute the current action and continuously monitors 
the state of the simulation. When any of the exit conditions prescribed for the current action are satisfied, it switches 
to the corresponding ActionID for that exit condition.  

As Figure 6 indicates, the SCExecutive module controls the UAV actions by sending four different types of 
commands: 

• LoiterAction—is sent to the LoiterControl module. The loiter command specifies the latitude, longitude 
and altitude of a loiter center-point, the type of loiter pattern (circle, figure eight, or race-track), the 
dimensions of the pattern (radius and baseline if needed), and the airspeed. 

• MissionCommand—with a waypoint list is sent to the WaypointFollower module. Waypoint following 
is used to execute several different actions, including ingress, egress, and search patterns. 

• FlightDirectorAction—is sent to the FlightDirector module, which supersedes the autopilot and all other 
flight modules. This action specifies the heading and airspeed for the aircraft to fly. The SCExecutive 
uses a FlightDirectorAction to avoid restricted operating zones (ROZ) and no-fly zones (NFZ) if they 
are encountered. 

• GimbalStareAction—is sent to the GimbalControl module. With this action, we specify a latitude/ 
longitude coordinate on the ground for the camera to point at. This action is used to direct the camera 
during egress, ingress, search patterns, and for imaging targets. 
The executive uses the SCSearchPatterns class as a utility for developing search patterns. It computes 

waypoint sequences for different types of search patterns, including lawn-mower, strip-and-grid, and spiral, 
and it performs geodetic calculations to convert between east-/north- and latitude-/longitude-based coordinates. 

5. Plan Execution 
The main purpose of the SCExecutive is to perform plan execution. By executing the plan in a representative 

multi-UAV simulation environment, we can exercise those aspects of the interface that require dynamic vehicle 
telemetry updates and, consequently, provide an interactive experience to the human operator. 

The plan representations for all AMASE scenarios were encoded in MDMs that extend the CMASI message 
protocol. Specific details of the plan representations are discussed on page 6. In Phase 1, we developed a set of 
example plans for two main types of play calls: 1) mobile interdiction (XINT), and intelligence preparation of the 
operational environment (IPOE). The branching structure of these plays is depicted in Figure 7. The boxes in each 
diagram represent specific types of configurable actions that the executive is responsible for managing. The 
diamond branch points represent exit conditions that the executive is responsible for monitoring, and that dictate the 
next action in the plan to be executed. 

In the XINT plan, for example, the vehicles first fly to the area of interest (AOI), performing a scanning ingress 
to the expected Scud missile location, and then scan at that location. If a Scud is not found initially, the vehicle 
performs a spiral search (by default, though other alternate search patterns may be stipulated) until the Scud is found 
or until the prescribed time limit has elapsed. Once the Scud is found, the vehicle loiters, scans and reports from that 
location until the prescribed time limit has elapsed. Finally, the vehicle performs a scanning egress and returns to 
base. 
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Figure 7. Branching Plan Structure for the XINT and IPOE Plays 

 
The process by which the SCExecutive monitors and carries out the actions in a branching plan is described in 

Figure 8. Plan information is encoded as a SCPlan object, which itself contains a linked list of SCAction objects; 
both SCPlan and SCAction are a customized extensions of the CMASI message protocol. The executive, along with 
all other AMASE modules, updates at default frequency of 10 Hz, though this may be configured in the scenario 
XML file. At the beginning of the update function, the executive first checks whether a new SCPlan object has been 
received. If so, the executive sets the current action ID to 0, finds the corresponding SCAction within the SCPlan 
tree, and begins execution. A list of supported action types is shown in the diagram. Many of these actions represent 
extensions to CMASI. The executive will perform specific functions and issue different commands to other AMASE 
modules, depending on the current action type being executed.  

The executive also monitors the air vehicle state at the end of each update step to determine whether any of the 
exit conditions for the current action have been met. If an exit condition is met, it updates the current action ID to 
the next action ID specified by that exit condition, causing the new action to be executed on the next update cycle. 

 
Figure 8. SCExecutive Process to Monitor and Execute Branching Plans 
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III. Example Use Case 
Here we describe a notional scenario to provide an example use case for SCOPE and the HSI. The scenario 

backdrop is an arbitrary geographic location (in this example, a mountainous area in southern Nevada). We also do 
not define or specify any particular UAV platform, though our models assume a medium-altitude, medium-
endurance UAV with heterogeneous sensor packages. The scope of the scenario is illustrated in Figure 9. There are 
three areas to search, as well as a no-fly zone that must be avoided. Within the search areas, we have expected 
locations for both short-range and long-range surface-to-air missile (SAM) sites. There also exists another pop-up 
SAM site (not initially known). To the east of the search areas, we have three sorties, each composed of four UAVs. 
The mission has two parallel objectives: 1) XINT, and 2) IPOE. The goal of IPOE is to search the area and build 
intelligence by identifying and cataloging all items of interest, while the goal of the XINT is to search, identify and 
report Scud missiles specifically. 

  
Figure 9: Scenario for XINT and IPOE with 3 UAV Sorties 

!
We used this notional scenario as a means of demonstrating how the SuperC3DE HSI can be used to accomplish 

two primary tasks: 1) develop and visualize one or more plans for executing the mission, and 2) monitor the status of 
the mission during execution. Using our Playbook approach, the user first calls the play by selecting XINT and 
IPOE as objectives, and then continues to specify more detailed priorities and constraints for the mission. With the 
play fully defined, the user sends the play call to the planning software, which computes one or more plans to 
execute the play. In order to demonstrate interaction with the HSI, we stubbed the planning software and used 
SHOP2 to develop a representative set of hierarchical plans that carry out the dual XINT/IPOE mission. We then use 
the AMASE simulation with an extended set of onboard control software to execute the plan. Simulated telemetry 
from AMASE is provided to the Fusion application, enabling us to dynamically update the map display and provide 
user interaction during plan execution. In the next section, we focus on a few specific instances of this overall 
process, and discuss the corresponding components of the HSI. 

IV. Play-Calling and Play Execution Monitoring 
In this section, we provide an overview of selected HSI components used in the process of first calling a play, 

and then later monitoring the play’s execution. The notional scenario described in Section III is used to motivate the 
examples. 

A. Play-Calling Interfaces 
The Play Calling component of SuperC3DE is used for creating new Plays and reviewing or editing previously 

created Plays. In order to create a new Play, the user either uses the navigation bar or may tap on the microphone 
icon on the bottom right of the Map Display to begin speaking. The Play Creator is always available via the 
navigation bar or by using voice input. Figure 10 shows an example of the user tapping the microphone icon and 
speaking “IPOE on quadrants B, C, and D.” The left side of the picture shows a new Play has been created with the 
Sector Search selector set to IPOE. Tooltips appear when the user hovers over each icon on the Play Creator as a 
reminder of each option’s functionality. There is a compositional formalism, or visual semantics, to these play icons, 
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developed originally at AFRL, which provides a reminder of the available plays. For example, all target surveillance 
plays have a basic circle with centered “+” sign, all route surveillance plays have a line through the center of the 
icon, Sector Search play icons are built around a square box, etc. 

 
!

!!
Figure 10. Voice Input to Play Calling Component 

!
!

More detail on our approach, philosophy and prior work in creating play calling interactions may be found in 
various resources including1,4,10. Plays are intended not as pre-specified missions, nor as general control modes, but 
rather as partially instantiated templates of behavior. Just as in a sport such as American football, or more 
continuously, soccer or basketball, a play has a goal and a constrained set of methods that constitute instances of that 
play. Other means of accomplishing the goal may exist, but they would not be instances of the play. The methods 
are also not exhaustively planned; they are shaped and constrained, but some authority is left to the agents/players at 
execution time to implement the plan as best they see fit. Plays are also hierarchically defined and can be composed 
and decomposed (as illustrated in Figure 10 above). Plays can be composed of smaller elements to create new plays 
or longer missions. While much of this should not be done during mission execution if time and workload 
constraints prohibit it, it does provide a bridge between mission planning and dynamic aspects of execution. We 
envisioned the possibility of planning multiple plays to meet anticipated needs or contingencies during a mission 
with the ability to call them and even to briefly edit them (in the form of modifying pre-set and/or default 
parameters) either immediately before launching a UAV salvo or dynamically (assuming comms availability) during 
their mission performance.  

The view for reviewing or editing previously created Plays is shown on the right of Figure 10 above. On the 
bottom left of the review and editing pane of the Play Calling interface is a list of UAV groups and number of 
groups participating in the selected Play. The section to the right of that is the main review and edit interface. This 
section allows the user to see and set each of the Play’s details. Our general philosophy in play calling is to give the 
user the capability to set a wide range of parameters to specialize the play to the current need and intent, but to 
require as few as possible of these parameters to be set. Thus, all parameters come with intelligent default settings, 
customized to the current mission and expected needs. Furthermore, parameters can adapt as the user stipulates one 
or more of them (for example, dictating expected cloudy weather may influence either standoff distance or type of 
sensor used). Many of these parameter settings for an XINT play are described below. 

The Size section is indicated on the top by several icons depicting relative sizes of the object to be targeted based 
on the National Image Interpretability Rating Scales11; a barn is the biggest, and a crumb being eaten by a rodent is 
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the smallest. Under that is the Visibility section. This section indicated the weather condition (clear or cloudy in this 
example). Below the Visibility section is the Optimizations section. This section lists how the play should be 
optimized. Time is one of the selected optimizations in this example; other available optimizations include 
fuel/power, area coverage and image quality. The Priority section sets the priority of the play, which can be above 
normal, normal, and below normal. Under that lies the Sensor section. This section allows the user to select which 
sensors the UAV will be using for the play. In this example, the electro-optical (EO) sensor is selected. 

Figure 11 and Figure 12 show the contents of each vertical tab on the right of the Play Calling interface. The 
Subplay Variants tab shows the user the defaults for the play, but it is also editable. This tab allows the user to select 
different search types, search patterns, its report priority, and what each UAV should do after the play is completed. 
There are two cases for what the UAV should do after the play is completed. Next+ indicates what the UAV should 
do after a successful play (in this case, finding the desired target), and Next- indicates what the UAV should do after 
an unsuccessful play. 

The tab to the right of Subplay Variants is the Vehicle Assignments tab, which illustrates (and provides control 
over, if desired) the vehicles assigned to the play. The next tab shows the Play Quality Glyph, a pie chart developed 
at AFRL that indicates the play’s current expected or actual quality against several play-specific parameters. We 
explained this chart in more depth in the subsequent section. 

The last tab is the Details Pane. The Details Pane allows the user to view and edit any other miscellaneous 
information in more detail. This list is scrollable, so the figure illustrates only the top of a potentially long list of 
available details which can be edited. While this is not a particularly efficient means of viewing or editing such 
details, a successful design should make details at this level of granularity almost never needed during mission 
execution. It is our assumption that it is better than not to have them available for those rare cases where they are 
needed. 
!

!
Figure 11. Play Calling Interface: Sub-Variants, Vehicle Assignments, and Play Quality Glyph 

!
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!!
Figure 12. Play Calling Interface: Details Pane 
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Note that all of the above examples were depicted for an XINT play. The set of options available on the Play 
Calling Pane will be different depending on the play to be called, though they will adhere to the same general layout. 
For example, Figure 13 illustrates the design for a new icon for an IPOE play we added as a type of multi-sector 
search (illustrated using the graphic convention of multiple rectangles). 
!

!
Figure 13. IPOE Play Icon Design 

!
The IPOE play’s expanded, additional tabs are similar to those for XINT illustrated above, but include a 

substitution for XINT’s Context Variants tab in the form of a novel Targets Control. This was because the XINT 
play involved searching for specific targets in an area, and thus, specifying elements of search patterns, etc. for those 
targets was an appropriate level of detail given the assumed context of the XINT play. The IPOE play, however, 
involves searching a larger area for, essentially, anything of interest. Hence, in the context of this play, an 
appropriate level of intent specification detail involves specifying the types of targets of interest, their relative 
priorities and what to do about them if found. 

B. Contingency Analysis and Plan Evaluation 
Once the user has specified the priorities and constraints for the play within the Play Creator tabs, she can send 

the play-call to the planning software by pressing the Play icon, . The planning software then attempts to generate 
one or more plans for the group of vehicles to execute the play, subject to those detailed specifications. Once a plan 
exists for executing the play, we use the counter-planning capabilities of our SCOPE software to attempt to identify 
breakdown cases – conditions in the environment, or perhaps actions taken by other actors in the environment, that 
have the potential to break our plan. SCOPE then attempts to generate repairs for the breakdown cases by creating 
new branches within the original plan. Note that this approach is valid whether SCOPE resides only at the ground 
control station, or if it is implemented onboard the vehicles as part of the autonomous planning software. In general, 
because contingency planning can be computationally intensive, and because it has the potential to generate a large 
number of branching repairs, it seems more practical to perform this analysis at the ground control station where 
there ought to be more computational resources, and where a human operator can judiciously prune the space of 
alternative plans. 

Because each breakdown case is identified as potentially (probabilistically) causing the failure of the plan, we 
initially chose to present these as a series of events or outcome effects, each occupying one row of a table. Events 
could be sorted or filtered by probability under the user’s control as one means of managing a potential flood of 
SCOPE outputs. Both event name and the Trigger/Cause column entry were derivable from the knowledge base that 
SCOPE uses to perform counter-planning. SCOPE’s Hierarchical Plan Repair component generates minimal repair 
plans to (again probabilistically) provide a means of avoiding plan breakdowns stemming from the initially detected 
event. From these repairs, we derived both a repair suggestion name and an expected value (in terms of increased 
probability of success) of the repair. Other concepts were also explored for showing, in more detail, the tradeoff 
space of various elements, since complex planning for multiple UAVs in unpredictable environments frequently 
becomes a process of trading one kind of risk for another, or of trading risk for plan outcome quality. While many 
approaches are possible, we were of the opinion that they were generally far too complex for use during mission 
execution in the CODE context – and probably too complex for even immediate pre-mission planning.  

The SCOPE Table display described above was reviewed by subject matter experts (SMEs) at a formative 
review (see Section V below). Feedback from the SMEs confirmed that it was both too complex and too abstract for 
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operators to be completely comfortable. They were particularly critical of a portion of the table display in which we 
presented an expected value computation of each potential plan repair which they neither understood nor trusted. 
Their primary request was that we replace them with concrete dimensions that could project actual usage or risk 
dimensions for operator consideration and risk awareness. 

Using these critiques and requests, we developed the Alternate Plan Evaluator (APE) as a more compact way of 
visualizing and comparing plan quality. APE projects the effects of a plan along dimensions that are previously 
defined as relevant for the play (and that can be tuned for different plays, either a priori or during analysis). A basic 
view of the APE Widget is shown in Figure 14 below.  
!

!!
Figure 14. APE Widget Basic View 

!
The APE Widget is a sprocket display similar to the initial AFRL Play Quality Pane, and is, in fact, built on the 

same basic software. The center of the display conveys the overall estimated probability of success of the plan. Each 
slice or sprocket conveys how the plan is projected to do along a dimension of interest within caution and warning 
thresholds. Slices are normalized in such a way that expanding slices always convey more of the dimension and 
relatively worse outcomes. The thresholds (caution in yellow and warning in red) can be set, but the dimensional 
score is meant to be conveyed as a percentage of some maximal acceptable value. This means that the dimensions 
cannot be arbitrarily chosen, but must sometimes be re-defined to be conveyed by the slice dynamics. For example, 
instead of conveying simple pounds of fuel expected to be used, a slice for Fuel Use is configured to be presented as 
the percentage of an allowable maximum range. Similarly, instead of the degree of coverage of an area during a 
search play, we would use a Non-Coverage percent. Note, though, that the actual value for a dimension can be 
presented via a Tool Tip pop-up at any time. While we acknowledge that there may be a need to revise this display 
to convey minimal thresholds and/or to convey positive increases in a dimension, we have not yet found a 
compelling need to do so. We also note that recent feedback has critiqued the use of larger green colored slices to 
convey relatively worse outcomes—a violation of most cockpit and MIL STD conventions. We believe this is a 
valid concern and can be easily corrected by either replacing the green with a translucent white or light gray color, 
or by omitting the full fill-in of slices that don’t reach warning or caution thresholds. 

Controls for setting up dimensions and their thresholds in the APE Widget are shown in Figure 15. In essence, 
the user (probably pre-mission) can set up the dimensions to be shown and can adjust the thresholds for them, 
perhaps on a mission-specific basis. Again, this is another area where our core philosophy of allowing but not 
requiring or expecting user input is used. Dimensions and thresholds appropriate to each play are expected to be 
predefined well before use and specific mission planning and then to be rarely changed, but the opportunity exists 
for the user to alter these values if desired. 
!
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Figure 15. APE Widget Controls 

!
!

In Figure 14, we show two APE Widgets side by side. We expect this to be a common usage when comparing 
multiple plans or plan repairs. In addition, we have designed controls to review and select from among multiple 
plans or plan repairs, potentially tens of alternatives. In that context, a single sprocket view is also used to show the 
range of values across a large number of plans and the user can drag sliders along each slice to specify the range of 
values that are acceptable for each dimension – thereby pruning the set of acceptable plan repairs. 

C. Play Execution Monitoring 
Various components of the Map Display are used to visualize both the planned (pre-mission) and actual (in-

mission) execution of a play. Here, we provide a brief discussion of just a few of these elements. It is important to 
point out that the CODE concept presents many challenges to the HSI design, such as:  

 
a. How to de-clutter the display with a large number of vehicles? 
b. How to compactly describe teams of heterogeneous vehicles? 
c. How to associate vehicles and teams with targets or tasks? 
d. How to zoom in on smaller areas without losing context? 
e. How to visualize and understand when and how tasks will be completed? 
f. How to best notify the user of significant events, that have either already occurred or are about to 

occur? 
g. How to properly account for uncertainty of plan execution when comms are denied? 
h. How to convey to the user the communications topology (current and/or expected) among all vehicles?  

 
While we have developed in-depth HSI designs to address each of the above challenges, in this paper we provide 

only a brief overview of a subset of elements, focused on items a. through e.  

1. Aggregate Icons 
Aggregate icons were created as a means of showing groups of platforms using less screen space (see ). 

Aggregate icons are shown on the map display when multiple units, which are close to each other, share the same 
task. They are meant to de-clutter the screen, so the user can focus on other things. Aggregation of units is toggle-
able, by clicking on or touching the icon.  
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In the innermost part of the icon, smaller unit icons are used to describe the aggregate’s number of units of that 
type (e.g., letters to distinguish platforms). Alternatively, a single number may be used to simply indicate the 
number of platforms in the team, which is the method shown in 
subsequent map views. The direction these icons face is the 
average directional movement of the aggregate. The color 
around these smaller icons indicate the unit’s secondary task, if 
any, white being used to convey a planned but not-yet-executing 
play. The color of the outer circle describes the aggregate unit's 
primary task. If the outer circle is dashed, one or more of the 
member UAVs is currently out of communication with the 
ground station. If there is a rotating arc around the edge of the 
main icon, it indicates that the aggregate unit is carrying out the 
core part of its primary task. This may be defined on a task by 
task basis, but generally refers those portions of the UAV’s 
mission other than ingress and egress. On core is meant as a cue 
to the operator that this vehicle or aggregate is worth paying 
more attention to. There is an optional dashed white circle 
beyond the On Core symbol, which conveys that a new play is planned (but not yet executing) which will replace 
this aggregate’s previous primary task. Finally, the small but wide arrow around the edge of the main icon points at 
the direction of the target area which may, of course, not be the direction the aggregate is currently heading.! 

2. Planned Routes 
As a way of showing the planned routes for individual UAVs, SuperC3DE made use of a baseline Fusion 

functionality with minor modifications which we came to call thin routes. These lines can be both solid and dashed. 
If solid, they were shown in the vehicle/task color. If dashed, they were either colored (indicating that the UAV had 
an assigned route that it was expected to be executing but lack of communications made verification currently 
impossible – and perhaps we were projecting that route via SCOPE’s CSI function (see Section 7.3.3). A dashed 
white line meant that the path was proposed and not yet accepted and active. An example of thin line, individual 
proposed routes for a group of UAVs is shown in Figure 17 below.  
!

!
Figure 17. Proposed Routes for a Group of UAVs 

 

3. Fat Routes and Target Icons 
An interesting expansion on the unit aggregation icon is a larger arrow that we’ve termed the Fat Route. 

Showing individual thin routes for each vehicle quickly produces a “spaghetti” effect when more than a few UAVs 
are involved (as is already becoming apparent in Figure 17 with only four UAV routes expanded). Thus, the Fat 
Route was developed to show the route and travel behavior of an aggregate set of UAVs. Each Fat Route indicates 
the aggregate’s current direction and route, with hashes representing five minutes of travel each. Figure 18 below 
gives an example from the notional IPOE/XINT scenario. Note that each aggregate icon points to a target symbol 
(circle) that exists within a task-appropriate region outlined using same color as the related play. In this case, 
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rectangles show the region in which the IPOE task is to be carried out. This figure also provides an added example 
of both Aggregate Icons and their target symbols, since the orange colored aggregate icon represents a group of 
UAVs performing two concurrent tasks – both one sector of the IPOE search (the blue rectangle) and an XINT task 
involving searching for Scuds in the region of the orange oval. The fact that these vehicles are multi-tasked is 
conveyed by the blue outline in addition to the orange fill of the individual vehicles in the aggregate icon. 

!
Figure 18. Fat Routes and Target/Task Icons Example 

 

4. Gutter Functionality 
Figure 19 below shows another feature designed to enhance the map display: a peripheral edge known as the 

gutter designed to improve SA and provide easy access to UAVs and task groups that might be outside the current 
pan and zoom settings for the map. The gutter is displayed as the outer side of the dashed grey line around the edges 
of the map display. It uses a further 
miniaturized version of the UAV or 
aggregate icon to indicate the direction 
and direction of travel of UAVs that are 
not currently on-screen. Clicking on an 
icon in the gutter immediately pans the 
screen to center on that group (and results 
in other UAVs, likely including those 
formerly on screen to now appear as gutter 
icons). Gutter icons appear at the bearing 
of the vehicles in that cluster relative to 
the center of the screen and, thus, in the 
direction one would have to look or travel 
from the screen’s center to encounter those vehicles. Gutter icons will move around the screen’s edge if the screen 
center moves or if the vehicles in the cluster change their bearing to the screen center. Once a UAV or aggregate 
UAV group is in the gutter, it does not move laterally within the gutter and no indication of its total distance from 
the current map center is provided, though it may rotate as it shifts direction of travel. 

Figure 20 illustrates the appearance and several of the behavioral features of the Gutter. An alternate 
implementation of the gutter transition behavior was suggested during our interim reviews. This would have a click 
or touch on one of the icons in the gutter shift the map not directly to that group, but rather to a zoomed-out view 
that included the UAVs currently on screen as well as those tapped by the operator. A subsequent user action could 

Figure 19. Map Display Gutter 
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then pan and zoom the map on the new group if desired. We have not implemented or tested this option, largely due 
to time constraints, but suspect that the need to perform two actions to view a new UAV group would be disfavored 
by operators. On the other hand, a behavior that rapidly animates the transition from the current screen focus to the 
new requested one—combining pan and zoom in one animated motion which leaps out from the current view to an 
all-encompassing view and then immediately zooms in to the new view—might well be a desirable improvement. 
Such an implementation would combine the single click access of our current implementation with some of the 
global map-based SA of the two-step mode described above. 

!
Figure 20. Gutter Behavioral Features 

5. Sensor Coverage Overlay 
As a commandable overlay the user can call up (and turn off) when desired, we created a Projected Sensor 

Coverage Overlay as a view overlaid on the map using a translucent variation of the play color to convey the region 
inspected by the UAVs in that play over time. The degree of translucency corresponds to the latency of coverage 
(more color saturation conveys more recent inspection) and time is controlled via a slider bar – or could be allowed 
to run at a multiple of real time as a movie. Figure 21 illustrates these features with multiple vehicles inspecting 
different quadrants (and leaving alternate sensor trails; the time slider bar is included in the lower left). 
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Figure 21. Projected Sensor Coverage Overlay 

 

V. Evaluations 
We performed a series of evaluations on both the HSI and SCOPE components. In this section, we describe the 

objectives and overall approach of the HSI evaluations, and provide a summary of the results. 

A. Formative Review Approach 
We held a formative review of the in-progress design of the HSI and SCOPE in July 2015. Formative reviews 

are so-called because they help to inform the design during its formative stages, and thus, are done on a partial 
design still somewhat in flux. Indeed, some textbooks recommend that they be done using pencil and paper sketches 
of the designed HSI elements so as not to convey the image that designs are fixed and will be difficult to modify.  

Our formative review was held with four subject matter experts as described below. Three had experience in 
current UAV operations – two as pilots, one as a mission intelligence officer. The fourth was an F-16 pilot familiar 
with the CODE program and CONOPS. 

 
• SME1. Former F-16 pilot. Familiar with the CODE CONOPS and with future tactics for onboard 

control of multiple UAVs. Volunteer. 

• SME2. Six years’ experience supporting UAV operations as an intelligence operations supervisor and 
mission intelligence coordinator. Paid participant. 

• SME3. Five years’ experience as a UAV pilot. Paid participant. 

• SME4. More than 2,000 hours as a UAV pilot. Paid participant. 

The materials reviewed in this exercise were the slides, videos, and live demonstration created for and presented 
at one of our technical interchange meetings. At this time, we had a well-articulated vision and multiple examples, 
but the designs were not yet fixed. This allowed sufficient time to react to feedback from SMEs and to revise our 
designs accordingly. Note that the designs described previously in this paper were completed after this review 
(which was performed on earlier versions of these designs). The designs presented above take advantage of inputs 
from the SMEs who participated and are thus, expected improved versions of the core concepts. 

The review was held in a large conference room at SIFT’s Minneapolis headquarters with the four SMEs, as well 
as some SIFT employees. The format, as explained to the SMEs, involved an initial presentation of the goals of 
CODE and our designs, followed by a presentation of the overall system via the live demonstration of its behavior in 
a representative mission. SME participants were then asked to complete the first block of four questions in the 
questionnaire below. We then presented each major component of the HSI design in detail, showing slides, videos 
and/or live demonstrations of the component behaviors. After an initial presentation of each element, we opened the 
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floor for discussion and clarification of the design, with SIFT employees taking notes. After discussion, SMEs 
completed the associated block of questions for that component. Following this extended series of demonstrations 
and discussions at the component level, we again asked the original set of overview questions to see if any changes 
in opinion had occurred. This process took approximately eight hours.  

The following sections detail the questionnaire the SMEs responded to and summarize both their quantitative 
responses and their comments.  

B. Questionnaire and Response Summaries 
For the questionnaire, we used a 1-10 rating scale for participants to rate their impression of different aspects of 

design. The scale was defined such that: 1 = Potentially Harmful, 5 = Neutral, and 10 = Extremely Helpful. We 
posed a unique set of questions for each of the following aspects/components of the SuperC3DE HSI design: 

 
• Overview/Summary (scores for the overall HSI design) 
• Map Display and Comms Status 
• Timeline Display 
• Play Calling and Review (Quality) Panes 
• Active Play Summary Display (Playble) 
• SCOPE Breakdown and Repair Table 
• Overview/Summary (repeated) 

 
 While the full questionnaire is too long to include in this paper, we do, however, provide the set of 

Summary/Overview questions and responses in Appendix A. These questions were asked to the SMEs participating 
in our formative review. Each question is listed on a row of the table, with the individual SME response scores and 
transcriptions of their written comments provided in subsequent columns in that row. 

C. Summary of Results 
Overall, we collected 151 ratings from the four SMEs during the day-long Formative Review. The average rating 

was 7.8 and the standard deviation was 1.8 on a 10-point scale ranging (as shown above) from 1 = Potentially 
Harmful through 10 = Extremely Helpful. The minimum score given for any HSI feature was a 3 and the maximum 
was a 10. This (combined with both written and verbal comments) can be taken as general support for our designs 
with a few specific critiques and requests for revisions. The ratings of our different design elements appear in Figure 
22. 

  
Figure 22. HSI Design Element Ratings 

!
General impressions from this review are summarized in Figure 23 with the green arrows indicating elements 

that were favorably reviewed and the red ones indicating elements that needed redesign, improvement or 
replacement.  
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Figure 23. Formative Review General Impressions  

!
Numerical values are the average of responses to sub-questions asked within each broad HSI element category. 

Note, that (as illustrated for the map display), the sub-questions sometimes pointed to a specific element that needed 
to be redesigned rather than overall satisfaction or dissatisfaction with the HSI element as a whole. 

General take away themes from the discussions held during the formative review are included below along with 
specific actions we took in subsequent design phases (as described above) to address the SMEs’ concerns.  

1. De-clutter (or better, don’t clutter in the first place) 
• Providing information on demand was seen as a better approach instead of offering de-cluttering options 

or controls. 
• Action: Substantial redesign to reduce general clutter, especially through the introduction of callouts and 

popups and use of the pie menu to access related content. 
2. Play Calling “coincides with real-world operations” and “feels intuitive,” but SMEs wanted to understand 

the consistency in play symbols. 
• Action: Some symbols were redesigned, but the consistency which was there was better explained as 

well. The introduction of Tool Tip mouse-over labels for play-calling icons also helped to address this 
issue. 

3. Aggregate icons and gutter features were very well regarded – but should be simplified. 
• Action: Aggregate icons were greatly simplified in later designs – both in larger form on the map and in 

smaller form as a part of the gutter. 
4. Timeline display “has enormous SA building potential;” notifications should record actual events. 

• Action: Considering for future implementation. 
5. Map display needs play-specific filtering options and combinations. 

• Action: Organizational tools were added to the display to enable custom filtering of displayed entities. 
6. SCOPE outputs were “very useful” as a “double check” on planning, but expected value numbers were hard 

to interpret. 
• Action: Overall expected value numbers were abandoned and were replaced using more concrete 

numbers (e.g., fuel remaining, image quality, etc.) with mission-specific thresholds in later APE design. 
 

We also asked the SMEs, as a take-home exercise, to complete a comparative timeline analysis in which they 
were to think through the tasks required to complete a scenario we described (planning and executing an XINT task 
with four UAVs) as well as a rough estimate of the time required to complete each task both with and without 
CODE/SuperC3DE. This analysis was completed by three of the SMEs. The resulting data, though admittedly 
subject to a number of different biases, provides intriguing, if preliminary, evidence for the benefits of the CODE 
system overall and of our HSI in particular. Across the three data sets prepared for a four UAV XINT mission 
against four Scuds, the average “fully occupied” minutes during mission execution (not counting flying time) for a 
human operator was expected to be 23 minutes for a baseline system (without CODE/SuperC3DE) but only 5-8 
minutes for the same mission using CODE/SuperC3DE. Thus, we can (with appropriate caveats for the preliminary 
and subjective nature of this data and process) say that CODE/SuperC3DE has the potential to reduce human 
workload and time required by 65-78 percent. 

–  Overview/Summary:.before:.7.75,.a6er:.8.
–  Timeline.Display:.9.25.
–  Play.Calling/Review.Panes:.8.5.
–  SCOPE.Breakdown/Repair.Table:.8.5.
–  Playble:.6.5.and.Play.Quality:.5.75.
–  Map.Display.and.Comms.Status:.6.75.

•  Aggregate.Icons:. .7.75.
•  GuPer: . .8.00.
•  Arrow.nubs: .7.75.
•  Filtering.concept: .8.50.
•  Uncertainty.regions:.7.00.
•  Arrows.for.comms: .5.50.
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VI.  Conclusions 
We set out to achieve several goals in our development of SuperC3DE:  

• Improve human-system performance and trust while minimizing human workload and system 
bandwidth requirements.  

• Enable mission commanders to rapidly and flexibly convey their intent to and maintain awareness of 
multiple UAVs, even when they are distracted or harried and, most importantly, when communications 
are restricted.  

• Extend and improve performance under Vehicle and Team Autonomy by integrating them more closely 
with HSI using counter-planning, contingency delegation, and contingency status inferencing. 

• Provide novel situation awareness tools, integrated with the HSI, to make commanders more aware of 
and involved in UAV operations, even under comms denial.  

To meet these objectives, we designed an architecture for SuperC3DE comprised of a holistic HSI, a plan-
critiquing tool (SCOPE), and a FIT testbed for user-interactive demonstrations. We used AFRL’s Fusion 
environment as a springboard to rapidly prototype new HSI concepts. The FIT testbed enabled interactive testing 
with multiple simulated vehicles via its connection to a configurable AMASE simulation. We leveraged prior 
designs from the FLEX-IT and IMPACT work with which we had been involved at AFRL to serve as the basis of 
our integrated, task-centered architecture for commanding and maintain awareness of many UAVs. Our design 
included several novel display concepts for maintaining situation awareness in the challenging environment of 
CODE missions, which involved multiple diverse vehicles with uncertain threat and target information in a denied 
environment. Recognizing the inherent uncertainty that the commander and planning system will face before 
mission execution, we developed SCOPE as a planning and plan review aid. Given a plan and a model of our actions 
and the world, SCOPE will find contingencies within that uncertainty space that will cause the plan to fail, and it 
will generate repairs in the form of new branches to make the plan resilient to those contingencies. The primary 
interaction between the HSI and SCOPE is performed through SCOPE’s APE, whose design was in response to 
suggestions from SMEs at a review of an earlier, more complex version of a SCOPE display, which evaluates a set 
of alternate plans and scores them along multiple dimensions to estimate the plan’s performance in various areas, 
such as mission completion time, threat exposure, or total number of vehicles required.  

Moving forward, we plan to build on the above accomplishments in ways that would both further the CODE 
program objectives, as well as extend our research in the general areas of decision support and planning for semi-
autonomous systems. By integrating as fully as possible with Track A architectures, we intend to advance the 
Technology Readiness Level of selected SuperC3DE components through live flight demonstrations. 
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Appendix!

Table 1: Overview/Summary Questionnaire with Responses – Initial  
< < Rating< Comments<
1< Overall'impression<of<

SuperC3DE<HSI<design:<
7,7,8,9<< SME1—Good<initial<design,<some<interface<seems<

cumbersome<
SME2—Straightforward<map<and<timeline<views;<
overall<seems<optimized<for<GCS/OPS5<center<use<
SME3—High<volume<of<data<available<in<finite<space,<
high<level<of<organization.<Some<icons<are<very<similar.<
SME4—Looks<very<nice.<Might<be<a<little<busy<on<a<
small<display.<

2< Use<of<tasks'as<an<
organizing,<controlling<&<
reporting<structure:<

7,5,8,7X
8<

SME1—I<like<the<playbooks,<but<I<think<they’d<need<to<
be<more<of<a<mission<planning<function<and<less<of<an<
execution<function<
SME2—Play<creator<is<fairly<straightforward<requiring<
only<brief<guide<or<legend<for<identifying<various<play<
options<–<speed<and<proficiency<will<come<over<time.<
SME3—Structure<seems<well<thought<out.<Ability<to<
control<groups<or<individual<RPAs<feels<intuitive<
SME4—I<like<the<ability<to<build<scan/flight<plan<
functions.<Map<and<CSI<are<good.<Some<of<the<
contingency<variable<predictions<might<be<a<little<busy,<
but<ok<to<include.<<

3< Use<of<maps'AND'
timelines<as<core<
organizing<views<

8,9,9,9< SME1—Easy<to<follow<along<as<the<msn/cc6<might<
want<to<combine<routes<into<1<with<offshoots<to<deX
clutter<screen.<
SME2—Maps<and<timeline<views<very<reminiscent<of<
realXworld<tools,<thus<facilitating<easier<
implementation<and<use<
SME3—Division<of<attention<will<likely<be<one<of<the<
biggest<limiting<factors,<this<overview<has<a<very<good<
situational<awareness<increasing<potential<
SME4—Nice<way<to<organize<the<map<and<various<
input<functions<

4< Does<the<SuperC3DE<HSI<
hold<promise<to<enable<
controlling<many'
unmanned'air'systems'
(UASs)?<

8,7,9,10< SME1—With<some<reductions<on<required<inputs<from<
msn/cc<during<execution,<I<think<it’d<be<more<feasible.<
SME2—Definitely<
SME3—<Yes,<with<some<familiarity<with<the<system<I<
see<a<lot<of<potential<here.<
SME4—Yes.<Looks<similar<if<not<much<better<to<<
software<we<use<today.<

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 “GCS” refers to the Ground Control Station, while “OPS” refers to Operations. 
6 “msn/cc” refers to mission  command and control. 
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Table 2: Overview/Summary Questionnaire Responses – Repeated after full description of each component 
< < Rating< Comments<
1< Overall'impression<of<

SuperC3DE<HSI<design:<
7,8,9,8< SME1—<We<gave<you<a<lot<of<inputs,<but<I<think<you<

have<a<solid<base<and<the<ability<to<expand<on<it<to<
have<an<awesome<product.<
SME2—Very<good<initial<approach.<Main<
recommendation<focuses<on<cleaning<up<display.<<
SME3—I<really<like<the<way<information<is<displayed<
to<the<user.<With<some<mods,<this<will<be<very<useful.<
SME4—Some<details<need<work<but<overall<great<idea<
and<concept<

2< Use<of<tasks'as<an<
organizing,<controlling<&<
reporting<structure:<

XX,10,XX,7< SME1—No<change<
SME2—Coincides<with<realXworld<operations—both<
planning<and<execution<
SME3—<
SME4—Need<some<work<on<play<menu,<but<well<
organized<

3< Use<of<maps'AND'
timelines<as<core<
organizing<views<

XX,9,10,9< SME1—Maps<are<key,<with<data<on<demand<
SME2—Very<effective<at<conveying<mission<essential<
information<only<requiring<some<map<display<icon<
clean<up/simplification<
SME3—Using<primarily<the<map<and<timeline<as<SA<
tools<the<display<is<deXcluttered<and<efficient.<
SME4—Love<the<timeline,<map<is<good<too<

4< Does<the<SuperC3DE<HSI<
hold<promise<to<enable<
controlling<many'UASs?<

XX,10,XX,9< SME1—Definitely<
SME2—Definitely<
SME3—The<most<important<thing<is<having<the<right<
information<when<you<need<it,<but<only<the<
information<you<need<at<that<time.<I<think<this<is<a<big<
step<in<the<right<direction.<
SME4—Very<useful<for<planning/controlling<a<large<
number<of<vehicles<
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