
Trapping Malicious Insiders in the SPDR Web

J. Thomas Haigh*, Steven A. Harp*, Richard C. O�Brien*, Charles N. Payne*, Johnathan Gohde+, John Maraist~

* Adventium Labs, Minneapolis, MN (email: firstname.lastname@adventiumlabs.org)
+ General Dynamics Advanced Information Systems, Bloomington, MN (email: Johnathan.Gohde@gd-ais.com)

~ Smart Information Flow Technologies, Minneapolis, MN (jmaraist@sift.info)

Abstract
The insider threat has assumed increasing

importance as our dependence on critical cyber
information infrastructure has increased. In this paper
we describe an approach for thwarting and attributing
insider attacks. The Sense, Prepare, Detect, and React
(SPDR) approach utilizes both a highly intelligent
software reasoning system to anticipate, recognize,
respond to, and attribute attacks as well as a widely
distributed set of hardware-based sensor-effectors to
provide alerts used by the reasoning system and to
implement responses as directed by it. Using
hardware sensor-effectors greatly reduces the risk that
a savvy malicious insider can bypass or cripple the
system’s monitoring and control capabilities. In this
paper we describe the prototype SPDR system and the
results of its successful evaluation by an independent,
DARPA-sponsored Red Team. We conclude with
thoughts on possible SPDR enhancements and further
research.
1. Introduction

Unlike an outsider, the malicious insider begins
with a launch point within the organization�s boundary,
thus eliminating the effort and risk associated with
defeating boundary protection mechanisms. Also, in
many cases the insider can mount a successful attack
using only his authorized access to the system.
According to the Webster Report, most of Robert
Hanssen�s exploits involved the use of authorized
access for unauthorized purposes [1]. In the one attack
where Mr. Hanssen used unauthorized access, hacking
into his supervisor�s workstation, his job was made
simpler because of his knowledge of the organization,
its personnel and its network. He knew which
workstation to target. He had a good idea of how it was
configured, and he had personal knowledge of the
authorized user. More recent reports [2] confirm that
ready access to knowledge about the system and
acquaintance with other authorized users is the third
advantage an inside adversary has.

A compensating difference between an outsider and
a malicious insider is that the insider�s connection to
the organization is generally known, through use of
identification and authentication mechanisms. This
makes it easier to associate insiders with their actions

and hold them accountable. As a result, attribution is
an important aspect of defense against malicious
insiders. Even when the defenders cannot thwart an
initial attack, post facto attribution provides the
opportunity to prevent the malicious insider from
conducting further attacks. The risk of attribution, even
after the fact, can serve as a strong deterrent to
insiders, who have more to lose, and who can be held
more accountable, than typical outside adversaries.

To counter the malicious insider, defenders need
tools that detect patterns of suspicious behavior and
then implement responses that will prevent or delay the
suspicious behavior sufficiently to ensure successful
completion of critical network operations. Moreover,
these responses must not themselves interfere with
successful completion of critical operations.

Defenders can also use tools that support the
attribution of an attack to a specific individual. If it is
not possible to unequivocally attribute the attack to a
particular individual, then it can be quite useful to
reduce the space of possible perpetrators so that
investigators know whom to target.

The goal of the DARPA-sponsored Sense, Prepare,
Detect, and React (SPDR) project was to develop a
system that enables individuals to accomplish their
authorized tasks, but severely limits a malicious
insider�s potential to do harm, both by thwarting
attacks as they progress and by supporting the
attribution of attacks to particular individuals within
the organization.

The SPDR system uses an approach for detecting,
attributing, and thwarting attacks by malicious insiders
which combines intelligent software for anticipating,
recognizing, responding to, and attributing attacks with
a powerful, hardware-based sensor-effector to monitor
and control the traffic between hosts on the protected
network. In May of 2008, it performed well during a
rigorous three day evaluation during which SPDR
defended a mock aircraft carrier-based air mission
planning system against an independent Red Team.
The SPDR prototype successfully thwarted 75% of the
attacks and correctly attributed over 80% of the
significant attacks. SPDR also generated relatively

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

1978-0-7695-3450-3/09 $25.00 © 2009 IEEE

few false responses (10% of test caes) or attributions
(5%).

SPDR appears to be different from previous
published research on the insider threat. There have
been prior studies of organizational factors or personal
psychological factors related to the insider threat [3],
[4]. Other researchers have used anomaly analysis and
detection techniques to support detection of insider
attacks. These have been either user/role based [5] or
application based [6], coupled with refined access
control policies. Some authors have combined several
of these techniques [7]. SPDR�s use of anomaly
detection, enhanced by predictive reasoning to identify
attacks, coupled with dynamic access controls
implemented on a highly trustworthy hardware base,
integrates and extends several of these approaches to
the problem..

Before presenting an overview of the SPDR system
and describing the results of the assessment, we
describe the testbed used for the assessment. We
conclude with a discussion of approaches for
addressing deficiencies of the current SPDR prototype.

2. The SPDR Testbed

The goal of the SPDR prototype was to defend a
simple version of an aircraft carrier Air Operations
Center (AOC) that plans air sorties, implemented using
a Services Oriented Architecture (SOA). The AOC is
part of a larger network wholly within the carrier's
internal network, and we assumed the insider was
somewhere on the carrier. As is typically the case,
there are different classes of insiders, depending on
their degree of system access.

Figure 1 illustrates three types of insider. Some
insiders have authorized access to the AOC, composed
of the four workstations at the top of the figure. Others
only have authorized access to non-mission
workstations outside the AOC but are authorized to
chat with users in the AOC. This provides a broader
attack surface for the Red Team to exploit. They can
launch malware from the non-AOC workstation or use
it as a bounce point for exfiltration. Finally, some
insiders only have physical access to the carrier
network. They can connect their own rogue
workstations to the network, but they cannot
authenticate to any DRED-protected host. Local
system administrators, who have access to all the hosts,
were a fourth class of insider. They can install
malware on any host and then log out before the
malware activated.

The AOC hosts the Combat Direction Center
application and the associated SOA services:

 Intelligence Operations Service
 Strike Operations Service
 Air Operations Service

We discuss the DREDs and the ISM in the next

section. The firewall router represents the boundary
between the carrier and the of the world, and the
Scorebot is a test artifact used to start, stop, and assist
in scoring the Red Team tests.

Figure 1. The SPDR testbed is a prototype
SOA-based air operations planning center on an
aircraft carrier

A typical mission planning loop might be the
following. U.S. Intelligence identifies a surface threat
in the area of a carrier group's engagement and enters it
into a national Global Information Grid (GIG) threat
database to which the carrier's Intelligence Operations
Service is subscribed. The threat might be hostile
destroyers with medium-range surface-to-air missiles.
Information obtained from the GIG threat database
indicates detection and engagement ranges for the
threats, images of the class of vessel, and possibly
other information.

The Intelligence Operations Service fuses this data
with any information the carrier has obtained from
monitoring surface tracks in its vicinity. If Intelligence
Operations confirms it is a potential threat to the carrier
group's presence, it sends the fused information to the
Combat Direction Center.

Acting on the threat message, the Combat Direction
Center plans the mission and requests a mission flight
plan from the Strike Operations service. This request
includes data such as the threat and its location, the
goal of the mission, a mission timeline, and details
about the threats to the mission.

The Strike Operations service queries Air
Operations about available assets to support the

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

2

mission and in return receives a list of assets that have
the proper capabilities and availability. Strike
Operations then crafts a flight plan that satisfies the
goals of the mission. For instance, the flight plan might
involve sending F/A-18s to strike the destroyers. The
flight plan may include other assets, such as Airborne
Early Warning.

Strike Operations then reserves the assets and sends
the flight plan back to the Combat Direction Center. If
the flight plan is acceptable, the Combat Direction
Center then forwards it to Intelligence Operations in
order to brief the crew that will fly the mission. Once
everything is ready, the Combat Direction Center gives
the okay to start the mission.

3. SPDR Overview

As shown in Figure 2, the SPDR approach
incorporates both off-line and on-line reasoning
elements. Off-line, the SPDR Plan Generation Module
uses automated planning techniques developed on the
BAMS and SCOAP projects [8] to reason about the
potential threats faced by the defended network based
on models of potential attacker goals and capabilities.
The result of this reasoning is an attack plan library,
consisting of a complete (with respect to the network
and adversary models and a pre-determined depth) set
of possible attacker courses of action.

Figure 2. The SPDR system utilizes both off-
line and online reasoning as well as a Detection and

Response Embedded Device (DRED) on every
protected host.

The online SPDR components include a set of
centrally located intelligent components, known
collectively as the Intelligent Security Manager (ISM),
that detect and respond to ongoing attacks and that

attribute those attacks to specific hosts and users, based
on alerts from sensors distributed throughout the
network.

SPDR also strengthens critical elements of the
system to prevent a knowledgeable adversary with
insider access from disabling or bypassing defenses. In
particular, critical detection and response capabilities
of SPDR are placed off limits to the insider within a
cost-effective tamper-resistant Detection and Response
Embedded Device (DRED). This paper describes the
DRED and the ISM. For further information on the
off-line SPDR components the reader is directed to [8].

3.1 The DRED

Any viable solution to the insider threat problem

must address the concern that a user might circumvent
the system by modifying, disabling, or bypassing the
sensing and response mechanisms. SPDR addresses
this concern by placing critical sensing and response
mechanisms in the DRED, a hardware sensor-effector
platform that protects a single host, yet is not under the
control of the host processor or the user currently
logged into the host.

The DRED only accepts configuration information
over encrypted connections with a central policy
manager and the SPDR Response Module on the ISM.
Thus, the DRED is highly resistant to attacks. The
associated host has no interface it can use to modify or
disable the DRED. Any other network device would
have to acquire the appropriate keying material to
masquerade as the ISM.

Moreover, the DRED encrypts communications to
the network, and only it possess the cryptographic keys
required for network access to and from its host. Thus
the DRED cannot be bypassed; all network access is
consistent with the user-based network authorization
policy enforced by the DRED, and the DRED can
examine all traffic for malicious content and intent.
However, SPDR would not prevent a malicious insider
from connecting to some other network if it were
physically possible to do so. For example, the DRED
would not prevent connection to a nearby wireless
network.

As its name implies, the intended form factor for
the DRED is as an embedded device on the host
computer. As powerful network processing hardware
trends downwards in price, this is an increasingly
attractive approach. However, for the SPDR prototype
each DRED was implemented as an inline, bump-in-
the-wire single board computer running a specially

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

3

configured SELinux operating system. There are other
possible form factors for operational use, possibly as a
separate virtual machine on the host, or in a switch
protecting many hosts. Each alternative has its
strengths and drawbacks.

Figure 3. The DRED defenses operate at multiple
layers of the network stack.

Because each DRED has ample storage and a

powerful CPU running a full-featured operating
system, it can support more sophisticated prevention,
detection and response capabilities than previous
generations of COTS hardware-based, distributed
firewalls [9]. Figure 3 illustrates the defenses on the
prototype SPDR DRED. The DRED performs MAC
address filtering and stateful, deep-packet inspection
on both its internal interface to the host and its external
interface to the network. It also runs the Snort NIDS
on its internal interface to detect attacks launched from
a malicious insider on the host. On the external
interface the DRED provides IPsec encryption, thus
ensuring that any rogue connection to the network is
blinded. This applies to rogue connections from
authorized hosts as well as all connections from
unauthorized hosts.

Finally, the DRED proxies all SOA traffic
associated with the testbed applications. The vProxy
detects and blocks malformed traffic and alerts the

ISM of each message that is sent and the message�s
content. vProxy is a highly modified version of the
TinyProxy http proxy [10] that uses Xerces-C for real-
time XML validation. Each vProxy loads XML
Schema for all of the legitimate SOAP mission traffic
that the given DRED should see to and from its host.
Messages that fall outside these fairly strict bounds
will never leave the DRED. Thus, vProxy policy and
configuration is specific to the applications and
services provided by the associated host.

Coordinating policies for multiple defensives
across many hosts is a non-trivial task [11]. To address
this, DRED policies are generated automatically using
Adventium's Conversations policy management tool,
which separates the concerns of authorization and
enforcement to guarantee policy consistency, both
across defenses and between hosts, and to reduce the
management burden by an order of magnitude. This
makes it simple for SPDR to incorporate otherwise
tedious protections such as static Address Resolution
Protocol (ARP) tables into the deployed network.

The operational model for the DRED is
conceptually simple. Until a user logs in directly to the
DRED using a standard smart card, there is no network
connectivity. This could be modified to provide
limited connectivity to support necessary house-
keeping functions, such as back-up and patch
management, as long as proper remote administrator
authentication and auditing are enforced. Following
user login the DRED activates a user specific policy
configuration that includes cryptographic keys,
network monitoring and authorization rules and
sensors and the appropriate proxy configuration.

The prototype DRED policies embody a strict
concept of Least Privilege, authorizing only the
network accesses required by the user�s role. The
sensors report all detected observables to the ISM,
where they are distributed to the appropriate ISM
components, as shown in Figure 4. The DRED also
implements responses as instructed by the Response
Module on the ISM. When the user logs out, the
DRED policy returns to its default state.

The Least Privilege network authorization policies
play a key role on SPDR. The ISM reasons about
suspicious observed events and the extent to which
those events may indicate malicious intent by a user.
What is considered malicious varies from user to user
according to the role of the user. Certainly
unauthorized actions should be identified as suspicious,
but it is also possible for a user to perform authorized
actions with malicious intent. By constraining users to
engage only in authorized behaviors, the DRED
effectively reduces the potential search space that the

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

4

ISM must explore for malicious intent. Without this
restriction the ISM would have to consider plans
containing both authorized and unauthorized
behaviors, which would be a much larger search space.

SPDR relies on DRED devices to protect all hosts
in the system, including servers that do not have
traditional users. In these cases, the DRED device's
default policy specifies the authorizations that are
appropriate for the server. It is also necessary to
decrypt DRED-encrypted IPsec traffic before it leaves
the SPDR-protected enclave.

3.2 The ISM

The ISM contains the online intelligent components
used to identify, respond to, and attribute attacks based
on sensor information provided by the DREDs and any
network or host-based sensors that might be
incorporated in the future. For the SPDR prototype the
ISM only uses sensors on the DREDs. As shown in
Figure 4, the ISM includes:

• A pair of application layer sensors, the Mission
Monitor and the Provenance Monitor,

• The Plan Recognition Module,
• The Response Module, and
• The Attribution Module.

The Mission Monitor tracks the progress of the mission
planning workflow. Events are supposed to follow in a
particular (partial) order and stay within temporal
bounds. The Mission Monitor detects when any task
fails to register completion by its deadline (or is started
out of order) and emits an alert indicating the sort of
failure detected. The SPDR Response Module may
choose to take corrective action when the mission is
failing to make progress, e.g. restart the mission from a
point at which it was making progress. This could
involve replacing the individual, host, or service
responsible for the lack of progress. For the mission
planning application on our testbed, the workflow was
linear with a limited ability for a user to modify the
flow by aborting a planning loop. There is nothing to
preclude the Mission Monitor from enforcing more
complex workflows with branches and loops.
However, this would require tighter coordination with
the Provenance Monitor to understand how a specific
instance of the workflow should branch or loop.

The Provenance Monitor is responsible for
checking message integrity and for preserving message
metadata used to help identify the cause of a mission
failure and the user, host, or service responsible for the
failure. A mission can fail because information in the
mission plan was compromised or corrupted or because

of delay in planning the mission. The vProxy on the
DRED inspects each mission planning message and
sends the Provenance Monitor metadata about the
message. The Provenance Monitor performs an
analysis of the message content to determine if any
semantic invariants have been violated, and alerts the
Plan Recognition Module of these integrity violations.
The Provenance Monitor also stores the meta-data for
use by the Attribution Module.

Figure 4. The ISM provides the intelligence to

identify, respond to, and attribute attacks. Light
(red) lines indicate DRED sensor alerts.

The Plan Recognition Module uses an efficient

precompiled plan recognition engine that matches
sequences of observations with plans in the library of
possible attack plans generated by the offline planning
engine [12]. The observations are selected alerts from
the sensors deployed on each DRED and the Mission
and Provenance Monitors. As new observations arrive
the Plan Recognition Model updates its likelihood
estimates for the possible attack plans underway.

 The SPDR Response Module generates responses
in a manner that balances the uncertainty of the true
situation with the potential effects of the response. The
prototype Response Module implements a fairly simple
set of responses. It can direct the DREDs to ban a user
from a specific host or from all hosts, or block network
access from a specific host or from a specific service
running on a host. In cases where the actual situation is
suspicious but uncertain, it generates alerts that allow a
system administrator or a duty officer to investigate the
cause of suspicion, thus bringing a human into the
response loop when appropriate. It is easy to conceive

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

5

of richer response policies, such as isolating a host and
restarting its services somewhere else whenever a host
or service has been corrupted, so that the mission
planning loop can continue.

The Attribution Module, performs both online and
post mortem attribution of attacks. It identifies the user
or users most likely to be guilty parties, as well as to
indicate potentially compromised hosts. This is done in
a probabilistic fashion via a Bayesian belief network
derived from the mission planning workflow [13]. The
Attribution Module determines the steps in the
planning workflow where the malicious insider might
have acted. DRED authentication records inform the
Attribution Module which users were apparently
present on which hosts before or during the mission
planning loop. Then observable attack effects, as
evidenced by metadata from the Provenance Monitor
and alerts from other SPDR components, are used to
reason backwards to potential hostile causes and
agents. For example, an attempt to transmit a
maliciously crafted XML SOAP message from one
service to another is detected by the vProxy and is
attributed to the service and host that caused the
inconsistency. Attempts to probe the network are
detected by Snort on the DRED where the scans
originate and are attributed to the related host.
Inconsistencies introduced in the mission data is
detected by provenance monitor, and attributed to the
service and host that caused the inconsistency.

The Attribution Module also includes consequences
of an attack in its ex post facto reasoning. If a planning
loop fails to complete or completes with a corrupted
result, or if post-mission analysis indicates the mission
plan may have been compromised, the Attribution
Module considers the nature of failure. It does so by
using non-monotonic reasoning to attribute failure to
one or more parties that may have had the opportunity
to compromise, delay or tamper with the mission in a
way that is consistent with the failure mode.

The output of the Attribution Module is a posterior
probability distribution over the users (including
�nobody�) and another distribution over the hosts
(including an unknown �rogue� host). The Attribution
Module identifies the user logged on at the time of
detection as well as any user previously logged in as
suspicious�these users may have left trojan horse or
remote control software meant to deflect blame. The
granularity of attribution would be improved by
including alerts from host-based sensors.

4. Results of the Red Team Assessment

The final test for SPDR was a rigorous three day
assessment by the independent DARPA-sponsored Red
Team. The assessment followed a seven month period
during which the SPDR Blue Team worked with the
Red Team to familiarize them with the SPDR testbed,
design and implementation. The Blue Team provided
the Red Team with the SPDR software and helped
them with their analysis of the code. Until three weeks
prior to the assessment, the teams worked
collaboratively, discussing different lines of attack and
the anticipated SPDR responses to those attacks.
These interchanges took place via teleconferences as
well as face-to-face meetings. They proved quite
useful for improving the SPDR defenses.

Most notably, one week before the SPDR code
freeze date the Red Team sketched a set of MAC layer
attacks that they intended to use. During the next week
the Blue Team managed to install a set of MAC layer
defenses that thwarted all but one of the Red Team�s
attacks, an ARP flood denial of service from a rogue
workstation. The natural way to thwart this attack
would be to disconnect the rogue from the network at
the switch port, but the testbed switch had not been
defined as part of the SPDR system, so this response
was off-limits during the assessment.

The Red Team developed forty-nine test cases,
counting variations. Most of the test cases involved
attacks against confidentiality, integrity, or availability.
Some cases tested the extent to which SPDR would
interfere with benign system activities. Such
interference could take the form of responses to
perceived attacks that prevented completion of a
correct mission planning loop. It could also take the
form of a false attribution of an attack when no attack
was underway.

To mount a successful confidentiality attack the
Red Team had to transmit all or part of a mission plan
through the router representing the boundary between
the carrier network and the rest of the world. For an
integrity attack to succeed, the Red Team had to
corrupt some part of the mission plan that was briefed.
For both confidentiality and integrity attacks if SPDR
detected the compromise or corruption prior to the
command to briefing the flight plan, SPDR would
cancel the mission, and the Red Team had failed to
achieve its objective of compromising or corrupting a
mission that was actually launched. To succeed with
an availability attack, the Red Team had to delay the
mission planning loop long enough so that the mission

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6

could not be briefed within a pre-determined time
window set to ten minutes for the assessment.

The teams spent the first day of the assessment
white-boarding the test cases. In some cases the teams
agreed on the expected results of the test and chose to
score it based on that agreement rather than actually
run the test. In other cases the teams determined that
there would be value in running the tests and assessing
the results. During this white-boarding session the
teams dropped eighteen of the test cases as duplicates,
outside the negotiated Rules of Engagement, or
irrelevant to assessing SPDR�s capabilities. Twenty-
eight of the remaining cases were attacks; three were
tests of whether or not SPDR would interfere with
mission planning or accuse an insider when there was
no attack.

In the following two days the teams ran all but a
very small number of the remaining cases. They used
a follow-up phone call to white-board the cases they
did not have time to run. The tests included DoS and
integrity attacks using floods at several layers of the
network stack, ARP poisoning attacks, and spoofed or
replayed messages, responses, and heartbeats,. Other
attacks included attempts to delay, corrupt, or
compromise a mission plan using malware or via direct
human action. The Red Team used general tools and
specially crafted tools to inject malware remotely and
to inject spoofed messages or packets or to capture and
replay them. The Red Team did not develop tools for
exfiltrating information using covert or steganographic
channels. By direction of the customer�s Independent
Evaluation Team, prevention of this sort of exfiltration
was outside the scope of the project.

SPDR failed to thwart seven attacks. However two
of these attacks were thwarted after very simple bug
fixes, one to the Mission Monitor and one to the
ordering of IP filter rules. The Red and Blue teams
agreed that two more would have been thwarted if
SPDR had included fairly obvious host-based sensors
to detect the attacks. Another attack would have been
thwarted if the SPDR response set had been extended
to include actions at the network switch. Thus, these
attacks identified limitations in the prototype
implementation, not limitations to the SPDR approach.

Only two attacks exposed inherent limitations in
SPDR's ability to thwart attacks. These were cases
where the insider used legitimate accesses to either
steal information or to corrupt information in
semantically correct ways. In both these cases SPDR
correctly attributed the attacks after the fact. In fact,
SPDR correctly attributed all but one of the successful
attacks, and after a simple two line bug fix, SPDR
correctly attributed them all.

SPDR failed to attribute nine attacks. Five of these
attacks were network and MAC layer DoS attacks that
were thwarted trivially by the initial DRED defenses.
No detection or response was required. SPDR could
have correctly attributed four of these attacks by
including known ARP sensors and snort detection rules
in the SPDR sensor set. Attribution of the fifth would
require sensing at the IPsec layer. We are investigating
the feasibility of such sensing. After the same two line
bug fix to the Mission Monitor identified above, SPDR
attributed two more of these attacks, and another could
be detected by including appropriate host-based
sensors.

In summary, it appears that after two bug fixes, the
addition of further low level network sensors and a
small number of host-based integrity sensors, SPDR
could attribute almost 100% of attacks and could
thwart all but a small, albeit significant, class of attacks
involving the insider�s abuse of authorized access. It is
not surprising that SPDR cannot thwart these attacks.
After all, if the system supports a strong notion of
Least Privilege access control, then the insider is using
precisely the accesses required to perform critical
functions on the network. However, it is very
significant that SPDR can attribute this class of attacks
after the fact because this means that eventually the
malicious insider will be identified and apprehended
and the organization can apply appropriate legal and
policy-based penalties for the behavior.

It is worth noting that SPDR did very well with
regard to avoiding incorrect attribution of attacks and
interfering with legitimate network activities. There
was only one case of incorrect attribution, and there
were only three cases where SPDR interfered with
legitimate activities. We suspect these low false
positive rates are an artifact of the testbed and/or the
test cases identified by the Red Team. It would be
interesting to retest SPDR with a more complex
network and a larger set of services.

5. Future SPDR Directions

A successful research project should identify new
avenues of investigation, and the SPDR project has
done this. The assessment validated the power and
flexibility of the DRED as both a policy enforcement
device and a tamper resistant sensor-effector for traffic
between a host and a network. The Red Team did not
identify any attacks that penetrated the DRED or
bypassed its defenses, and the experience adding ARP
defenses illustrates how easily new defensive
mechanisms can be added to the DRED.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

7

A logical next step would be to move toward the
vision of an embedded device. Since the beginning of
the SPDR project, several attractive commercial
options have appeared [14], [15]. It would also be
possible to virtualize the DRED by running it in its
own partition on a virtual machine monitor and forcing
all network access through the DRED partition [16],
[17]. A virtual DRED would have more visibility into
the host it is controlling, thus providing a relatively
tamper-resistant location for host-based sensors as well
as some more intrusive effectors than could be located
on a separate device. On the other hand, there would
be a greater risk that a savvy insider would be able to
disable or bypass the virtual device.

As noted in the previous section on the Red Team
assessment, the extension of SPDR to include a
broader set of sensors, particularly host-based sensors,
would increase its effectiveness considerably, pushing
SPDR�s attribution rate close to 100% and also
increasing its ability to thwart attacks sooner. We
conjecture that the inclusion of a relatively small
number of ARP alert and snort sensor rules and
information readily available in host and applications
logs would suffice. The best way to test this conjecture
would be to deploy SPDR on a larger network with a
richer set of applications. The Attribution Module and
the Plan Recognition Module would have to be
extended to include reasoning about the resulting larger
set of sensor alerts. This is not an immediate
scalability concern since both of these modules
performed very quickly during the assessment.

Once the validity of the conjecture is established,
the next step would be to explore methods for
maximizing the trustworthiness of host-based sensor
reports. Certainly sensors implemented directly on
operating systems under the control of the end-user
would be highly suspect. However, there are better
approaches. As noted earlier, virtualization would
strengthen the defenses around the sensors. It is also
likely that for more realistic architectures where the
SOA services are hosted on servers in protected server
rooms and users interact with the servers via relatively
thin clients, many of the host-based sensors could
reside in the server room, thus offering greater
protection from most malicious insiders. This
approach could work quite well for integrity attacks,
but it will be inadequate for dealing with
confidentiality attacks. Those are likely to require new
classes of sensors that can detect and attribute
sophisticated attempts at exfiltration. These sensors
can be incorporated into SPDR when they are
developed.

Besides being somewhat sensor poor, the current
SPDR system has a relatively limited set of responses.
Just as the way to increase the breadth of sensing is to
use sensors that are already available, a good way to
increase the breadth of responses is to take advantage
of existing response mechanisms. As noted above,
smart switches can provide reliable, effective responses
to many classes of network DoS attacks. Redundancy
and high availability solutions are also useful. Quite
often an attack requires the corruption of integrity for
the host or service under attack. Once SPDR detects
such corruption, the most effective response is to
restart the service, either on the same host or on a
different, uncorrupted host, and to rollback to the last
known good messages. The SPDR Provenance
Monitor provides information for such a rollback. It
would be interesting to see what else might be
necessary to accomplish these relocate and rollback
responses.

An underlying concern with scalability for the
SPDR approach is the strong reliance of the ISM on a
set of detailed network and adversary models for attack
plan generation, and application models for use by the
Attribution Module and the Mission and Provenance
Monitors, and possibly for generation of specific
instances of the vProxy. For the prototype these
models were built by hand, but for the SPDR approach
to generalize, this modeling process must include a
fairly high degree of automation. On the SCOAP
project we developed methods for automating the
creation of network models, and we are investigating
approaches for incorporating information from
vulnerability and exploit databases into the adversary
models.

To address the application modeling problem, it
may be fruitful to investigate approaches for using an
existing workflow modeling language [18] and
approaches to provenance monitoring [19] to create a
model that could be used to derive an initial version of
the four SPDR components and then display the
derivations for human review and editing. Then it
would be useful to examine the feasibility of deriving
the workflow model automatically from generally
available development artifacts and to understand the
limitations of scope associated with such derivations.
We conjecture that it would be possible to extract such
a workflow model from java source for a wide range of
SOA application systems.

6. Conclusion

On the SPDR project we developed what we

believe is a unique two-pronged approach to thwarting

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

8

and attributing attacks of malicious insiders. The first
prong is to place critical sensing and response
mechanisms in the DRED, a hardware sensor-effector
platform that protects a single host, yet is not under the
control of the host processor or the user currently
logged into the host. The second prong is to apply
powerful reasoning tools and application aware
intelligent sensors to identify attacks based on inputs
from the distributed sensors, to plan and implement
responses, and to attribute the attacks to specific
insiders.

In an assessment by a skilled independent Red
Team, SPDR proved its worth. After fixing two small
bugs, SPDR thwarted over 80% of the Red Team�s
attacks, and it correctly attributed all the attacks it
failed to thwart. Ignoring several low level DoS
attacks that SPDR easily preventted, SPDR attributed
almost 90% of the attacks. Both percentages would
have been higher if SPDR had used inputs from host-
based sensors to complement sensors on the DREDs.
The related false positive rates for incorrectly
thwarting a perceived attack and falsely attributing a
perceived or actual attack were quite low.

The only Red Team attacks SPDR could not have
thwarted were attacks where the malicious insider used
authorized access to either compromise sensitive
information or to corrupt critical information in a
semantically consistent manner. It is not surprising
that SPDR fails to thwart these attacks, since thwarting
them would require SPDR to either read the attacker�s
mind or to interfere with benign operations, thus
preventing network users from doing their jobs. SPDR
did correctly attribute these attacks after the fact, thus
making such attacks highly unattractive to most would-
be malicious insiders.

During the assessment the DRED proved to be a
very strong policy enforcement and sensor-effector
device. Many attacks simply bounced off the DRED
with no impact whatsoever on the network. This
included low-level network DoS attacks as well as
user-level attempts to circumvent the DRED policies.
These all failed, and the Red Team was unable to
corrupt or bypass the DRED. It would be reasonable to
begin efforts to deploy DREDs in limited operational
environments. This could be done in one of several
form factors, ranging from bump-in-the wire single
board computers as was done for the prototype, to
embedded physical or virtual devices.

SPDR is not a complete insider threat solution in
itself. It will work most effectively when it is part of
the larger network defenses, relying on alerts from
existing sensors to complement the DRED alerts, and
on other security and survivability mechanisms to

complement DRED-based responses to attacks.
Moreover, research on the prototype indicated the need
for tools to automate the processes used to build the
models used by SPDR�s intelligent sensors and its
reasoning components.

Further research should be performed on the

investigation of approaches for automating these
model-building processes and for integrating SPDR
with the larger set of defenses available on an
operational network. This should include the use of
non-DRED sensors and effectors, and the exploitation
of architectural features to provide a richer, more
durable set of responses to attacks. The best way to do
this would be to apply SPDR to a larger, more complex
network.

Acknowledgments

This work was supported by DARPA and AFRL
under contract number FA8750-07-C-0017. The
authors would like to thank their reviewers for several
very useful comments.

8. References

[1] William H. Webster, et al., �A Review of FBI Programs�,
U. S. Department of Justice, Washington,
DC, March, 2002.
http://www.usdoj.gov/05publications/websterreport.pdf

[2] M. Keeney, et al. �Insider Threat Study: Computer
System Sabotage in critical Infrastructure Sectors.�
Technical Report. U.S. Secret Service and CMU Software
Engineering Institute. May, 2005.

[3] Ignacio J. Martinez-Moyano Michael E. Samsa James F.
Burke Bahadir K. Akcam1. �Toward a Generic
Exploring Insider Threats to Information Infrastructure,� in
Proceedings of the 41st Hawaii International Conference on
System Sciences. 2008.

[4] E.D. Shaw, K.G. Ruby, and J. M. Post, �The
insider threat to information systems.� Security
Awareness Bulletin, volume 2, 1998.

[5] J.S. Park and J. Giordano. �Role-based profile analysis
for scalable and accurate insider-anomaly detection, in
Proceeding of the IEEE International Performance
Computing and Communications Conference. 2006.

[6] Suranjan Pramanik, Vidyaraman Sankaranarayanan, and
Shambhu Upadhyaya. �Security Policies to Mitigate Insider
Threat in the Document Control Domain,� in Proceedings of
the 20th Annual Computer Security Applications Conference
(ACSAC). 2004.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

9

[7] E. Eugene Schultz. �A framework for understanding and
predicting insider attacks.� Compsec 2002. October 2002.

[8] Mark Boddy, Johnathan Gohde, J. Thomas Haigh, Steven
Harp, "Course of Action Generation for Cyber Security
Using Classical Planning", ICAPS-05, June, 2005.

[9] Charles N. Payne, Jr., T. R. Markham, "Architecture and
Applications for a Distributed Embedded Firewall", 17th
Annual Computer Security Applications Conference, New
Orleans, LA., pp. 329-338, 2001.

[10] Computation Group, �Tiny Proxy Home Page,� Banu,
2008. http://tinyproxy.banu.com/.

[11] Paul Rubel, Michael Ihde, Steven Harp, Charles Payne.
"Generating Policies for Defense in Depth� in Proceedings of
the 21st Annual Computer Security Applications Conference,
2005.

[12] Christopher W. Geib, Robert P. Goldman and John
Maraist, "A New Probabilistic Plan Recognition Algorithm
Based on String Rewriting," in: Proc. ICAPS 2008,
September 2008.

[13] [Jensen01] F.V. Jensen, Bayesian Networks and
Decision Graphs, Springer. 2001.

[14] Pranav Mehta, �Intel® Embedded Processor for 2008
(Tolopai) SoC Architecture Overview,� Intel Corp., 2008.
http://download.intel.com/technology/quickassist/tolapaisoc2
008.pdf

[15] Harlan Tytus Beverly, �An Introduction to LLR2,�
Bigfooot Networks, June, 2007.
http://www.killernic.com/technology/llr2.pdf.

[16] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramon
Caceres, Ronald Perez, �Building a MAC-based Security
Architecture for the Xen Opensource Hypervisor,�in
Proceedings of ACSAC, 2005.
http://www.acsac.org/2005/papers/171.pdf.

[17] M. Rosenblum, and T. Garfinkel, �A virtual machine
introspection based architecture for intrusion detection,� In
Proceedings of the 2003 Network and Distributed System
Security Symposium. 2003.

[18] Michael Adams, A.H.M. ter Hofstede, David Edmond,
W.M.P. van der Aalst. •�Worklets: A Service-Oriented
Implementation of Dynamic Flexibility in Workflows� in
Proceedings of the 14th International Conference on
Cooperative Information Systems (CoopIS 06), Montpellier,
France, November, 2006.

[19] Luc Moreau, et alia, �The Provenance of Electronic
Data�. Communications of the ACM, vol. 51, No. 3, April,
2008.

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

10

