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Goals

Big Picture: Effectively, reliably, and safely task teams of 
autonomous cyber-physical systems.  Use formal 
techniques to ensure correct team control.
Specific: Extend previous tasking and control  efforts to 
cover complex hybrid dynamics. Combine:
– SIFT’s Playbook  tasking interfaces.
– SIFT’s D-CIRCA correct-by-construction distributed 

controller synthesis.
– CMU’s dReach/dReal tool for non-linear hybrid 

systems verification.
Method: 
– Layered planning/control of heterogeneous 

algorithms with downward refinement. 
– Use successive abstractions to overcome efficiency 

challenges.
This Project: Proof of concept (Phase I) study of 
approach – Phase II implementation now underway.

SIFT’s Playbook: Revolves around the concept of “calling a play”
➢ Play “audibles” efficiently capture supervisor’s intent.
➢ Decision aids fill in details.
➢ Plans can contain sub-goals that are assigned to lower-level units for planning and control.

Playbook’s hierarchical abstraction supports modular incorporation of new system capabilities via 
new plays.
Supports supervisory control that scales to very large numbers of heterogeneous assets.
Experimentally validated for UAV operators.

Distributed Adaptive Planning and Control: 

Playbook
Stagg directing football practice

Stagg football playbook

A page from Alonzo Stagg’s 1927 Playbook
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Test Problem: UAV Team Firefighting

Mission plan involves addressing a fire by bringing a 
waterbomber, suitably loaded, and an orbiting spotter to 
the fire at the same time. The waterbomber will wait for 
targeting info from the spotter, then drop retardant.

SHOP2: Mission Planner [Nau, et al.]

Hierarchical task network planner.
➢ Decomposes tasks into subtasks using methods.
➢ Manages task-task, task-agent, task-environment, and resource 

constraints.

Algorithm is sound and complete.
Time-tested: 15+ year old software package.
Open-source software library, with permissive license.
Developed by University of Maryland; maintained by SIFT.
Won multiple awards in the International Planning Competition.

CIRCA Controller Synthesis Module

[Musliner,Goldman,Pelican,et al.]

δ-Reachability Tools: dReal and dReach 

[Gao & Clarke]

• δ-Reachability is decidable for a 
wide range of non-linear hybrid 
systems.

• δ-Reachability offers 
reasonable complexity bounds 
(PSPACE-complete).

Component Technologies:
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Adding Hybrid Reasoning (parameter synthesis) to Mission Plan

Enhanced SHOP2 
➢ Uses forward reasoning to find a feasible plan 

(line through the state space);

➢ Plan is conservative under-approximation 
(sound but incomplete WRT hybrid model).

➢ As a side-effect, SHOP2 writes modeling 
information for dReach/dReal.

Translator takes modeling information 
and database of continuous process 
information and composes hybrid model.

dReal solves the resulting model to
➢ Synthesize parameters for continuous 

processes and

➢ Expands single line through state space to 
multi-dimensional tube.

Assign resources

➢ Assign tanker to fire

➢ Assign spotter to fire

Bring assets to fire

➢ Tanker ingress
 Tanker takeoff

 Tanker cruise

➢ Spotter ingress

Fire kill chain:

➢ Verify fire

➢ Monitor fire

➢ Extinguish fire

➢ Assess fire

Return tanker to base

Spotter perform recon

stopped takeoff fly to fire extinguish fly back land

Initial conditions:
@stopped (and (d = 0) (v = 0) (alt = 0)
                            (fire = 100)
    (cargo = fuel + water));

goal:
@stopped (and  (fire = 0));

d/dt[fuel] = -v;
d/dt[water] = -5;

d/dt[cargo] = -(v + 5);
d/dt[fire] = -5;
d/dt[alt] = 0;
d/dt[v] = 0;
d/dt[d] = 0;

• Feasible water and fuel values synthesized from constraints.
• Involves multiple flight modes.

Hybrid Automaton for Parameter Synthesis Results of Parameter Synthesis

CIRCA model has temporal (duration) over-approximation of continuous 
dynamics.
dReach verifies STL claims using higher-fidelity models. 
If dReach fails to verify STL claim, CSM backtracks to repair the 
controller.

CIRCA Controller
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Examples:

➢ Initial fuel = 200: no failure

➢ Initial fuel = 50: counterexample

Mission Plan

Hybrid Controller Verification
Conclusions 

• Architecture for correct-by-
construction plan/control synthesis.

• Hy-CIRCA uses successive refinement 
to tame complexity:
• Mission planner reasons about resources 

over mission in open-loop.
• dReal does nonlinear parameter synthesis 

in context of linear plan.
• CSM does real-time, closed-loop controller 

synthesis with approximate model.
• dReach only checks dynamics when 

controller is temporally correct.

• Now that feasibility study is done, 
working on full implementation.
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Uses heuristic search to find a closed-loop, hard real-time discrete controller.
Incorporates a timed automaton verifier to check safety of synthesized 
controller.
Verification failures trigger counter-example guided backtracking to revise 
the controller.
Timed automaton model is conservative approximation of controlled and 
uncontrolled continuous processes:

Consider worst case execution time of controlled processes.

Consider full range of durations of uncontrolled processes.
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Hy-CIRCA System Architecture

SIFT’s Playbook Control Architecture

Probabilistic Verification at SIFT
Work with collaborators from 

We work in the context of Oxford’s open-source PRISM probabilistic verification tool.
We have added new solution strategies and decision support to PRISM in our 
PRISMATIC tool. 
We are now working to model human-machine systems in DARPA’s Integrated 
Cognitive Systems (ICS) program.

PRISMATIC

Probabilistic Automata (PA)

• Combine probabilistic and non-deterministic uncertainty.
• Device’s “shutdown vs. warn” is choice
• t0,shudown → {t2, t3} is stochastic

• Model randomized algorithms, randomized protocols, cyber 
physical systems, etc.

• Verify properties in PCTL*: “there should be a less than 20% 
chance the system will shutdown within 20 time units.

[Kwiatkowska, 2010]

• We focus on bounded time properties (PCTL*).

• PAs combine stochastic and non-deterministic choice.
• E.g., a randomized message-passing algorithm, we have a 

stochastic element (random backoff) and a non-deterministic 
element (senders’ choices of messages)

• As with conventional verification, we use an adversary to 
resolve non-determinism.

• We must consider the optimal adversary strategy.
• Randomized message-passing algorithm must have good 

performance, with high probability, even for worst-case 
messages.

• Finding the optimal adversary is the same as finding the 
optimal policy for a Markov Decision Process (MDP).

• Standard methods rely on dynamic programming either 
bounded Bellman backup (finite horizon) or value or 
policy or value iteration (infinite horizon), or sampling.

PA Property Verification

Work with

(Prime Contractor/Team Lead)

Challenge Problem:
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• Private Parker uses an HMD with GuardAID to conduct surveillance

– GuardAID highlights people with suspicious packages 

– Parker must confirm alerts and identify suspicious packages missed by the scans

• Analysis requires combining hardware and software models with psychophysics and 

cognitive models.

• Human in the loop leads to desire for probabilistic modeling; adversarial environment for 

game-theoretic non-determinism.

• Researching best method for handling temporal aspects.

• Verify that the design of the headset ensures (probabilistically) successful task 

performance including under attacks (e.g., presence of a large number of decoys).

                         

                   

           

        

Culprit Identification/Counterexample Extraction

• Check system with a verifier, to see if it 
satisfies properties.

• If it does: Great!

• If it doesn’t: Users want information to 
diagnose system failures. 

• For conventional verification, get a 
trace illustrating property violation. 
Relatively simple to use.

• But for probabilistic verification
• We have a set of traces that collectively 

violate the property.

• Some violations of underlying property are 
OK: the overall violation is from the probability 
mass of the traces.
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• Collect simulation traces through the 

system (positive and negative).

• Summarize each trace by a vector of 

component failure modes.

• From these vectors, build a classifier 

(decision tree) separating the positive 

and negative traces.

• Take traces, summarize, build 

decision tree, sum blame.

• Circuit Breaker 100X less likely 

to get stuck open improves 

probability of property 

satisfaction to 0.955.
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• Strengths versus other techniques:

• Dynamic programming: lazy enumeration of state 

space.

• Sampling methods do not provide guarantees of 

solution quality.

• Search guarantees to find optimal solution; allows 

verification (not just disconfirmation) of claims.

• Relies on quality of heuristic for performance: AI 

planning has developed high quality heuristics we 

can use. We use metric disjunctive heuristic.

• Use AND/OR optimizing search: AO*

• Effective in MDPs with rich feature structure.

• Builds on sampling work.  Issues:

• Guarantees of convergence to best policy unproven.

• Policies memoryless therefore non-optimal. Doesn’t sustain 

unreachability claims.

• Smarter sampling.

• MCTS balances exploration and exploitation, coverage and 

optimality.

• Proven in very challenging applications.

Figure from Browne et al., 2012
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