
Appears in Proc. AHS International Specialists’ Meeting on Unmanned Rotorcraft
Phoenix, AZ, 18-20 January 2005

Optimizing to Satisfice:

Using Optimization to Guide Users

Robert P. Goldman Christopher A. Miller Peggy Wu Harry B. Funk
John Meisner

SIFT, LLC
Minneapolis, MN

{rpgoldman,cmiller,pwu,hfunk,jmeisner}@sift.info

ABSTRACT

We describe a delegation-based solution to the planning overconstrained UAV missions. SIFT’s PlaybookTM approach
to UAV control allows single operators to request services from multiple-UAV teams, without excessive workload,
specialized training, or platform-specific ground control systems. We use the metaphor of a sports team’s playbook:
a user “calls a play” for a mission, relying on the system to flesh out the details. As in a sports playbook, the user
has the freedom to add specifics at will. We have integrated Playbook with Geneva Aerospace’s VACS system ground
station, to control multiple, heterogeneous, rotorcraft and fixed-wing UAVs. Using PVACS, we have discovered that
overconstrained missions are particularly challenging, because it is difficult for operators find appropriate ways to
relax constraints. To solve this problem we have added a “best-effort” planning mode to the Playbook. Best-effort
plans may be directly useful, or can be used as a guideline in relaxing constraints.

1 Introduction

As Unmanned Air Vehicles (UAVs) become more com-
mon, several operational challenges emerge. First, cur-
rent operator-to-platform ratios on the order of 4-1 will
no longer be acceptable. Second, the current practice
of providing a dedicated workstation for each vehicle or
vehicle type will also be unacceptable when individuals
must interact with multiple, heterogeneous vehicles. Op-
erators will need a common interface for multiple vehi-
cles. Third, new usability and training requirements will
be imposed. Not all operators will spend months training
to be rated for a vehicle, nor will they devote full attention
to vehicle management (much less to managing a single
vehicle subsystem). Instead, UAVs must be controllable
with much less training and while engaged in many other
activities.

We have developed an approach to UAV control that
addresses these challenges [7]. We use the metaphor of
a sports team’s playbook to enable both quick and com-
plex variable-initiative control with a variety of UAVs.
The user of our PlaybookTM ”calls a play” to request a
service from a team of UAVs. We have implemented
this approach in the Playbook-enhanced Variable Auton-
omy Control System (PVACS) project, which combines
SIFT’s Playbook interfaces and Geneva Aerospace’s

Presented at The AHS International Specialists’ Meet-
ing on Unmanned Rotorcraft, Copyright c© 2005, by
the American Helicopter Society International, Inc. All
rights reserved.

Variable Autonomy Control System (VACS).
As we began to make use of the implemented PVACS

system, we discovered a new, pressing challenge for
users. That challenge is how to handle situations in which
the operator has overconstrained the solution space. For
example, an operator can now call an “overwatch” play to
provide sustained surveillance of a given location, with
a given radius, for some window of time. Playbook re-
sponds by attempting to develop a plan for the requested
play within the user’s constraints. But what should hap-
pen when the Playbook’s planner cannot provide a plan
that meets these constraints? This is no easy matter, since
the planning failure could be a result of UAVs being too
far from the target to reach it in time, or of having no UAV
available to provide coverage in some sub-interval of the
time window (perhaps neither the beginning nor the end,
but some piece of the middle).

Simply notifying the user that no plan could be devel-
oped is undesirable since this gives the operator no idea
what was wrong or how to revise the request. Similarly,
the causes of planning failure are generally far too com-
plex to admit any simple UI-based explanation strategy.
It may seem that the operator could simply relax the con-
straints and ask for a different plan, but which constraints
(surely not those that reflect physical reality)? and in
what order? Worse, each attempt to generate a plan for
some new, relaxed subproblem, is computationally ex-
pensive and frustrating to a human operator whose time
may be needed elsewhere.

Throughout our development of the Playbook ap-
proach, we have been guided by the fact that the problem
of human control of multiple complex, semi-autonomous



agents is one that humans have been wrestling with for
milennia. The key difference is that up to know the
“agents” controlled have generally been other humans.
This long history meands that the methods humanity has
developed for “supervisory control” — including dele-
gating and managing tasks — are very familiar to us and
reasonably effective. Whenever possible, we try to use
human-human delegation and supervisory control as a
model for human-machine interaction.

Taking this approach, we see that a subordinate who
simply reports that s/he cannot do what the supervisor
has requested, without provides additional explanation or
alternatives, is not very helpful. On the other hand, one
thing that subordinate might do, which would be seen
as reasonably helpful, would be to say “I can’t do what
you’ve asked, but I can do this thing, which is close to
what you wanted.” While perhaps less informative than
a detailed explanation, this approach has the strength of
potentially saving time (if the supervisor is satisfied with
the alternate plan) and of providing the basis for negotia-
tion and plan revision if the supervisor wants to adjust it
further.

To support this style of interaction, we have devel-
oped a relaxed planning method, based on cost-based op-
timization. Our underlying planning method [9] supports
generating plans of minimum cost. Building on this, we
have developed a method for generating relaxed plans for
the plays in the system. Using this cost-based method,
we provide users the ability to request that the system
give a “best-effort” plan, when the system cannot meet
all the stipulated constraints. The best-effort plan can be
produced on an “anytime” basis [1], which means that we
can interrupt it at any time, with a best answer so far. This
meets our need for prompt response times. One ironic as-
pect of this is that satisficing1 was originally proposed as
a way of overcoming the computational demands of opti-
mal reasoning as part of a program of “bounded rational-
ity,” but we are bringing back optimization in service of
satisficing.

2 PlaybookTM delegation interfaces

Human supervisors of human subordinates have been
solving this problem for millennia. Humans generally
don’t control other human agents at the level of indi-
vidual movements–roughly analogous to the current state
of affairs where UAVs must be controlled via joystick
commands–and in fact, there are strong reasons why this
is never an effective management strategy (e.g., [1]). In-
stead, human supervisors delegate tasks to subordinates,
or they request services that subordinates determine how
best to satisfy. In either case, some objective or partial
plan is communicated to the subordinate, perhaps along
with constraints on how that objective may be achieved,

1Just providing a constraint-satisfying solution to a problem, rather
than trying to find an optimal solution.

but simultaneously some authority/autonomy for exactly
how to achieve that objective in context is also given to
the subordinate.

When interaction with subordinates is effective it is
because the effort the supervisor requires to request, in-
struct, oversee and manage the subordinate(s) is less than
s/he would require to do the task without them, and/or
because more tasks can be accomplished faster or better
via delegation than would otherwise be the case. This
saving or extending of the supervisor or requestor’s effort
comes about specifically because the s/he does not have
to plan and execute every detail of the desired behavior at
the lowest levels of control available in the system. Gen-
erally, more efficiency will be achieved the greater the
degree of responsibility for planning and execution the
requester can reliably delegate to his/her subordinates.
Where the reliability of delegation (in terms of having the
desired outcome achieved via a desired method) breaks
down, supervisors can actually incur greater workload
than if they had done the task themselves, because not
only did the supervisors have to instruct and monitor the
subordinate, but now they had to repair errors as well.

Domains with a long history of attention to how
to communicate intent effectively while simultaneously
minimizing supervisor workload include business, con-
struction, military command and control and sports
teams. The latter two are of special interest to us for
the designing of a control architecture for UAVs. Many
sports teams (particularly, but not exclusively, American
football teams) achieve complex forms of coordinated be-
havior by means of a ”playbook”. A playbook contains
predefined patterns of behavior that are understood by all
participants on the team. By means of a single, short play
name or label, the quarterback or team captain can ex-
press his/her intent for a large number of independent ac-
tors to behave in a dynamically-changingyet coordinated,
focused, constrained and effective fashion. Furthermore,
plays can serve as a shared point of reference from which
to build novel variations with minimal effort. But it is
worth noting that plays also require that the actors be ca-
pable of interpreting and apply-ing the play to the context
that exists when the play is called. This may be as sim-
ple as deciding whether to step left or right depending on
what direction the opponent is coming from in a football
play, but it precludes completely rote behavior. Actors
must be allowed some autonomy about how to perform
their delegated roles if there is to be any efficiency gain
in the system.

Service requests are like play calling in all but the de-
gree of authority wielded by the requestor. A supervisor
is delegating tasks or goals to subordinates who are, pre-
sumably, under his or her control and have no other super-
visor concurrently tasking them. A requester of service
may use the same vocabulary of goals and tasks, but since
his/her ”commands” are not going to subordinates that
are under his/her full and exclusive control, the requester
has somewhat less authority than the true supervisor –



and somewhat less guarantee that the request will be sat-
isfied completely. This tradeoff may be useful, however,
especially if (as is the case for many proposed battlefield
UAVs) the subordinates are in high demand and can be
used more effectively overall if they are shared among
multiple users.

3 PlaybookTM architecture

We have been developing a ”playbook” approach to the
control of UAVs that strives to build the same kind of rela-
tionship between them and a human supervisor as exists
between a captain and his/her team. Figure 1 presents
the basic architecture for our Playbook. We will pro-
vide a brief discussion of the Playbook architecture here,
followed by a detailed walkthrough of a specific usage
example designed to illustrate both the user’s experience
and the internal representation and reasoning of the Play-
book in the remainder of the paper.

Operators can interact with and request services from
automation in highly sophisticated and flexible ways via
Playbook. Like the quarterback of a football team, a
PVACS operator can command a very complex, very high
level ”play”-even one involving a heterogeneous mix of
actors (vehicles)-via a fast and simple action. Also like
the quarterback, the operator can issue more specific re-
quests about individuals’ behaviors, albeit spending more
time to ”flesh out” the request, providing more instruc-
tions about specifically how it should be satisfied.

A full Playbook system consists of a user interface (UI)
communicating with a Playbook server. The user inter-
face allows operators to command automated systems via
a shared model of the tasks that can be performed. This
task model is both hierarchically and sequentially orga-
nized allowing the stringing together of tasks or ”plays”
in commandable sequences and/or drilling down within a
given play to select alternate performance methods.

3.1 User Interfaces

Decomposing the system into a server and UI allows
SIFT to provide different user interfaces to meet the
needs of different classes of user. There are three user in-
terfaces that work with the current version of the server:
a PDA interface, a console interface, and an engineer-
ing interface. The engineering interface is written in the
scripting language Python, allowing us to rapidly test new
facilities on a wide variety of platforms.

The PDA interface (see Figure 2) is aimed at time-
pressured users, notionally including members of small
military units, SWAT teams, etc. We expect that the pri-
mary interest of these users will be the end results of the
plays (in our current scenarios, this would be streaming
video of surveillance targets); and that they will not be
interested in the details of platform control. Indeed, we
would like to provide users who are not rated UAV opera-

Figure 2: PDA user interface.

tors with the benefits of UAVs. Using the PDA interface,
such users can call a play to establish surveillance with
three mouse clicks, in much less than 15 seconds.

The Console UI (see Figure 3) meets the needs of users
who have more time at their disposal, and are more inter-
ested in the details of platform control. The Console UI
also features an interface to the Personal Flight Planning
System (PFPS) suite of tools, and can use PFPS’ Fal-
conView2 flight mapping software to display Playbook-
generated routes (see Figure 4). With FalconView, Play-
book users can project the execution of mission plans us-
ing FalconView’s rehearsal capability.

3.2 Playbook server

The Playbook server has three major components. The
first is the server layer itself, which provides the services
to clients, tracks client sessions, etc. We will not discuss
this component in any detail here. The two major compo-
nents are the Analysis and Planning Component (APC),
which translates user play requests into executable mis-
sion plans, and the Executive. The Executive manages
communication with any connected ground control sta-
tion(s), and does any necessary closed-loop control: read-
ing platform status information from the ground control
system (GCS), and keeping the mission plan on track.
See Figure 1. All three of these components draw upon
the shared task model.

The Playbook Analysis and Planning Component
(APC) evaluates the feasibility of alternate methods of
satisfying requested plays. When given a high-level play
request, the APC selects among various feasible meth-
ods, issues instructions to the ground control system ex-
ecution environment (see below) and monitors for neces-
sary revisions during performance. When given lower-

2www.falconview.org



Server API
Analysis and Planning Component

(APC)

Executive

Ground Control Station

User Interfaces

Playbook Server

Figure 1: Playbook system architecture.

Figure 3: Console user interface. Figure 4: FalconView working with Playbook con-
sole UI.



level, more specific and detailed requests (such as a spe-
cific platform to use, a specific path to be followed, or
specific scan patterns to use), the APC reviews them for
feasibility and either (a) reports when requested actions
are infeasible, (b) passes ‘validated’ user-requested plans
to the execution environment and monitors their perfor-
mance, or (c) fleshes out high level operator requests (like
“Overwatch”) to an executable level (for example, choos-
ing among available platforms, selecting waypoints for
ingress and egress, identifying sensor steering parame-
ters, etc.) within the constraints the operator has imposed.

The APC is built on top of the SHOP2 planning sys-
tem, which was developed at the University of Maryland,
College Park [9]. As part of our work on Playbook, we
have added facilities for temporal reasoning (scheduling),
recovery of state trajectories, enhanced plan library facil-
ities, etc. We expect to make these new facilities avail-
able through the SHOP2 open source effort (see www.
sourceforge.net/projects/shop). SHOP2
provides a plan optimization facility, which we have em-
ployed in the work reported here. We will discuss this in
greater detail later.

The APC provides pre-mission planning (and can pro-
vide in-mission replanning), however it does not close
the loop around the UAV autopilots. Closed-loop con-
trol is the responsibility of the Executive component of
the Playbook server.3 The Executive tracks UAV state, as
transmitted by the GCS, executes commands through the
GCS during flight, and manages translation and down-
load of mission plans. Since we are primarily concerned
with the planning and user interface components of the
system, we will not discuss the Executive further in this
paper.

Playbook by itself does not include inner-loop con-
trol capabilities. In the program in question, we have
been working with Geneva Aerospace’s VACSTMcontrol
system, the Playbook Executive controlling the UAVs
through the VACS GCS.4 Geneva Aerospace’s Variable
Autonomy Control System (VACS) provides a robust in-
tegrated control architecture enabling a single operator to
control multiple UAVs[2].

The VACS architecture includes an Internet Proto-
col (IP) based network-centric communications package
linking teams of UAVs and remote operator worksta-
tions. VACS fuses sensor and database information to
autonomously adjust flight profiles to avoid terrain and
mid-air collisions. Once VACS adjusts the flight profile,
however, it relies on the human operator to decide if the
mission plan must be revised (e.g., perhaps because time
on target constraints have been violated). Further, the hu-
man user must make all mission level decisions and in-
teract with the various control levels. VACS has recently

3Properly speaking, the Executive does not directly command the
UAVs, but works through the UAVs’ GCS.

4We are concurrently working to add Playbook facilities to IA
Tech’s MIIIRO immersive multi-UAV simulation (www.ia-tech.
com).

been extended from its original fixed-wing basis to also
control small rotorcraft UAVs[11].

Integration with Playbook advances VACS to higher
levels of autonomy by providing automated means of de-
veloping and adjusting plans to achieve mission objec-
tives. Playbook possesses a hierarchical understanding
of the operational intent and specific target tasking, and
can provide high-level commands to the vehicle and sen-
sor control systems following the command structure al-
ready in place in the VACS. In essence, VACS provides
a ”library” of control execution behaviors from which
plays, as well as more complex sequences of plays which
form overall mission plans, can be composed. The inte-
grated Playbook + VACS (PVACS) capabilities are par-
ticularly relevant to projected operational concepts where
busy and/or non-rated operators must supervise teams of
heterogeneous vehicles. PVACS’ combination of very
high level and variable autonomy control will allow busy
operators to command sophisticated, coordinated behav-
iors simply and rapidly and/or allow operators with more
time or training to impose highly specific commands to
customize vehicle behavior to their exact needs.

More details about the Playbook architecture and var-
ious UI designs are provided in [6]. In previous work,
we have developed prototype playbooks for UCAV teams
[8], Tactical Mobile Robots [3], and the RoboFlag game
(a robotic version of “capture the flag”) [10]. The remain-
der of this paper will focus on issues in providing mission
plan tasking with the Playbook, and more particularly on
our use of optimization for this purpose.

4 The Challenge of overconstrained
missions

The basic Playbook concept puts an AI planner in ser-
vice of a user, attempting to emulate an intelligent subor-
dinate. For example, in our application for mixed UAV
reconnaissance teams, we allow a user to say “I would
like surveillance of this area for that period of time.” In
response, the UI will send a request to the planner. The
planner will generate a plan to meet this request, tasking
one or more UAVs to fly to the surveillance area, point
their cameras, etc. This frees the user from the need
to identify what UAVs are available, find an acceptable
flight path, etc. If the user likes the proposed plan, it can
be downloaded to the GCS for automatic execution.

Until now, however, when the Playbook planner was
unable to satisfy a play request, it effectively said, simply,
“no.” Even the system developers found it very difficult
to decide why a play request had failed. We expect that
a system that fails this way will generate the same sort
of frustration (and inefficiencies) as would a subordinate
who, when asked to perform a task, simply responds “I
can’t.” It is certainly useful for the superior to know if his



orders cannot be obeyed,5 but it would be far more useful
to know why s/he can’t and know what might be feasible
in moving toward the superior’s goals.

In even moderately complex domains, it can be very
difficult to determine why a request cannot be satisfied.
Consider a surveillance request for a particular location.
Here are three reasons why such a request might be in-
feasible:

1. There is no UAV that is able to reach the target area
by the time that the user wants surveillance to start.

2. It is possible to get a UAV to the target area in time,
but that UAV must leave before the end of the cov-
erage period the user has requested (and there is no
other UAV available to take over the job).

3. There is a UAV that can get to the target in time, but
it must return to base before a second UAV can get
to the target area to take over surveillance.

These are a few simple cases that have to do with the
time bounds on the request; there could be many other
reasons for mission failure (no UAV available, target too
far away, etc.). Note also that there is no crisp, easily
mechanizable distinction between the different explana-
tions for failure. The additional investigation to disen-
tangle the causes may be quite burdensome. For exam-
ple, one might need to find the flight distances to the tar-
get for all available UAVs, and then fuse this informa-
tion with information about the availability windows of
each platform, in order to determine why no UAV could
reach the target in time. Indeed, our work on this facility
was prompted by difficulties we ourselves had in calling
plays.

Note that there is no easy, obvious fix to the problem
of search failures. There are potentially a large number
of constraints on any play, and there is no obvious indi-
cation of which constraint is to be relaxed. It might be
possible to address this problem, by requiring the user
to supply some form of objective function over the con-
straints, but such objective functions are very difficult for
users to provide.

To take a somewhat ridiculous example, should we re-
lax the constraint on the time on target, or should we
change the target location? Worse, there is no guarantee
that relaxing a single constraint will be sufficient. Com-
putationally, this is a very difficult problem. Proving plan
non-existence is more difficult than proving plan exis-
tence. Furthermore, searching for a set of constraints that
must be relaxed would involve searching over the already
difficult planning problem. And worst of all would be to
require the user to search through this space via a tedious
combination of “Can you do this? No? Well, how about
this?” questions.

5The agreeable subordinate who simply assents to every request,
feasible or not, can wreak havoc in an organization.

Given these difficulties, we have turned back to our
original inspiration: attempting to have our systems ac-
cept responsibilities in ways similar to the ways a human
would accept delegation. Accordingly, we have built our
system to be able to effectively say “I can’t give you ex-
actly what you want, but here’s something I think is close
that I can do.”

5 Best-effort planning using opti-
mization

Let us return to the three examples above, which we have
tested in the current Playbook. Figure 5 shows an aerial
photograph of the area of interest (around the McKenna
MOUT facility), together with two UAVs, one a rotor-
craft, and one fixed-wing. For simplicity, all of our exam-
ples will use these two UAVs, starting at these positions
(but with varying periods of availability), and all will in-
volve surveillance of the same target (but for different pe-
riods). Figure 6 gives details of the time constraints for
the three problems.6 Times are given in minutes:seconds
(optionally with hours).

As the Playbook interface works now, if a user requests
a play that is overconstrained, s/he will get a message re-
porting that no plan can be found that meets his or her
constraints. Then the user will be offered the opportunity
to get a best-effort plan for the same request. Consider
our first case, where there are two UAVs suitable for per-
forming the mission, but neither of them can get on target
as quickly as the user has requested. In this case, if the
user requests a relaxed plan, then the system will provide
a plan where the scanning begins two minutes later than
requested, but that otherwise satisfies the request: the ro-
torcraft will take off and fly to the target immediately and
begin surveillance, until the end of the desired period, and
then fly back to its starting position (the fixed-wing air-
craft is not needed).

How are such “best effort” plans generated? To un-
derstand this, we must understand a little bit about the
functioning of the Playbook planner (APC). The APC is a
hierarchical task network (HTN), or decomposition plan-
ner. Such a planner takes task descriptions (such as the
input play request in PVACS), and decomposes it, step by
step, matching against method definitions, until it reaches
a fully fleshed-out plan, where all the tasks have been
specified down to a set of defined, executable primitives.

Three complications make this more than a simple ex-
ercise in tree-walking:

1. There may be multiple different methods for a single
task, and the planner must choose between them to
find one that is feasible (and possibly optimal).

6Note that the times in question are often rather short, possibly un-
realistically so. These were chosen to be so short for demonstration
purposes only, because our simulation runs in 1:1 time. Longer time
constants would not change the way our techniques work, but would
make for runs that are tedious to watch.



Figure 5: Area of simulated operations at the McKenna MOUT (screenshot from VACS GCS).



UAV availability
101 t+ 8:20 – t+ 90:00
201 t – t+ 16:40

Requested surveillance
t+ 1:00 – t+ 6:00

(a) No UAV available early enough

UAV availability
101 t – t + 40:00
201 t – t+ 20:00

Requested surveillance
t+ 3:00 – t+ 40:00

(b) UAVs not available long enough

UAV availability
101 t+ 30:00 – t + 4:00:00
201 t – t+ 30:00

Requested surveillance
t+ 4:00 – t+ 44:00

(c) UAVs available to cover the entire period, but no smooth handoff.

UAV Travel time to target
101 approx. 3:00
201 approx. 5:00

Travel times (all problems)

Figure 6: Three overconstrained problems. UAV tail number 101 is the fixed-wing aircraft and 201 is the rotor-
craft. All times are given in minutes and seconds.

2. There may be variable-binding decisions that have
to be made, such as choosing between different
UAVs to perform a sortie. Again, the planner must
find a feasible (resp. optimal) solution.

3. The planner must check that the sequence of ac-
tions generated corresponds to a feasible state tra-
jectory. This is complicated because actions may
have side-effects, and tasks may destructively affect
each other. For example, if a plan were to cause a
UAV to pass over a location occupied by the enemy,
it might destroy the desired element of surprise for a
following UAV.

For those more familiar with numerical techniques, it is a
reasonable analogy to think of a planner as a constraint
solver, like a linear programming (or mixed-integer)
package, but one that operates in a primarily discrete
space, rather than a continuous one.

The current planner primarily operates in a constraint
satisfaction, or satisficing mode. I.e., it returns the first
plan that it can find that meets the user’s requirements.
Because the planning problem is not tractable, we time-
limit the planner. In theory, this could cause us to fail
to find solutions to solvable problems. In practice, we
find that the problems we are working on either terminate
fairly rapidly, with either success or failure, or fail after a
great deal of search. For practical purposes, it is accept-
able to terminate after a fixed period of time, although the

precise period of time differs between applications.7

Our approach to best-effort planning is to relax the
user-imposed constraints on the objective of a task, asso-
ciate a cost function to plans, and find the best available
plan (within a fixed time bound). The SHOP2 planner,
which we have used as the basis for the APC is able to
perform a very limited form of optimization, which min-
imizes the sum of a user-defined cost function, applied to
each of the steps of a plan, P . I.e. c(P ) =

∑
s ∈ Pc(s),

and we choose argminP∈ω c(P ). This optimization is
performed using branch-and-bound, and can be time-
limited.

There were two challenges that faced us in providing
best-effort search. The first was to overcome the limits
of SHOP2’s optimization functions, and the second was
to identify appropriate cost functions. The current opti-
mization functions, based on functions, are not suitable
for our purposes, since our optimizations must be done
over state trajectories. For example, for our overwatch
play, the cost should be some function of the portion of
the desired time that the target is not being watched. The
cost is a function of the set of states, not of the actions
taken by the system. Using higher-order functions, it was
possible for us to modify the planning system to permit
us to associate state trajectory functions with plans.

With the technical implementation out of the way, we
turned our attention to composing cost functions. In gen-

7The Playbook integrated with MIIIRO has different time behaviors
than the PVACS Playbook.



Figure 7: Relaxed plan for case with no UAV avail-
able early enough.

eral, it is a very difficult problem to compose utility func-
tions for complex optimization (see, for example [5]),
and complex optimization systems often yield solutions
unexpected to (and often unwelcome to) their users [4].
The problem at hand, however, is far more simple. We are
not trying to find solutions that optimize utilities; rather
we are trying to find solutions that will come close to the
user’s desires, or will guide the user. For example, even if
the user doesn’t like the plan that results from relaxation
in the preceding example, it will provide some guidance
in terms of how long it might take to reach the target,
allowing the user to reconsider his or her tasking. Prob-
ably the most difficult problem in formulating an objec-
tive function is to handle tradeoffs beteween competing
objectives: how much of one objective are you willing
to pay to do better on another. But this problem largely
does not arise in our context, since we are just trying to
get as close to feasible as possible, not close to optimal.
We have found that appropriate optimization functions
for the reconnaissance missions involve simply penaliz-
ing the mission for parts of the surveillance window that
are not covered.

Using such optimization functions, give the results
shown in Figures 7, 8, and 8 for our sample problems.
In these figures, the lines marked “request” show the pe-
riod of surveillance requested by the user. In each case,
the central band shows the surveillance part of the mis-
sion (or the surveillance request).

We find that users presented with this kind of infor-
mation can readily understand why their requests could
not be met, and are in a position to modify them appro-
priately. For example, a user who was attempting to get
early coverage for five minutes, as in Figure 7, might see
this, recognize that no UAV was able to reach the target
soon enough, and either accept the plan or, if duration was
what s/he cared about, more than time on target, modify
the original request to be five minutes’ surveillance start-

Figure 8: Relaxed plan for case with UAVs not
available long enough.

Figure 9: Relaxed plan for case with UAVs available
to cover the entire period, but no smooth
handoff.



ing at t + four minutes, rather than t + one minute.

6 Conclusions

In this paper, we have presented an approach to provid-
ing user support for overconstrained mission planning in
the context of a Playbook-style delegation interface. Our
approach uses optimization to provide feasible, close ap-
proaches to the user’s preferred solution. We have in-
corporated this technique into a Playbook control sys-
tem for UAVs (both rotorcraft and fixed-wing), that is
integrated with Geneva Aerospace’s Variable Autonomy
Control System.

In future work, we will extend the approach and bet-
ter integrate it with the user interface. Currently, while
users can request best-effort plans for overconstrained
problems, the user interface does not help them compare
the relaxed plans with the original requests. We will de-
sign additional display elements to show how the relaxed
plans deviate from requested, for example, showing de-
sired timelines matched against the planned ones, show-
ing actual play parameters matched against the desired
choices, and highlighting the differences. We will also
extend the relaxed planning approach itself to cover a
wider variety of problems, including multiple concurrent
plays, and more play types.

Acknowledgments

Research described in this paper was funded by The
Defense Advanced Research Projects Agency (DARPA)
and the U.S. Army Aviation and Missile Command
(AMSAM-AC-RD-AY), through contract DAAH01-03-
C-R177. The opinions expressed in this paper do not re-
flect the positions of the funding agencies or the U.S. gov-
ernment.

References

[1] T. Dean and M. Boddy, “An Analysis of Time-
Dependent Planning,” in Proceedings of the Seventh
National Conference on Artificial Intelligence, pp.
49–54, 1988.

[2] D. S. Duggan. Demonstration of an Integrated Vari-
able Autonomy UAV Flight Control System. Phase
II SBIR Final Report, January 2001. Air Force con-
tract number AFRL-HE-WP-TR-2001-0035.

[3] R. P. Goldman, K. Z. Haigh, D. J. Musliner,
and M. J. S. Pelican, “MACBeth: A Multi-Agent
Constraint-Based Planner,” in Constraints and Arti-
ficial Intelligence Planning: Papers from the AAAI
Workshop, A. Nareyek, editor, number WS-00-02
in AAAI Technical Report, pp. 11–17. American

Association for Artificial Intelligence, AAAI Press,
2000.

[4] G. Jamieson and S. Guerlain, “Operator Interaction
with Model-Based Predictive Controllers In Petro-
chemical Refining,” in Proceedings of the Human
Performance, Situation Awareness and Automation
Conference, pp. 172–177, Marietta, GA, 2000, SA
Technologies.

[5] R. L. Keeney and H. Raiffa, Decisions with Multiple
Objectives, John Wiley and Sons, Inc., New York ,
NY, USA, 1976.

[6] C. A. Miller, R. P. Goldman, H. B. Funk, and
R. Parasuraman, “Delegation as a Model for
Human-Automation Interaction,” in Proceedings of
the 3rd International NASA Workshop on Planning
and Scheduling for Space, October 2002.

[7] C. A. Miller, R. P. Goldman, H. B. Funk, P. Wu,
and B. Pate, “A Playbook Approach to Variable Au-
tonomy Control: Application for Control of Mul-
tiple, Heterogeneous Unmanned Air Vehicles,” in
American Helicopter Society 60th Annual Forum
Proceedings, pp. 2146–2157, Alexandria, VA, June
2004, American Helicopter Society.

[8] C. A. Miller, M. J. S. Pelican, and R. P. Goldman,
““Tasking” Interfaces for Flexible Interaction with
Automation: Keeping the User in Control,” in Pro-
ceedings of the Conference on Human Interation
with Complex Systems, April - May 2000.

[9] D. Nau, T.-C. Au, O. Ilgami, U. Kuter, H. Muñoz-
Avila, J. W. Murdock, D. Wu, and F. Ya-
man, “Applications of SHOP and SHOP2,”
Technical Report CS-TR-4604, UMIACS-TR-
2004-46, Computer Science Department, Uni-
versity of Maryland, College Park, MD, June
2004. http://www.cs.umd.edu/%7Enau/
papers/nau04applications.pdf.

[10] R. Parasuraman, S. Galster, and C. A. Miller, “Hu-
man Control of Multiple Robots in the RoboFlag
Simulation Environment,” in Proceedings of the
2003 Meeting of the IEEE Systems, Man and Cy-
bernetics society, October 2003.

[11] B. Pate, “A Rotorcraft Adaptation of Geneva
Aerospace’s Variable Autonomy Control System,”
in American Helicopter Society 60th Annual Forum
Proceedings, pp. 2146–2157, Alexandria, VA, June
2004, American Helicopter Society.


