
Reprinted from Proceedings of the International Lisp Conference, March 2009

Model-based Intrusion Assessment in Common Lisp

Robert P. Goldman

SIFT, LLC
rpgoldman@sift.info

Steven A. Harp

Adventium Labs
sharp@adventiumlabs.org

Categories and Subject Descriptors K [6]: 5

Keywords computer security, intrusion detection, re-
port fusion, IDS fusion, IDS correlation, lisp

1. Introduction
We describe the Scyllarus system, which performs In-
trusion Detection System (IDS) fusion, using Bayes
nets and qualitative probability.1 IDSes are systems that
sense intrusions in computer networks and hosts. IDS
fusion is the problem of fusing reports from multiple
IDSes scattered around a computer network we wish to
defend, into a coherent overall picture of network sta-
tus. Scyllarus treats the problem of IDS fusion as an
abduction problem, formalized using Bayes nets and
Knowledge-based Model Construction (KBMC). Be-
cause of the coarseness of the data available, Scyl-
larus uses a qualitative framework, based on System-
Z+. Qualitative Bayes nets allow Scyllarus to exploit
the strengths of probabilistic reasoning, without exces-
sive knowledge acquisition and without committing to
a misleading level of accuracy in its conclusions. The
Scyllarus system gave excellent results on a medium-
sized corporate network, where it was in continuous
use for approximately four years, and was validated in a
DARPA-funded assessment. Under US Federal govern-
1 The Scyllarus system is named after the Mantis shrimp, an animal
that detects its prey with one of the world’s most complex reti-
nas. It is also one of the most formidable animals, for its weight,
smashing its prey with heavily calcified clubs. “Mantis shrimp
can break through aquarium glass with a single strike from this
weapon.”(Wikipedia)

[Copyright notice will appear here once ’preprint’ option is removed.]

ment funding, we are now working to adapt Scyllarus to
analyze detection reports from sensors monitoring very
high speed (10 - 100 Gb/second) networks in a project
called “SMITE.”

Common Lisp (CL) has provided significant bene-
fits to the development and deployment of Scyllarus.
Most basically, it enabled the assembly of an ambi-
tiously complex system, which uses multiple inference
techniques at different stages of its processing: clus-
tering, that is partly based on information encoded in
its ontology, and partly in CLOS methods and data-
dependency based logical reasoning combined with
cost-based search for explanations (using qualitative
probability) in order to weigh explanations against each
other. The Lisp garbage collector allows the Scyllarus
analyzer to run online indefinitely, despite its contin-
uous construction of complex graphs of interrelated
events and entities. Lisp also provided a good frame-
work for integrating the ontology we developed using
the Protegé ontology editor. Finally, the ability to de-
bug and hot-patch our algorithms while in operation
has proven invaluable. Nevertheless, all is not for the
best in the best of all possible worlds; we also report
some rough spots in our use of CL in what has been a
relatively long-lived research software project (approx-
imately 9 years).

1.1 Intrusion detection
The function of Scyllarus is to take reports from mul-
tiple intrusion detection algorithms and fuse them into
a coherent picture of the state of the defended network
(together with some information about the environment
in which that network operates). To perform this task,
Scyllarus uses Bayesian (probabilistic) reasoning, pri-
marily to answer two (interrelated) questions:

1. Is the notification (are the notifications) that Scyl-
larus has received from the algorithms likely to re-
flect a false positive?

Goldman, Harp, ILC 2009 1 2009/5/13

2. Is there a benign explanation that can explain away
the notification or notifications that Scyllarus has
received? For example, a flood of SMTP messages
with duplicated content from a particular host might
be a sign that that host has been compromised and
turned into a spam bot. However, it’s also possible
that the host is a bona fide mailing list server, and
it’s just sending out the day’s digest messages.

Because the domain does not afford us access to good
statistics, we do not use conventional Bayesian reason-
ing. Instead, we use a qualitative abstraction of proba-
bilistic reasoning, very similar to the big-O scheme fa-
miliar to computer scientists, System-Z+ (Goldszmidt
and Pearl 1992a,b, 1996).

Existing IDSes are not designed to work together, as
part of a suite of sensors. Instead, each program gen-
erates a separate, and often voluminous, stream of re-
ports, and fusing them into a coherent view of the cur-
rent situation is left as an exercise for the user. Scyl-
larus overcomes the limitations of both individual ID-
Ses, and unstructured groups of IDSes. Instead of sim-
ply joining together multiple alert streams, Scyllarus
provides a unified intrusion situation assessment. Crit-
ical to this unification is Scyllarus’s Intrusion Refer-
ence Model (IRM), which contains information about
the configuration of the site to be protected (including
the IDSes), the site’s security policies and objectives,
and the phenomena of interest (intrusion events).

Data reduction is a primary goal of Scyllarus. IDS
owners regularly either ignore or partially disable them,
unable to absorb the massive stream of reports. To get a
sense of the gravity of this problem, see Figure 1, which
shows how Scyllarus was able to winnow the flow of
reports in a small corporate network.

Often the most damning weakness of an IDS is a
high false positive rate. In general, with any sensor, one
must pay in false positives for whatever is gained in
sensitivity. One way to overcome this limitation is to
assemble a suite of sensors. This can be a very efficient
way to overcome the problem of false positives, as long
as we can find sensors that fail relatively independently.

1.2 SMITE project
The Scyllarus project was begun at Honeywell in 1999
and has been intermittently active since then. Current
development is being done in the context of the SMITE
system, a BBN project funded by DARPA’s2 Scalable
2 DARPA is the U.S. Defense Advanced Research Projects Agency.

Network Monitoring (SNM) program. The SNM pro-
gram’s goal is to develop new approaches to network-
based monitoring that deliver performance capabili-
ties orders of magnitude better than conventional ap-
proaches, regardless of the network’s size and com-
putational burden. BBN’s approach deploys pipelined
systems as data collectors on networks with multi-
gigabit speeds. Special-purpose algorithms are being
developed that are able to detect intrusion-relevant
events while keeping up with the network flow. The
events are aggregated and fused by Scyllarus. See Fig-
ure 2 for an overview of the SMITE system’s architec-
ture. Current work on Scyllarus aims at optimizing it
to be able to keep up with the flow of events from the
hardware-based SMITE sensors, expected to cover 2 to
3 orders of magnitude more traffic.

2. Scenario of Use
The malign explanation is not the only possible one,
however. Figure 3 shows that there is an alternative,
benign explanation. It is possible that what has really
happened is that a new service has been installed on
this host (“Legit Svc Added”) — that would account
for new ports being opened. However, if a new service
was legitimately added, we would also expect to see a
change in the system’s (overt) configuration, but we are
not seeing that. On balance, the “compromised host”
explanation is considered possible, but not especially
likely.

Figure 4 shows how the situation might evolve with
the arrival of more evidence for intrusion. Here we see
that not only is the host in question accepting connec-
tions to a new port, but we have also seen that it is ini-
tiating a lot of connections outward, “Initiates Conns,”
which we infer from reports from two sensors. Typi-
cally, we would not expect a server to be initiating out-
ward connections.3 Intuitively, the pattern of inference
is as follows: the new legitimate service explanation
would account for the newly opened ports, but would
not account for the connection initiation. However, a
compromised host (perhaps a host that has been added
to a botnet) would explain both symptoms.

3. Scyllarus Architecture
The architecture of Scyllarus, divided into four mod-
ules, is depicted in Figure 5. The first is the input mod-
3 with some exceptions such as DNS queries, SMTP transfers if a
mail server, etc.

Goldman, Harp, ILC 2009 2 2009/5/13

16,000

Raw

Reports

IDS-1

IDS-2

IDS-3

Clustering

Reports

into Events

1000

4000

Evidence

Analysis
10

Uninteresting

events

Interesting

events
Believable

Interesting

events

1

10

100

1000

10000

100000

2

4

6

8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

Days in November, 2001

IDS Reports

Events

All Plausible Events

Med/High Plausibility &

Med/High Severity

High Plausibility &

High Severity

Figure 1. Scyllarus workload reduction.

ule, made up of the Sensor converters (or “verters”) and
the Report concentrator. The verters take reports from
IDSes and other sensors, translate them into Scyllarus-
specific data strucures, and hand them off to the report
concentrator for eventual storage and analysis. The sec-
ond is the Cluster Preprocessor (CP), which assembles
together sets of reports that could correspond to a sin-
gle underlying event or process. The CP collects reports
that could tend to either reinforce or disconfirm particu-
lar hypotheses. The CP builds structures that are similar
to belief networks (Pearl 1988). The third component,
and the last of the active components, the Event As-
sessor (EA) applies the logic of System-Z+ to evaluate
competing explanations (e.g., mailserver versus spam
bot) for the reports. The final core component of Scyl-
larus is the Intrusion Reference Model (IRM), a knowl-
edge base describing the environment in which Scyl-

larus operates, and which supports the processing done
by the CP and EA.

4. Scyllarus input processing
The Scyllarus architecture was developed to flexibly
accommodate reports from a diverse and changing set
of sensors (primarily IDSes). One may plug arbitrary
sets of translators into Scyllarus. These “verters” are
small translator programs that translate IDS reports,
which do not come in standardized formats,4 into a
standard Scyllarus input report. The verters must be
written anew for each IDS, but the effort is not too sub-
stantial. For the SMITE project, we have the advantage

4 Even when we found sensors that complied with some standard,
such as IDMEF, the standard wasn’t helpful, because it did not
specify semantics sufficiently to allow us to simply accept the
reports.

Goldman, Harp, ILC 2009 3 2009/5/13

Figure 2. The SMITE system architecture, including Scyllarus as “Event Correlation Analyzer.”

of a standard report format (implemented as a reporting
library to be compiled into each of the sensors) negoti-
ated between the sensor and correlation teams, so that
we need only a single SMITE verter.

After the reports have been translated into Scyllarus
format, they pass from the verters to the Report Con-
centrator. The Report Concentrator receives incoming
reports from IDSes and buffers the reports, ensuring
that the system remains responsive while not losing
data The Report Concentrator provides a real-time feed
of reports to subscribers, the most important of which
are the event database and the Cluster Preprocessor.

5. Cluster Preprocessor
The Cluster Preprocessor reads raw reports posted by
the IDSs, and using background information provided
by the IRM, a model of the protected network and a key
for intrepreting IDS messages, produces clusters of IDS
reports to be evaluated as events explaining the reports.

A single IDS report may give rise to one or more such
clusters.

The Cluster Preprocessor follows a simple process-
ing loop:

1. Read the next IDS report from a socket stream con-
nected to the Scyllarus Report Concentrator.

2. Match the IDS-provided report type to one or more
intrepretations known to Scyllarus. Each provides a
hypothetical event purporting to explain the report.
Scyllarus has models for various common network
and host-based IDSs.

3. Search through already hypothesized events for ones
that would explain each intrepretation of the new
report. Criteria for consistency vary from one type
of event to another, and are specified in the IRM as
a set of “event test” objects to be satisified. Some
basic criteria include:

Goldman, Harp, ILC 2009 4 2009/5/13

!"#$%"#&'()*+"',*

-"",.&,*

/(0)&01*/234*

5678,%9:01*;9,9*

/(%<(%*,"*!8&(0,*

+&1=*50,%"$>*56,(%098*

/>',(#*!"071*!=901(*

+&1=*?8"@*,"*AB,'&)(*

C(1&,*/<D*3))()*

E0&:9,('*!"00'*

/D900&01*

Possible

Unobserved

Unobserved

F",0(,*!G*H%9ID*

29''&<(*?H2*

Unobserved

Unobserved

H""*490>*2((%'*

Unobserved

Unobserved

E0D"#&01*498@9%(*

Unobserved

/(%<(%*3))'*2"%,'*

OBSERVED

E0J(D,()*

E0J(D,()*

Unobserved

Figure 3. Alternative explanations and the observations they might cause.

• occurrence within an acceptable temporal win-
dow

• directed at the same target host and/or port
• apparently originating from the same source
• sharing a common user or login session

4. Propose new events as needed when existing ones
are inconsistent with the new report.

5. Assemble new (or recently modified) events into
other larger-scale events. This allows Scyllarus to
consider multi-step attacks. Further model-based
tests for consistency are applied to this clustering.

6. Submit new or modified events and their supporting
reports for evaluation.

The report stream (as well as other communications
with Scyllarus) is SSL-encrypted on Lisp platforms
that support it. This preserves confidentiality and in-
tegrity of the system, but it also is important to avoid
incidentally triggering new supurious secondary alerts

from network IDSs that may see the Scyllarus reporting
traffic on the wire.

Identifying Independent Subsets of Events The Clus-
ter Preprocessor is driven entirely by incoming reports.
It spools events that need likelihood evaluation to the
EA, but does not halt clustering to wait for assessment
to complete, since this evaluation time may be rela-
tively long–extracting the most likely interpretations
from a very large ATMS network may take seconds.

Instead, the EA runs in a separate thread and eval-
uates independent clusters of events as its processing
budget allows. The fundamental independence crite-
rion is that the set of events implicitly defines a directed
acyclic graph. Events are linked to other events and to
reports according to the following relationships:

Supporters E → R. This is a relationship between
an event and an IDS report that provides direct evi-
dence for it. For example, a certain network IDS rule
that is triggered by a sequence of bytes commonly

Goldman, Harp, ILC 2009 5 2009/5/13

!"#$%"#&'()*+"',*

-"",.&,*

/(0)&01*/234*

5678,%9:01*;9,9*

/(%<(%*,"*!8&(0,*

+&1=*50,%"$>*56,(%098*

/>',(#*!"071*!=901(*

+&1=*?8"@*,"*AB,'&)(*

C(1&,*/<D*3))()*

E0&:9,('*!"00'*

/D900&01*

Unobserved

F",0(,*!G*H%9ID*

29''&<(*?H2*

Unobserved

Unobserved

H""*490>*2((%'*

Unobserved

Unobserved

E0D"#&01*498@9%(*

Unobserved

/(%<(%*3))'*2"%,'*

OBSERVED

E0J(D,()*

E0J(D,()*

OBSERVED

OBSERVED

Likely!

OBSERVED

OBSERVED

OBSERVED

Figure 4. More evidence of intrusion arrives.

found in propagation of the Peacomm trojan could
support an event hypthesizing the malware infection
of the target host with Peacomm.

Components E(whole) → E(component). This is a
relationship between events and other events that
might be component parts of them. For example, one
component of a DNS cache poisoning attack is the
sending of a flood of DNS queries.

Manifestations E(underlying) → E(manifestation).
This is a relationship between an event and other
events that might occur because the first event is oc-
curring. For example, a worm’s propagation might
manifest as repeated content transmission from the
attacking host.

Specializes E(specific) → E(more general). Differ-
ent IDS algorithms operate at different levels of res-
olution. This link is a relationship between one pro-
posed event and a more specific proposed event (e.g.

induced by a more precise type of IDS) that could be
identical.

The graph is defined by the closure under the above
four links (and their inverses) of the set of events given
to the assessor. Typically, this graph will have many
connected components that are not connected with each
other. The connected components are the independent
subsets that the EA operates on separately.

Scyllarus finds connected components using a stan-
dard depth-first graph search using the above link types.
Additional link types could be added, if that were de-
sirable, as long as the graph were to remain acyclic. For
incremental assessment, the search for connected com-
ponents is slightly different, as discussed in the section
devoted to incremental assessment.

Goldman, Harp, ILC 2009 6 2009/5/13

Report/Event!
Archive!

R
e
p
o
rt!

C
o
n
c
e
n
tra

to
r!

Event Assessor!

Event !
Distributor!

Real!-!time !
report feed!

Archive!
&replay!

Events & !
updates!

Real!-!time !
event feed!

Intrusion !
reports!

!"#$%&'("))!
*+,+$+"-+).(/+0!

!"#$%&'("))!
*+,+$+"-+).(/+0!

RT Java!
Console!

1%+$'+&!

Static !
Information!

Events!Reports!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

Sensor!
Converter!

IDMEF correlation reports to !
other !correlators!or analyzers!

Cluster Preprocessor

Figure 5. Scyllarus architecture

6. Event Assessor
The Event Assessor uses qualitative probabilistic/Baye-
sian reasoning to assess the likelihood of various event
hypotheses. In the current Scyllarus architecture, the
EA is invoked by the Scyllarus Cluster Preproces-
sor. The EA accepts as input clustered event hypothe-
ses, together with their supporting reports. The EA
builds qualitative probabilistic inference networks cor-
responding to the clustered reports and events. It uses
these networks to compute posterior surprise levels
(qualitative likelihoods) for the event hypotheses. These
surprise levels are recorded in the event structures, and
may be written into the IRM database for persistent
storage.

The EA must perform four primary computational
tasks:

1. Identify independent sub-graphs in the network de-
fined by the event and report structures and the links
between them. This is done with depth-first search.

2. Build Bayes networks and identify evidence inter-
pretations in these networks. The Bayes nets are

implemented as ATMS dependency networks. The
ATMS computes interpretations corresponding to
the Bayes networks using its labeling algorithms.

3. Extract the set of most likely interpretations from
an ATMS network. This is done using search al-
gorithms. We search for interpretations of mini-
mal cost. The solution used is primarily one of
depth-first iterative deepening, although some spe-
cial cases are handled differently.

4. Extract surprise levels from the most likely inter-
pretations. Currently, we simply differentiate be-
tween three classes of events: plausible events, that
appear in some of the most likely interpretations,
unlikely or implausible events, that do not appear
in any of the most likely interpretations and likely
events, which are plausible events and, additionally,
whose negation never appears in a likely interpreta-
tion. That is, for a plausible event, E, it is also pos-
sible that not(E) is plausible. An event E is likely if
E is plausible and not(E) is implausible. Extracting
surprise levels may simply be done by examining
the interpretations generated in step 3.

Goldman, Harp, ILC 2009 7 2009/5/13

6.1 Underlying Theory: System-Z+ Qualitative
Probability

We have taken an approach, based on qualitative proba-
bilities, that shares the basic structure of normal proba-
bility theory but abstracts the actual probabilities used.
We did this primarily to simplify knowledge acqui-
sition and make it as simple as possible to incorpo-
rate new IDSes into the Scyllarus architecture. This
approach may also permit cheaper computations than
the normal probability calculus, but that remains to be
seen.

Our approach is based on System-Z+, developed by
Moisés Goldszmidt and Judea Pearl (1996). In System-
Z+, events are given a natural number rank, κ, that cor-
responds to their degree of surprise (e.g., a rank of one
is more surprising than zero). The semantics of this
scheme comes from a set of probability distributions
in which the probabilities are polynomials in some in-
finitesimal ε. In this scheme, the κ rank corresponds to
the exponent of the leading term of the polynomial. The
scheme is similar to the “big-O” notation used for eval-
uating computational complexity in computer science.

In practical terms, the effect of this semantics is to
give System-Z+ a qualitative flavor by providing a “lad-
der” of events of qualitatively different orders of likeli-
hood. Of course, we sacrifice exactness in doing so; we
lose the ability to talk about events being slightly more
or less likely. However, this sacrifice of exactness is not
an issue in the Scyllarus intrusion detection application.

The EA must combine the judgments of a wide va-
riety of intrusion detection systems (and potentially
other relevant information sources), that use widely
varying sources of information and algorithms. Fur-
ther, in general we will not have access to the inter-
nals of these sensors. In such an environment, it is
not realistic to expect good models of the response of
these sensors; in particular, exact measures of P(sensor
response—event) are not available. There have been
some attempts to investigate sensor response (e.g., the
studies conducted by Lincoln Labs (Lippmann et al.
2000)), but the results seem heavily dependent on the
context in which the sensors are deployed.

The issue of prior probabilities also militates against
the use of exact probabilities. In order to use an exact
Bayesian method, we would need not only the detec-
tion probability, P (sensor response|event), and the
false alarm probability, P (sensor response|¬event),
but also P (event), a measure of the prior probabilities

of the events that interest us, in this case the attacks and
the benign events that can cause false positives. Even
in the most constrained environments, the probabilities
of the various attacks, are unlikely to be available to
us, and the Scyllarus system is designed for application
across a wide variety of enterprises. Further, the prob-
ability distributions for benign events are likely to be
of odd forms (e.g., one’s own network-mapping soft-
ware runs at particular times of the day). So our solu-
tion must tolerate vague measures of likelihood.

Finally, in this domain, as with most practical appli-
cations of probabilistic updating, the effect of the ev-
idence will usually overwhelm the effect of the prior
likelihoods(e.g., (Pradhan et al. 1996)). So inexactitude
in the quantities specified will not matter to our final
conclusions.

As far as computation is concerned, we may apply
the normal operation of probability theory: condition-
alization, Bayes’ law, etc. However, the arithmetic op-
erations we use must change. Rather than multiply-
ing probabilities, we add degrees of surprise. Rather
than adding probabilities, we use min. Goldszmidt and
Pearl (1996, p. 59) provide the following substitutions
in their paper:

P (ω) =
∑

φ∈ω P (φ) κ(ω) = minφ∈ω P (φ)
P (ω) + P (¬ω) = 1 κ(ω) = 0 ∨ κ(¬ω) = 1
P (ω|φ) = P (ω ∧ φ)/P (φ) κ(ω|φ) = κ(ω ∧ φ)− κ(φ)

Instead of the probability of an event being the sum of
the probabilities of the primitive outcomes that make up
that event, the degree of surprise of an event is the min-
imum of the degrees of surprise of the primitive out-
comes that make it up. Instead of having the probabili-
ties of mutually exclusive and exhaustive events sum to
one, at least one of a set of mutually exclusive and ex-
haustive events must be unsurprising. Finally, we have
an analog of Bayes’ law in which the normalizing op-
eration consists of subtraction rather than division.

We used Bayesian networks to help us in model-
ing and solving the correlation problem. Bayesian net-
works are ways of graphically capturing probabilistic
reasoning. They are useful in expert systems because
they simplify knowledge acquisition and, by captur-
ing (conditional) independences, simplify computation
(Pearl, 1988). In particular, in the domain of intrusion
detection, Bayes nets help us capture several important
patterns or probabilistic reasoning:

Goldman, Harp, ILC 2009 8 2009/5/13

• Reasoning based on evidence merging;
• “Explaining away” reports by alternative explana-

tions. E.g., if a benign event accounts for a num-
ber of reports, those reports will be explained away,
and no longer provide support for more alarming hy-
potheses.

• Abstraction reasoning that employs the subclass/su-
perclass relationships in the event dictionary.

• Part/whole reasoning, to recognize complex com-
posite events.

• Distinguishing between judgments that are based on
different sensor bases and those that use the same
sensor. This helps us distinguish between cases
when two sensors provide support for each other
and when we simply have redundant reports (e.g.,
two network intrusion detection systems using ex-
actly the same algorithm that see the same traffic, at
two different points).

A Bayesian network is a directed, acyclic graph (DAG)
depicting a set of random variables. Edges between
nodes in the DAG represent causal influences. Using
a Bayesian network, we can capture a joint distribu-
tion factorized into unconditional probabilities for root
nodes and conditional probability tables for non-root
nodes. The conditional probability tables contain prob-
ability distributions for the child nodes, conditioned
on all the values of their parents. For a thorough, but
readable, introduction to Bayesian networks, we rec-
ommend Charniak’s (1992) “Bayesian Networks With-
out Tears.”

There are a number of efficient algorithms for find-
ing the posterior distributions of Bayesian networks,
conditional on observations of some of the random
variables. These algorithms may readily be adapted to
provide posterior κ rankings instead of probabilities.

6.2 System-Z+ and the ATMS
The Scyllarus Event Assessor (EA) does System-Z+
Bayes net inference by representing the Bayes nets in a
Assumption-based Truth Maintenance System (ATMS)
with weighted assumptions, and finding minimum cost
environments for the ATMS networks. We adopted the
ATMS approach simply because the ATMS code was
readily available, and we expected later to replace the
ATMS with a special-purpose System-Z+ Bayes net
evaluator. However, with the exception of some patho-

logical cases, which we handle specially, System-Z+
inference has never been a bottleneck in Scyllarus.

An ATMS (deKleer 1986) is a propositional logic
database with data dependencies or justifications, that
record the derivation of the literals from distinguished
assumptions. An ATMS network is a directed hyper-
graph whose vertices are a set of literals, L. Among
the literals are a distinguished contradictory node, ⊥,
and a subset of assumptions, A ⊆ L. The justifications
are a set of hyperedges, J : 2L × L, whose tails are
sets of literals, the justifiers, and whose head is a lit-
eral, the justificand. Each justification is a boolean con-
straint indicating that the justifiers entail the justificand.
Using the justifications, the ATMS uses a boolean con-
straint propagation algorithm to compute a labeling for
the set of literals. Each literal is labeled with a set of
environments. Each environment, Ei ⊆ A, is a mini-
mal set of assumptions that, taken together, entails the
literal. Justifications whose justificand is the ⊥ node
are used to identify inconsistent environments. We have
used the ATMS code supplied in Forbus and DeKleer’s
textbook (Forbus and deKleer 1993).

ATMSes can be used to encode Bayes networks (Char-
niak and Goldman 1988; Provan 1989).Each value
assignment to a random variable in the Bayes net is
represented by a literal. Each conditional or uncondi-
tional probability in the Bayes net is represented by
an assumption. For example, in a Bayes net with the
(boolean) nodes A,B, C and edges A → C,B → C,
there will be literals lA, lB, lC , lA, lB, lC and assump-
tions:

aA, aA,
aB, aB,

aC|AB, aC|AB, aC|AB, aC|AB,

aC|AB, aC|AB, aC|AB, aC|AB

There will also be justifications representing the prob-
abilistic entailments. For example, 〈aA → lA〉 and
〈aA → lA〉 illustrate the representation of root nodes
and unconditional priors in the Bayes net. The condi-
tional probabilities of internal nodes are represented us-
ing justifications like these:

〈lA, lB, aC|AB → lC〉, 〈lA, lB, aC|AB → lC〉, . . .

We also have justifications to ensure consistency, e.g.:
〈aA, aA → ⊥〉.

With the above encoding, the ATMS algorithm will
compute labelings that represent the prior probabilities

Goldman, Harp, ILC 2009 9 2009/5/13

in the Bayes network. In the above example, the literals
will be labeled as follows:

lA {{aA}}
lA

{{
aA

}}
lB {{aB}}
lB

{{
aB

}}
lC

{{
aA, aB, aC|AB

}
,{

aA, aB, aC|AB

}
,{

aA, aB, aC|AB

}
,{

aA, aB, aC|AB

}}
lC . . .

From the above labelings we can recover the prior
probabilities by multiplying together the conditional
and unconditional probabilities associated with each
assumption node. Posterior probabilities can be com-
puted by collecting the set of environments consistent
with the observation set and normalizing the prior prob-
abilities accordingly.

Computing System-Z+ κ values may be done in a
similar way, with some differences to account for the
differences in the calculi. If we wish to find posterior
κs for a set of observations ω, we must find the set
of minimum-cost environments consistent with ω. Un-
fortunately, this cannot simply be done by combining
the labels of the literals in ω. For one thing, the envi-
ronments in the labels for the different literals are not
guaranteed to be independent.

We may find the environments we want using a
search algorithm, whose search states are pairs of en-
vironments (sets of assumptions) and sets of reports.

1. let R be the set of reports; let O be the openlist

2. O := list(〈∅,R)

3. choose s = 〈E,R〉 from O

4. if R = ∅ then s is a solution

5. choose a report, r ∈ R

6. for each environment, E′ ∈ label(r):

7. unless nogood(E′ ∪ E) add 〈E′ ∪ E,R− r〉 to O.

The set of environments produced by this search al-
gorithm are sufficient to partition the set of events
into likely, plausible, and unlikely subsets: An event
is likely if it is entailed by all the minimum-κ environ-
ments. An event is plausible, if both it and its negation
appear in some minimum-κ environments. An event is

unlikely if it appears in none of the minimum-κ envi-
ronments.

Some notes are worth making: First, we must find
all the minimum-cost (minimum κ) solution environ-
ments. We are free to choose whatever search method
we wish to execute the above search. Initially we used
a naive A∗ algorithm; later we switched to depth-first
iterative deepening in order to avoid excessive memory
requirements. For greater efficiency, we perform infer-
ence on individual closed subgraphs of the ATMS net-
work, rather than the entire network.

The CP builds networks of events and reports with
the following structures:

Event → report links Associated with each report is a
set of events that it supports (i.e., provides evidence
for).

Event → event part-of links There are a limited num-
ber of exploits that have distinguished parts that can
be detected independently.

Event → event specialization links Because the dif-
ferent IDSes have different classifications of events,
it is possible that one IDS will report an event E,
while another will report an event E′ where E′ is a
more specific event class than E.

To summarize, we build an ATMS network that, for
each record, considers the possibility that the record
corresponds to a true detection or a false positive. We
also represent the causal and logical relations among
the different events in the set of events. Note that this
algorithm can either be used to create an ATMS net-
work for the full set of events in the database, or any
closed subset of the set of events, for incremental rea-
soning.

We found two special cases that were challenging
for EA inference. One was the simple case of an ATMS
network with only a single event. While this is a triv-
ial case of inference, it caused problems when there
were many reports (in some cases, thousands of re-
ports). We wrote a special-purpose System-Z+ solver
for such networks, significantly improving throughput.
Another optimization we made was to filter symmetri-
cal environments out of the search; again this provided
significant inference speedups.

7. Intrusion Reference Model
The process of knowledge-based model construction is
driven largely by extensive models of existing IDSes.

Goldman, Harp, ILC 2009 10 2009/5/13

Classes

Instances
Attributes of
an instance

Figure 6. Protegé screenshot, showing the Scyllarus IRM.

The task of putting the various sorts of IDS reports on
a common semantic footing has proved more challeng-
ing than expected. There is little consistency in termi-
nology between (or even within) IDSes and often quite
different principles of detection are employed, making
nominally similar messages less than fully comparable.

An extensive ontology for expressing the IRM has
evolved over several versions of Scyllarus to become
the foundation of our approach to this problem. All of
the IRM concepts are expressed in this modular ontol-
ogy, maintained in the Protégé (Noy et al. 2001) tool.
Part of this ontology is used to model the protected
computers and network, while other parts are devoted
to the characterstics of the defenses. In particular, an
IDS ontology module exists in the IRM for each sort of
IDS supported. These models pertain both to hypothe-
sis formation and evaluation, so we will discuss them
briefly here.

Each type of IDS is capable of emitting a range of
different reports describing some aspect of a possible
intrusion it has observed. Commonly these different
messages will be derived from different discrete ele-
ments such as rules or detection modules within the
IDS. Some have a repertoire of just a few messages
(e.g. firewalls) while others have thousands (e.g. Snort).
Scyllarus maintains an explicit model of each message
generating element.

An IDS report will ususally mention three sorts of
details. First, it will almost always contain an identify-
ing string that describes the generic exploit or vulner-
ability implicated. An example is the report generated
by snort rule with SID 1635, “POP3 APOP overflow
attempt”, which is an attempt to exploit a vulnerability
in an XMail POP server, allowing the attacker to ex-
ecute arbitrary commands via overflowing an internal
buffer.

Goldman, Harp, ILC 2009 11 2009/5/13

This sometimes comes with a standardized citation
of a cataloged vulnerability, such as a code from CVE,
the Common Vulnerability Enumeration (CVE). The
aforementioned vulnerability has such a number, CVE-
2000-0841. However many IDS reports do not have
such an association, or the association is not unique,
and we have had to rely on the vendor-specific identi-
fiers. In cases where this identifier has not been unique,
we have modified it to make it so, since we are inter-
ested in the performance characteristics of individual
rules or detection modules. Cases of differential perfor-
mance within a single type of IDS have arisen, for ex-
ample, multiple signatures that diagnose the presence
of a particular computer virus wherein some rules are
highly specific while others are prone to be triggered
by normal traffic.

Two other details that nearly all IDS reports provide
are the identifiers of the initiator and intended victim of
the attack. This may include a particular host identifier,
a network address, a user name, process identifier, etc.
depending on the type of IDS and nature of the oberva-
tion. In network IDSes the designation of source and
destination in the observed network packets usually,
but not always, corresponds to the attacker and victim.
Sometimes the easiest way to observe an attack is by
detecting the response of the victim, thus reversing the
usual network order. Scyllarus uses the IDS models to
normalize these designations.

Each message-generating element in a supported
type of IDS has one or more models in the IDS spe-
cific ontology module. These models, which we call
report signatures, are causal interpretations of the re-
port in terms of the ontology. A signature is a tem-
plate that describes a possible attack or other event that
may give rise to the given sort of report. It uses sev-
eral extensive hierarchies of IRM concepts to do so.
The first, is a taxonomy of operations. Operations are
elementary actions on the protected system that may
be undertaken for good or ill, such as reading a file,
starting a process, or executing a step in a protocol.
Scyllarus has an a-kind-of hierarchy listing hundreds
of operations. A different IRM taxonomy models the
possible intentions of a causal agent. The intent may
be specified in a report signature to cast a benign or
malevolent interpretation of the operation. The intent
classification also provides a rough measure of the se-
riousness of the event. Modeled intentions vary from
specific sorts of denial of service, the seizing of privi-

leges, as well as administrative (wholesome) intentions
such as “achieve file-server archival backup to tape.”

Many signatures also cite specific victim software
or systems, vulnerabilities (Scyllarus incorporates CVE
and other classification schemes), or certain “malware”
(malicious programs) that are implicated. An important
part of the signature model is the qualitative false posi-
tive rate of generating element, and the presumed rarity
of the interpretation. Various other details of the repre-
sentation are omitted here for brevity.

8. Experience
Scyllarus was used to monitor an operational network
of over 500 workstations and servers using three differ-
ent types of network intrusion detector and two differ-
ent types of host intrusion detectors located at various
points in the network over a period of 4 years, at which
time the sensors were relocated to a small test network
with limited access to network traffic.5 Over the period
of its use, Scyllarus proved itself to be a substantial ad-
vance in the state of the art for IDS fusion.

Scyllarus routinely handled quiet day traffic of 10,000
– 20,000 IDS reports per day. On more “exciting” days,
the traffic was considerably heavier; e.g., on the day of
the release of the Code Red worm, Scyllarus received
more than 1,000,000 reports.

We tested Scyllarus with controlled exploits on our
network and the system has responded appropriately.
We were also able to detect an episode of penetration
testing conducted without warning by an independent
security team.

In 2003, the ability of Scyllarus attacks was demon-
strated in an evaluation conducted as part of the DARPA
Cyber Panel program (Haines et al. 2003). In this eval-
uation, a number of network attacks were launched by
a dedicated Red Team in a simulated warfare planning
environment.

Scyllarus addresses the information overload faced
by IDS users. On quiet days Scyllarus is able to winnow
the flood of reports down to a handful of events that are
worthy of investigation. See Figure 1 for representative
data on Scyllarus’s report filtering.

9. Related Work
SecurityFocus has developed the Attack Registry and
Intelligence Service (ARIS) (ARIS). The ARIS extrac-
tor collects IDS reports from four different IDSes, for-
5 Walt Heimerdinger, personal communication

Goldman, Harp, ILC 2009 12 2009/5/13

mats them in XML, and presents them in an incident
console. However, it makes no attempts to fuse the re-
ports or weigh the evidence for and against them.

MetaSTAT is a fusion system that is built on a set
of STAT-based IDSes (Vigna et al. 2001). STAT is a
signature-based IDS that detects events by matching
against extended finite-state event models. MetaSTAT
uses finite-state models of across-sensor events to con-
sume at a higher level the events generated by lower-
level sensors. MetaSTAT does not attempt to judge the
plausibility of different events.

EMERALD/eBayes (Valdes and Skinner 2001) fu-
sion is the most similar to Scyllarus. The eBayes
sensors are Bayes net-based, and the correlation ap-
proach allows “upstream” sensors to adjust the priors
on “downstream” sensors. eBayes fusion is limited to
clustering together alerts that meet a similarity crite-
rion; they do not have models of high-level events as in
the Scyllarus IRM.

Prelude Correlator (Vandoorselaere 2008) is part
of the open source Prelude IDS information system,
and allows users to analyze reports sent to Prelude
from compatible IDSs. Users provide rules written in
Lua (Ierusalimschy et al. 2006), a scripting language
inspired by Scheme and Icon. Its function is closest to
the Scyllarus clustering preprocessor, but knowledge
resides in stateful rules instead of an ontology of at-
tacks.

A commercial product, Arcsight Enterprise Security
Manager (ArcSight 2008), also ties correlated IDS re-
ports to an installation’s security goals and vulnerabil-
ity information.

10. Lisp Lessons Learned
The Scyllarus project has involved long term devel-
opment, maintenance and modification of a large and
complex Common Lisp code system. We have seen
clear benefits from many aspects of Common Lisp,
most notably the facilities for interactive development,
hot-patching, etc. We have also discussed how well CL
and Protegé work together, providing major assistance
in building and maintaining Scyllarus’s IRM. However,
our lessons learned include some ways in which CL
was not helpful. One of these was less a problem with
CL than an occasion where we missed an opportunity
to profit from CL. We also found challenges in CL code
maintenance.

One possible advantage of CL is providing better
support for unit testing. Complex networks of inter-
related objects are very challenging for unit testing
regimes because setting up unit test situations often re-
quires an inordinate amount of effort to recreate such
networks outside of a fully-functioning system. The
Java community, for example, has devoted a great deal
of effort to this issue, along the way spawning a thick
jargon of “mocks,” testing frameworks, etc. The Ruby
community has been quick to claim that its “duck typ-
ing” provides solutions to some of the problems posed
by Java’s more rigid type scheme.

Many of CL’s features offer opportunities to ease the
process of unit test development. CLOS provides all of
the flexibility of Ruby’s “duck typing” together with
method combination and eql methods to ease the need
for full-fledged mock object frameworks. Another ad-
vantage is not so much to do with CL itself as with
the lisp mindset: it is our observation that lispers tend
to assume that data should almost always have a read-
able and writeable representation. Having a readable
printrep substantially simplifies the process of scripting
tests, as anyone who has seen Java code with literally
hundreds of lines to initiate relatively simple objects
will attest. The :around methods and dynamic scop-
ing are also powerful tools for setting up (and automat-
ically tearing down) unit tests.

We say all this in some humility, because most of
Scyllarus was written before unit testing became stan-
dard practice. Converts to unit testing, we have found
that it has been enormously difficult to take the exist-
ing code, with its complex interrelationships, and de-
compose it so as to make it more unit testable. Doing
so requires substantial refactoring to enable us to make
use of the facilities we refer to above.

In one way, however, CL unit testing can present dif-
ficulties beyond those of more conventional languages,
and that is that we often wish to conduct unit tests in the
context of a running system. If one is writing a large
Java system, for example, it is typically acceptable to
compile the system, start it up, run the unit tests, and
then close the system down. However, in developing
a large lisp system, we often would like to be able to
unit test our system without damaging its function; we
do not want to shut it down after testing. This presents
substantial additional challenges to test design.

We have found two substantial challenges in main-
taining such a long-lived CL code base. The first is a

Goldman, Harp, ILC 2009 13 2009/5/13

lack of strong data hiding mechanisms, notably limi-
tations on access to object internals. By and large in-
formation hiding is managed by convention rather than
language support — in our opinion the package mecha-
nism is too heavyweight to simply hide access to some
class slots. We are wary of the reliance on coding con-
ventions, since they have not been at all stable over the
lifetime of at least this code base, which was created at
a very low time in CL’s fortunes. We are also not find-
ing a “lisp culture” strong enough to orally transmit the
culture of lisp to enough new programmers, making re-
liance on convention difficult (although we hope that
the current renaissance will ease this problem). We are
aware that many have argued that the absence of strong
information-hiding is an advantage of CL, favoring ex-
pressiveness and flexibility, but we have seen develop-
ment of Scyllarus move in fits and starts, and anything
that would clarify interfaces in an “in your face” way
would be helpful.

A second challenge has been the lack of linguistic
support for APIs. We have found when, for example,
adding a new subclass to an existing class, it is very
difficult for a developer to know what new methods
need to be coded. Sonia Keene (Keene 1989) and the
CLIM standard (McKay and York 1993) both suggest
using protocol specifications to overcome this prob-
lem. In our opinion this flies in the face of experi-
ence which indicates that documentation divorced from
code (especially code developed in the informal, inter-
active style of CL) tends to stray from the implementa-
tion rapidly and lose its value. We favor some mecha-
nism that “lives in” the code, evolves as the code does
and, preferably, provides the programmer with warn-
ings when he has failed to adequately implement a pro-
tocol. In related work (Goldman and Maraist 2008), for
a limited case, we have developed macros for generic
functions that warn programmers when they fail to
fully implement an evolving interface. However that
work is not sufficiently general.

There were also some minor nuisances that had to do
with the age of the ANSI CL spec, which we encoun-
tered when we were making our code more portable.
Scyllarus has run on Solaris, Linux, MacOSX and
Windows. It was originally was developed in Alle-
gro Common Lisp (ACL), and employed a number
of proprietary ACL libraries, notably for sockets and
multi-threading. We have developed our own portable
CL libraries for these functions, and have successfully

tested Scyllarus on Steel Bank Common Lisp (SBCL),
as well. We expect that it would be easy to modify it
to run on other CLs as well, although our socket and
threading libraries would need to be extended. Finally,
we doubt that it will come as an enormous surprise
to serious common lispers that logical pathnames, and
even conventional pathnames, were a nuisance to work
with, and presented us with several portability chal-
lenges.

Acknowledgments
This material is based on work funded by the DARPA
Scalable Network Monitoring program under contract
to SPAWAR Systems Center. Approved for Public Re-
lease, Distribution Unlimited.

References
ArcSight. Arcsight enterprise security manager. http:

//www.arcsight.com/product info esm.htm, 2008.

ARIS. Attack registry & intelligence service. http:
//aris.securityfocus.com/AboutAris.asp, 2003.
ARIS analyzer Data Sheet.

Eugene Charniak and Robert P. Goldman. A logic for
semantic interpretation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics,
pages 87–94, 1988.

Johan deKleer. An assumption-based TMS. Artificial Intel-
ligence, 28:127–162, 1986.

Kenneth D. Forbus and Johan deKleer. Building Problem
Solvers. MIT Press, Cambridge, Massachusetts, 1993.

Robert P. Goldman and John S. Maraist. Shopper: Interpreter
for a high-level web services language. Unpublished MSS
submitted to ILC 2009, 2008.

Moisés Goldszmidt and Judea Pearl. Stratified rankings for
causal modeling and reasoning about actions. In Pro-
ceedings of the Fourth International Workshop on Non-
monotonic Reasoning, pages 99–110, Plymouth, VT, May
1992a.

Moisés Goldszmidt and Judea Pearl. Rank-based systems:
A simple approach to belief revision, belief update and
reasoning about evidence and actions. In Proceedings
of the Third International Conference on Principles of
Knowledge Representation and Reasoning, Cambridge,
MA, October 1992b.

Moisés GoldszmidtMoisés Goldszmidt and Judea Pearl.
Qualitative probabilities for default reasoning, belief revi-
sion and causal modeling. Artificial Intelligence, 84(1–2):
57–112, 1996.

Joshua Haines, Dorene Kewley Ryder, Laura Tinnel, and
Stephen Taylor. Validation of sensor alert correlators.

Goldman, Harp, ILC 2009 14 2009/5/13

IEEE Security and Privacy, 1(1):46–56, 2003. ISSN
1540-7993. doi: http://doi.ieeecomputersociety.org/10.
1109/MSECP.2003.1176995.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Lua 5.1 Reference Manual. Lua.org,
2006.

Sonya E. Keene. Object-oriented Programming in Common
Lisp. Addison-Wesley, 1989.

W. Lee, L. Mè, and A. Wespi, editors. Recent Advances in
Intrusion Detection (RAID 2001), number 2212 in LNCS,
October 2001. Springer-Verlag.

John Leydon. IDS users swamped with false alerts. The
Register, 2001. http://www.theregister.co.uk/
content/55/23420.html.

Richard Lippmann, Joshua W. Haines, David J. Fried,
Jonathan Korba, and Kumar Das. Analysis and results
of the 1999 DARPA off-line intrusion detection evalu-
ation. In RAID ’00: Proceedings of the Third Interna-
tional Workshop on Recent Advances in Intrusion Detec-
tion, pages 162–182, London, UK, 2000. Springer-Verlag.
ISBN 3-540-41085-6.

Scott McKay and William York. Common lisp in-
terface manager release 2.0 specification, Oc-
tober 1993. Available on the web at http:
//www.labri.fr/perso/strandh/Teaching/MTP/
Common/CLIM-spec/cover.html.

N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Ferger-
son, and M. A. Musen. Creating semantic web contents
with protege-2000. IEEE Intelligent Systems, 16(2):60–
71, 2001.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Pub-
lishers, Inc., Los Altos, CA, 1988.

Malcolm Pradhan, Max Henrion, Gregory Provan, Bren-
dan Del Favero, and Kurt Huang. The sensitivity of belief
networks to imprecise probabilities: an experimental in-
vestigation. Artificial Intelligence, 85(1–2):363–397, Au-
gust 1996.

Gregory Provan. An Analysis of ATMS-based Techniques
for Computing Dempster-Shafer Belief Functions. In
Proceedings of the 11th International Joint Conference on
Artificial Intelligence, pages 1115–1120. Morgan Kauf-
mann Publishers, Inc., 1989.

Alfonso Valdes and Keith Skinner. Probabilistic alert cor-
relation. In Lee et al. (2001). URL http://www.sdl.
sri.com/papers/raid2001-pac/.

Yoann Vandoorselaere. Prelude correlator. https://
trac.prelude-ids.org/wiki/PreludeCorrelator,
March 2008. Prelude Correlator online documentation.

Giovanni Vigna, Richard A. Kemmerer, and P. Blix. De-
signing a Web of Highly-Configurable Intrusion Detec-

tion Sensors. In Lee et al. (2001), pages 69–84.
Wikipedia. Mantis shrimp. Wikipedia entry, 2008. URL

http://en.wikipedia.org/wiki/Mantis shrimp.

Goldman, Harp, ILC 2009 15 2009/5/13

