
Recognizing Plans with Loops Represented in a Lexicalized Grammar.

Christopher W. Geib
School of Informatics

University of Edinburgh
10 Crichton Street,

Edinburgh, EH8 9AB, Scotland
cgeib@inf.ed.ac.uk

Robert P. Goldman,
SIFT, LLC

211 North First Street, Suite 300
Minneapolis, MN 55401-1480

rpgoldman@sift.info

Abstract
This paper extends existing plan recognition research to han-
dle plans containing loops. We supply an encoding of plans
with loops for recognition, based on techniques used to parse
lexicalized grammars, and demonstrate its effectiveness em-
pirically. To do this, the paper first shows how encoding
plan libraries as context free grammars permits the applica-
tion of standard rewriting techniques to remove left recursion
and ε-productions, thereby enabling polynomial time parsing.
However, these techniques alone fail to provide efficient algo-
rithms for plan recognition. We show how the loop-handling
methods from formal grammars can be extended to the more
general plan recognition problem and provide a method for
encoding loops in an existing plan recognition system that
scales linearly in the number of loop iterations.

Introduction
Vilain (1990) showed that plan recognition (the problem of
inferring which plan, from a known set of possible plans, an
agent is executing based on observations of their actions) is
NP-hard for most interesting classes of plan libraries. Vi-
lain did this by reducing the problem of plan recognition to
parsing. He also proved the existence of a polynomial time
algorithm for the restricted class of hierarchical plans (with
loops) that are ordered and do not share plan steps.

Subsequent work has made efforts to provide empiri-
cally effective algorithms that remove some or all of the
limitations Vilain required to get the polynomial time re-
sult. In so doing, they have often moved away from rep-
resenting their plans as formal grammars. Unfortunately,
many (Kautz 1991; Avrahami-Zilberbrand and Kaminka
2005; Geib, Goldman, and Maraist 2008) of these alterna-
tive representations and systems are relatively impoverished
and do not fully support looping plans.

Even work that has suggested using plan grammars (Geib,
Goldman, and Maraist 2008; Pynadath and Wellman 2000)
has failed to make use of the full expressivity of the gram-
matical models. Formal language theory provides a method
for rewriting plan grammars to enable recognition of loops
with no additional machinery beyond existing parsing algo-
rithms. In much of the prior work, this result has been lost.
This paper reintroduces these methods to plan recognition.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, given Vilain’s results, we must expect that any
system that does allow for recognition of multiple goals and
partially ordered plans must be at least NP-hard. Therefore,
it will not be enough to simply apply past parsing results.
Instead, we modify these techniques for efficient use in an
existing plan recognition system that is capable of handling
partial orders and multiple, interleaved goals. The result is
an efficient plan recognition system incorporating a novel
loop encoding.

The rest of this paper has the following structure: First,
we discuss previous work in plan recognition and the prob-
lem of recognizing plans with loops. Second, we discuss
loop rewriting techniques for formal plan grammars. Third,
we briefly review ELEXIR, a probabilistic plan recognition
system based on parsing lexicalized grammars. Finally we
provide an encoding for plans with loops in ELEXIR that
scales linearly with the number of loop iterations, and pro-
vide empirical evidence for its efficiency.

Prior Work
Graph-based algorithms have been at the core of a number
of pieces of previous research. Some of these, (Kautz 1991;
Avrahami-Zilberbrand and Kaminka 2005), did not explic-
itly discuss the problem of recognizing plans with loops.
However systems that view plan recognition as graph cov-
ering or that involve marking elements of a graph require
modifications to handle looping plans. The graph models
for such algorithms must be extended to model the loops. A
naive implementation requires a bound on the number of it-
erations of each loop and a separate graph for each possible
number of iterations. More sophisticated implementations
are possible, but we know of no such reported work.

CRFs and HMMs have been the foundation of much
of the work in activity recognition. This approach is
based on discretizing the state space into regions, model-
ing the transitions between the regions with Hidden Markov
Models(HMM) (Bui, Venkatesh, and West 2002) or Con-
ditional Random Fields (CRF) (Hoogs and Perera 2008;
Liao, Fox, and Kautz 2005; Vail and Veloso 2008) and then
using the HMM or CRF to determine the most likely plan
being followed. This approach has subtle problems for tra-
jectories that enter the same region more than once. In such
a situation, the Markov assumption can mean that the system
is effectively unaware that it has been in the region. Thus,

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

958

without additional processing, such a plan recognizer will
be unable to tell how many times it had been around a loop.
Losing this information is what restricts the grammars sup-
ported by HMMs to be strictly regular. This can have both
an impact on the probability model (e.g. the probability of
continuing a loop may depend on how many times the loop
has already been executed) and even on the ability to deter-
mine if a plan is well formed (e.g. imagine that the number
of times a loop is executed distinguishes two plans).

Representing Plans as Grammars and treating plan
recognition as parsing was critical for Vilain’s (1990) proofs
of the complexity of the plan recognition problem. However,
his work does not present an algorithm or implemented sys-
tem for plan recognition.

Pynadath and Wellman (2000) provide a method for plan
recognition based on probabilistic context free grammars
(PCFGs). They do not directly parse the observations to
produce derivations. Instead, they use the structure of plans
captured in a PCFG to build a restricted Dynamic Bayes Net
(DBN) to model the underlying generative process of plan
construction and execution. They use the resulting DBN to
compute a distribution over the space of possible plan ex-
pansions that could be currently under execution. In order to
build their DBN, they are only able to handle a limited class
of loops. Further their treatment of loops ignores the num-
ber of iterations of the loop. So like the work on HMMs and
CRFs, they can recognize loops but not capture how many
times the loop has been executed.

Some more recent work (Geib, Goldman, and Maraist
2008; Geib and Goldman 2009) has directly used formal
grammars to represent plans and modified parsing algo-
rithms to perform plan recognition. Unfortunately these al-
gorithms have not made full use of previous results from
formal grammar theory. These systems perform bottom-up
parsing of grammars capturing the leftmost derivation trees
of an underlying context free plan grammar representing
the Hierarchical Task Network (HTN) (Ghallab, Nau, and
Traverso 2004) plans to be recognized. In order to construct
a finite set of such trees, this work bounded the maximum
number of times the agent could execute a loop. However as
we will see next, this limitation is unnecessary.

Plans as Grammars
Limited forms of HTN plans are often used to define the plan
library for recognition. Such plans can be straightforwardly
represented as CFGs (Erol, Hendler, and Nau 1994). Con-
sider the simple plans for going to a conference (GO2CON),
including traveling to a location (T2L), shown in Figure 1
and encoded in CFG:1
CFG: 1

GO2CON → PACK,T2L,CHECKIN
PACK → pack

T2L→ W | T2L,TT,W
TT → ride

CHECKIN → talk2C
W → walk

GO2CONF!

PACK! T2L! CHECKIN!

T2L!

W!

T2L!

T2L! TT! W!

TT!

rideT!

PACK!

pack!

CHECKIN!

talk2C!

W!

walk!

Figure 1: A simple set of hierarchical plans.

Generally, parsing systems accept as input a complete
syntactic unit (a sentence, a program, procedure definition,
etc.), verify that it is well-formed, and yield a data struc-
ture (such as a parse tree) representing the syntactic analysis.
However plan recognition presents a subtly different task. In
many, if not most, application domains for plan recognition,
we must be able to recognize the plan being performed be-
fore it is completed. For example, an assistive system might
wish to recognize the plan a user has in progress so that it
can help the user complete that plan. The equivalent in pars-
ing is incremental parsing which might be done in an IDE1

to help a programmer ensure a well-formed program, or in
natural language processing to permit interleaving syntac-
tic and semantic inferences. Unfortunately, grammars like
CFG:1, above, are problematic for simple incremental pars-
ing algorithms.

The second production for T2L (this is the production that
captures the loop for taking multiple trains) is left recursive.
The first element of the right hand side of the production is
the same as the non-terminal on the left hand side. Whenever
the parser reaches such a left recursive production it can no
longer be driven only by explaining the observation. It must
search the space of possible parses to determine how many
times this rule will be applied. This amounts to searching to
determine how many times the loop is executed.

Many existing parsing algorithms implicitly use the
length of the input sequence and the assumption of a com-
plete sentence to bound this search. However, for incremen-
tal algorithms this is not possible. It was to limit this search
that (Geib, Goldman, and Maraist 2008; Geib and Goldman
2009) bounded the number of times a loop could be exe-
cuted. However, formal language theory has shown that left
recursion can be removed from a CFG (Hopcroft and Ull-
man 1979) without bounding looping constructs.

Removing Left Recursion
Removing left recursion from a grammar is based on the re-
alization that any left recursive production can be changed
into a rightward recursive rule and an ε-production (a pro-
duction that has an empty right hand side). Thus, a produc-
tion of the form: A → Aγ | B can be rewritten as the two

1Integrated Development Environment

959

productions: A → B | BX; X → ε | γX2. Following the al-
gorithm for this rewriting process provided by Hopcroft and
Ullman (1979), CFG:1 can be converted to the following
equivalent grammar:
CFG: 2

GO2CON → PACK,T2L,CHECKIN
PACK → pack

T2L→ W | WX
X → ε | TT,W, X

TT → ride
CHECKIN → talk2C

W → walk

that does not have left recursion. Note the introduction of
the new non-terminal X encoding the loop. This allows the
grammar to be written as right, rather than left, recursive.

As we see in our example, the removal of left recursion
can introduce ε-productions into the CFG and these can
complicate parsing as well. However, there is also an al-
gorithm for removing ε-productions from a grammar. The
intuition behind ε-production removal is “multiplying out”
all the possible alternatives. The end result is that we add a
production for each possible case. We again refer the inter-
ested reader to (Hopcroft and Ullman 1979) for more detail.
ε-production removal from our grammar yields:
CFG: 3

GO2CON → PACK,T2L,CHECKIN
PACK → pack

T2L→ W | WX
X → TT,W | TT,W, X

TT → ride
CHECKIN → talk2C

W → walk

The critical change here is in the production for X. 3

The removal of left recursion and epsilon productions re-
sults in a CFG with a finite number of productions suitable
for polynomial time parsing. Thus, from a strictly theoreti-
cal view point, for plan recognition systems where the plans
can be expressed as a CFGs, there is no reason to limit or
bound plans with loops.

However, this theoretical result does not end the discus-
sion. We must ask how effective using grammatical parsing
for recognition of plans with loops is in practice. This im-
mediately raises two significant problems. First, as we have
noted, the guarantee of polynomial runtime for CFG parsing
is based on assuming that we have a complete trace of a sin-
gle plan. We cannot make these assumptions in most plan
recognition applications. Second, even if we could show

2Where ε is the empty string.
3Note that in general removing ε-productions requires a special

case to handle grammars that can yield the empty string, but such
grammars are typically not interesting for plan recognition.

that incremental parsing for partial traces with multiple in-
terleaved goals is as efficient,4 plans with loops are likely
to have much longer traces and polynomial time algorithms
may be insufficient.

Thus, we need to find efficient encodings of loops in in-
cremental plan recognition systems that support multiple in-
terleaved plans. The next section will briefly review such an
existing, grammar based recognition system. We will then
discuss a specific method of encoding plans with loops in the
system and verify its effectiveness with empirical results.

System Background on ELEXIR
ELEXIR(Geib 2009), is a probabilistic plan recogni-
tion system based on Combinatory Categorial Grammars
(CCG) (Steedman 2000). As we have required above,
ELEXIR goes beyond conventional parsing to incrementally
recognize multiple, interleaved plans. Due to space con-
straints we can only provide an overview of ELEXIR here,
and refer the reader to (Geib 2009) for more details.

Following current research trends in natural language pro-
cessing, the CCGs ELEXIR uses to represent plans are a
form of lexicalized grammar. In traditional CFGs, con-
straints specific to a language are spread between the rules of
the grammar and the lexicon. Lexicalized grammars move
all language-specific information into the lexicon in the form
of “lexical categories” and use a small set of language inde-
pendent rules to combine the lexical entries. Parsing lexical-
ized grammars abandons the application of multiple gram-
mar rules in favor of assigning a lexical category to each
observation and combining the categories to build a parse.

Thus, to represent a plan library in a CCG, each observ-
able action is associated with a set of syntactic categories.
The set of possible categories, C, is defined recursively as:

Atomic categories : A finite set of basic action categories.
C = {A, B, ...}.

Complex categories : ∀Z ∈ C, and non empty set
{W, X, ...} ⊂ C then Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈ C.

Complex categories represent functions that take a set of ar-
guments ({W, X, ...}) and produce a result (Z). The direction
of the slash indicates where the function looks for its argu-
ments. We require the argument(s) to a complex category
be observed after the category for forward slash, or before
it for backslash in order to produce the result. Continuing
our conference traveling example, one possible encoding of
CFG:3 in a CCG lexicon is:

CCG: 1

pack := (GO2CON/{CHECKIN})/{T2L}.
walk := W | T2L | T2L/{X}.
ride := X/{W} | (X/{X})/{W}.

talk2C := CHECKIN.

4This seems unlikely given that recognizing multiple inter-
leaved goals requires recognizing which plan an observed action
participates in even before plan recognition can be done.

960

Where the loop body is encoded in the categories for ride.
CCG categories are combined into higher level plan struc-

tures using combinators (Curry 1977). ELEXIR only uses
three combinators defined on pairs of categories:

rightward application: X/α ∪ {Y}, Y ⇒ X/α
leftward application: Y, X\α ∪ {Y} ⇒ X\α
rightward composition: X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possibly
empty sets of categories. To see how a lexicon and combi-
nators parse observations into high level plans, consider the
derivation in Figure 2 that parses the observation sequence:
pack, walk, talk2C (the very simple plan for walking to the
conference without taking a train) using CCG:1. As each

pack walk talk2C
(GO2CON/{CHECKIN})/{T2L} T2L CHECKIN

>
GO2CON/{CHECKIN}

>
GO2CON

Figure 2: Parsing Observations with CCGs

observation is encountered, it is assigned a category as de-
fined in the lexicon. Combinators (rightward application in
this case) then combine the categories.

To enable incremental parsing of multiple interleaved
plans, ELEXIR does not use an existing parsing algorithm.
Instead it uses a very simple two step algorithm based on
combinator application linked to the in-order processing of
each observation.
• Step 1: Before an observation can be added to the expla-

nation with a given category, it must be possible to use
leftward application to remove all of the category’s left-
ward looking arguments. We call such categories appli-
cable given the observed action and current explanation.
• Step 2: After each of the applicable categories for the ob-

servation has been added to a copy of the explanation,
ELEXIR applies all possible single combinators to each
pairing of the new category with an existing category.

This two step algorithm both restricts observations to take on
only applicable categories, and guarantees that all possible
combinators are applied. At the same time, it does not force
unnecessarily eager composition of observations. For ex-
ample, given the observations pack, walk, talk2C, ELEXIR
produces three explanations:

[GO2CON],
[GO2CON / {CHECKIN } ,CHECKIN], and
[(GO2CON / {CHECKIN }) / {T2L } ,T2L,CHECKIN.

Each of these parses results from not applying one of the
possible combinators (in this case rightward application) to
an existing explanation when an observation was initially
added. The second two parses are included precisely in the
case that later observations require these categories to dis-
charge their leftward arguments. More details on why this is
necessary can be found in (Geib 2009).

Representing Loops in ELEXIR
Representing loops in a CCG is relatively straightforward.
All that is required is for our lexicon to include at least one
category that has an argument that has the same category as
its leftmost result. For example, in CCG:1 the lexical entry:

ride := (X/{X})/{W}
says that observing a ride is a function that produces an X
when its executed in a context where W is observed next, but
only if it is followed by another instance of X, hence a loop.
For this to be useful, there must be another lexical entry that
produces an X to terminate the loop. In CCG:1, the lexical
entry for ride fulfills both of these functions. It can take on
the category that encodes a loop ((X/{X})/{W}) or a simpler
category that results in an X without a further loop (X/{W}).

Unfortunately, this simple encoding of loops comes into
conflict with ELEXIR’s algorithm. In an effort to leave cat-
egories available for use as leftward arguments of future ob-
servations, ELEXIR can create explanations that leave it-
erations of the loop body as separate goals. For example,
given observations: pack,walk, ride,walk, talk2C in addi-
tion to producing an explanation of these observations as a
single instance of GO2CON, ELEXIR will produce a num-
ber of other explanations including:

[GO2CON, X/{X}]
where the instance of GO2CON is explained by the pack,
the first walk and the talk2C observations, and X/{X} is ex-
plained by the ride and the second walk observations. How-
ever, given our knowledge of the loop and the grammar, this
explanation makes no sense. The non-terminal X was added
to the grammar to function as part of a loop for other plans
not as a standalone goal. Worse yet, for each iteration of
the loop the system is able to generate another instance of
X/{X}, along with other longer, similarly nonsensical expla-
nations for the observations. Note that this problem is not
unique to ELEXIR. Any incremental parsing algorithm will
face this problem as well.

Instead of this, we would like the system to leverage what
we know about the loop, namely that this loop works in ser-
vice of a higher goal and is not a viable plan the agent can
be performing for its own sake. We would like the system to
only maintain two explanations: one that assumes the loop
terminates on the next observation, and one that assumes that
the loop continues. We have identified an encoding of loops
in CCG that forces the system to do this based on the use of
complex categories as arguments.

Encoding Loops for Efficiency
Forcing ELEXIR to consider the loop as a single unit re-
quires a subtle representational trick. We need to explic-
itly represent the structure of the plan as having actions that
come before the loop, actions that are within the loop, and
actions that come after the loop. Suppose we want to rec-
ognize sequences where we have an instance of act1 (the
loop prefix) followed by some number of instances of act2
(the loop body) followed by a single act3 (the loop suffix).
Imagine encoding this in the following CCG.

961

CCG: 2

act1 := PRE.
act2 := (G/{POS T })\{PRE} |

(G/{G}.
act3 := POS T.

However, as we have seen, because of the inclusion of the
G/{G} category, this lexicon will result in an ever increasing
number of explanations as the loop is executed.

To prevent this, we can define the category for looping
with a complex category as an argument and force the sys-
tem to treat the loop prefix, body, and suffix as a single unit.
For example, in the following lexicon:
CCG: 3

act1 := PRE.
act2 := (G/{POS })\{PRE} |

(G/{POS })\{G/{POS }}.
act3 := POS .

the complex category argument for action act2’s second cat-
egory requires that a previous instance of the loop body (that
itself was preceded by the loop prefix) has already been ob-
served before another instance of act2 can be recognized as
part of the loop. Discharging the complex argument results
in a G/{POS } which can be composed with another act2,
or can have an instance of act3 applied to it to complete
an instance of the plan. Thus G/{POS } acts as an efficient
representation of both the possibility that the loop continues
and that it terminates on the next action. An example of this
parsing process in shown in Figure 3.

act1 act2 act2 act3
PRE (G/{POS})\{PRE} (G/{POS})\{(G/{POS})} POS

<
(G / {POS})

<
(G/{POS})

>
G

Figure 3: Efficient Loop Parsing with CCGs

Using this encoding, our example domain is captured in
the following lexicon:
CCG: 4

pack := PACK.
walk := W | PRE\{PACK}.
ride := ((GO2CON/{POS })/{W})\{PRE} |

((GO2CON/{POS })/{W})\{(GO2CON/{POS })}.
talk2C := POS .

Keep in mind that in the case of our example plan grammar,
the loop has a body that contains two actions, namely: walk
and ride. To account for this we have explicitly included an
argument in the looping categories for the walking action.

This encoding forces the algorithm to consider the loop
and its prefix and suffix as one entity. This means that it

3 5 7 9 12
CCG:1 2640 - - - -
CCG:5 2.0 68 51351 - -
CCG:4 0.4 0.6 0.8 0.9 1.3

Figure 4: Runtime in msec. for three CCG encodings of
loops versus number of loop iterations.

only maintains a very small number of open hypotheses and
can represent and recognize long plans very efficiently. Fur-
ther, it does this without making any changes to the ELEXIR
algorithm itself.

Empirical Results
To test the efficiency of this encoding of loops, we have run
a number of tests for our example domain using both CCG:4
and CCG:1 varying the number of loop iterations with a one
minute bound on the runtime. In the interest of completeness
we have also tested a third grammar encoding the domain:
CCG: 5

pack := PACK.
walk := W | T2L\{X}|T2L\T2L.
ride := X.

talk2C := ((GO2CON\PACK)\W)\T2L.
Unlike CCG:1 which uses all rightward slashes, CCG:5 uses
leftward slashes in all of its complex categories. (Geib 2009)
points out that such leftward looking grammars effectively
delay commitment to high level goals and therefore have
much lower runtimes.

The results for all three grammars are reported in millisec-
onds in Figure 4. Dashes mark tests that did not return within
the one minute bound. The results clearly show that encod-
ing loops using a complex category as an argument results in
exceptional runtime savings. It beats both of the alternative
simpler encodings by orders of magnitude. It shows the new
encoding allows the recognition of plans that are not within
the runtime bound of the other encodings. It also verifies
that this encoding makes the runtime for recognizing loops
linear in the number of loop iterations.

This approach does require a prefix, body, and suffix for
the loop. Without the prefixes and suffixes to bound the loop
this approach is not viable. Thus, efficiently recognizing
loops in this way may not always be possible and can re-
quire knowledge engineering during lexicon construction.

The Probability Model
ELEXIR is a probabilistic recognizer, and we do need to
discuss its probability model. ELEXIR views probabilistic
plan recognition as weighted model counting using parsing
for model construction. Since each parse provides a model
that “explains” the observed actions, in the following, we
will use the term explanation in place of “parse” or “model.”

To compute the conditional probability for each of the
possible root goals, ELEXIR needs to compute the probabil-
ity of each explanation for the observations. For an explana-
tion, exp, of a sequence of observations, σ1...σn, that results

962

in m categories in the explanation, ELEXIR computes the
probability of the explanation as:
Definition 1.1

P(exp ∧ {σ1...σn}) =
n∏

i=1

P(ciniti|σi)
m∏

j=1

P(root(c j))K

Where ciniti represents the initial category assigned in
this explanation to observation σi and root(c j) repre-
sents the root result category of the jth category in the
explanation(exp). See (Geib 2009) for more details.

The first term captures the likelihood of each observation
being given the lexical category it has been assigned in the
parse given the set of possible categories the lexicon allows
it to have. This is standard in NLP parsing and assumes
the presence of a probability distribution over the possible
categories each observation can have in the lexicon. This
term has previously been modeled by a uniform distribution
(all the alternatives are considered equally likely), but this
assumption is not enforced by the model.

The second term is the prior probability of the agent hav-
ing the root goals present in the explanation. This is the
probability that the current categories in the explanation are
the agent’s root goals and will not be combined into a larger
goal. This is the term affected by loops. In fact, this term is
incorrect without using the new encoding we have provided.

Consider again our example using CCG:1. We have al-
ready stated that the loop body is not a possible goal of the
agent in its own right. However, we know that CCG:1 can
produce a possibly large number of explanations that have
the loop body as a root goal. These explanations should have
zero probability mass associated with them. However, as it
stands ELEXIR does not remove these explanations. Instead
it computes these probabilities based on default information,
thus throwing off the probability computations for all of the
root goals. Using the new encoding of loops, these extrane-
ous explanations are not generated and therefore the com-
puted probabilities for all root goals are correct. Thus, the
new encoding for loops actually improves the relationship
between explanation generation and the probability model,
and results in more accurate probability calculations.

Conclusions
This paper makes three central points. First, viewing plan
recognition as parsing of a formal grammar can immedi-
ately enable recognition of loops by employing existing
techniques for removing left recursion from grammars. Sec-
ond, an existing plan recognition system, (ELEXIR), based
on parsing combinatory categorial grammars (CCGs) avoids
some of the limitations of previous research on parsing (e.g.
assuming a whole plan is observed, that only one plan is
observed, and others), while supporting looping. However
representational choices in the grammar can make this inef-
ficient. Third, use of complex arguments to encode loops in
CCGs overcomes such inefficiencies by eliminating the pos-
sibility of considering the loop body as a goal on its own.
Thus, this paper provides a method to efficiently address a
significant limitation of previous work, and strengthens the
view of plan recognition as parsing lexicalized grammars.

Acknowledgements
Dr. Geib’s work in this paper was supported by the EU Cog-
nitive Systems project Xperience (EC-FP7- 270273) funded
by the European Commission.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2005. Fast
and complete symbolic plan recognition. In Proceedings IJ-
CAI.
Bui, H. H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the Abstract Hidden Markov Model. Journal of
Artificial Intelligence Research 17:451–499.
Curry, H. 1977. Foundations of Mathematical Logic. Dover
Publications Inc.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task network
planning. In Proceedings AIPS, 249–254.
Geib, C. W., and Goldman, R. P. 2009. A probabilistic plan
recognition algorithm based on plan tree grammars. Artifi-
cial Intelligence 173(11):1101–1132.
Geib, C. W.; Goldman, R. P.; and Maraist, J. 2008. A
new probabilistic plan recognition algorithm based on string
rewriting. In Proceedings ICAPS, 81–89.
Geib, C. W. 2009. Delaying commitment in probabilistic
plan recognition using combinatory categorial grammars. In
Proceedings IJCAI, 1702–1707.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Hoogs, A., and Perera, A. A. 2008. Video activity recogni-
tion in the real world. In Proceedings AAAI, 1551–1554.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Addison
Wesley.
Kautz, H. A. 1991. A formal theory of plan recognition and
its implementation. In Allen, J. F.; Kautz, H. A.; Pelavin,
R. N.; and Tenenberg, J. D., eds., Reasoning About Plans.
Morgan Kaufmann. chapter 2.
Liao, L.; Fox, D.; and Kautz, H. A. 2005. Location-based
activity recognition using relational Markov networks. In
Proceedings of IJCAI, 773–778.
Pynadath, D., and Wellman, M. 2000. Probabilistic state-
dependent grammars for plan recognition. In Proceedings
UAI, 507–514.
Steedman, M. 2000. The Syntactic Process. MIT Press.
Vail, D. L., and Veloso, M. M. 2008. Feature selection for
activity recognition in multi-robot domains. In Proceedings
AAAI, 1415–1420.
Vilain, M. B. 1990. Getting serious about parsing plans:
A grammatical analysis of plan recognition. In Proceedings
AAAI, 190–197.

963

