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Abstract 

We argue that as Unmanned Military Vehicles become more 
intelligent and capable, and as we attempt to control more of 
them with fewer humans in the loop, we need to move 
toward a model of delegation of control rather than the 
direct control (that is, fine grained control with, generally, 
tight and fast control loops) that characterizes much current 
practice.  We identify and describe five delegation methods 
that can serve as building blocks from which to compose 
complex and sensitive delegation systems: delegation 
through (1) providing goals, (2) providing full or partial 
plans, (3) providing negative constraints, (4) providing 
positive constraints or stipulations, and (5) providing 
priorities or value statements in the form of a policy.  We 
then describe two implemented delegation architectures that 
illustrate the use of some of these delegation methods: a 
“playbook” interface for UAV mission planning and a 
“policy” interface for optimizing the use of battlefield 
communications resources. 

UMV Control as Human-Automation 

Delegation 

While Unmanned Military Vehicles (UMVs—that is, any 
unmanned vehicle, whether ground, air, sea, undersea or 
space, used for military purposes) hold the promise of 
radical change and improvement for a wide range of 
military applications they also pose a host of challenging 
problems.  Chief among these is how to enable a human 
operator, who may well be heavily engaged in other tasks 
of his or her own (such as exploring a building, maintaining 
radio contact with headquarters or even avoiding fire), to 
retain sufficient control over the UMV(s) to ensure safe, 
efficient and productive outcomes.  This problem is, of 
course, magnified when the UMVs may be responsible for 
the lives of many soldiers or civilians, may be capable of 
unleashing lethal force on its own, and when a single 
human may be striving to control groups or even swarms of 
potentially autonomous and independent actors and may be 
concurrently engaged in other, high tempo and criticality 
tasks of his or her own. 

Yet this problem is not completely novel.  Humans have 
been striving to retain control and produce efficient 
outcomes via the behavior of other autonomous agents for 
millennia.  It just so happens that those “agents” have been 
other humans.  Not surprisingly, we have developed many 
useful methods for accomplishing these goals, each 
customized to a different domain or context of use.  When 
we have some degree of managerial authority over another 
human actor and yet will not be directly commanding 
performance of every aspect of a task, we call the 
relationship (and the method of commanding task 
performance) delegation.  Delegation allows the supervisor 
to set the agenda either broadly or specifically, but leaves 
some authority to the subordinate to decide exactly how to 
achieve the commands supplied by the supervisor. Thus, a 
delegation relationship between supervisor and subordinate 
has many requirements: 

1. The supervisor retains overall responsibility for 
the outcome of work undertaken by the 
supervisor/subordinate team and retains the 
authority commensurate with that responsibility. 

2. The supervisor has the capability to interact very 
flexibly and at multiple levels with the 
subordinate.  When and if the supervisor wishes to 
provide detailed instructions, s/he can; when s/he 
wishes to provide only loose guidelines and leave 
detailed decision making up to the subordinate, 
s/he can do that as well—within the constraints of 
the capabilities of the subordinate. 

3. To provide useful assistance within the work 
domain, the subordinate must have substantial 
knowledge about and capabilities within the 
domain.  The greater these are, the greater the 
potential for the supervisor to offload tasks 
(including higher level decision making tasks) on 
the subordinate. 

4. The supervisor must be aware of the subordinate’s 
capabilities and limitations and must either not 
task the subordinate beyond his/her abilities or 



must provide more explicit instructions and 
oversight when there is doubt about those abilities. 

5. There must be a “language” or representation 
available for the supervisor to task and instruct the 
subordinate.  This language must (a) be easy to 
use, (b) be adaptable to a variety of time and 
situational contexts, (c) afford discussing tasks, 
goals and constraints (as well as world and 
equipment states) directly (as first order objects), 
and (d) most importantly, be shared by both the 
supervisor and the subordinate(s). 

6. The act of delegation will itself define a window 
of control authority within which the subordinate 
may act.  This authority need not be complete 
(e.g., checking in with the supervisor before 
proceeding with specific actions or resources may 
be required), but the greater the authority, the 
greater the workload reduction on the supervisor. 

Items 4 and 6 together imply that the space of control 
authority delegated to automation is flexible—that the 
supervisor can choose to delegate more or less “space,” and 
more or less authority within that space (that is, range of 
control options), to automation.  Item 5 implies that the 
language available for delegation must make the task of 
delegating feasible and robust—enabling, for example, the 
provision of detailed instructions on how the supervisor 
wants a task to be performed or a simple statement of the 
desired goal outcome. 

Types of Delegation 

We have developed a variety of architectures within which 
to support human delegation interactions with automation.  
Of particular interest as a core enabling technology is the 
“language” or representation for delegation described in 
item #5 above.  As Klein (1996) points out, without 

successfully sharing an understanding of the tasks, goals 
and objectives in a work domain, there can be no 
successful communication of intent between actors.  We 
believe there are five kinds of delegation actions or 
delegation methods that should be supported within such a 
representation, as described in Table 1 below.  Note that 
each method forms a building block, and they can be 
combined into more effective and flexible composite 
delegation interactions.  Note also that the subordinate has 
a specific responsibility in response to each method, as 
articulated below. 

In the remainder of this paper, I will described two 
delegation architectures we are developing.  While neither 
system enables all of the types of delegation described 
above, and neither is fully implemented yet, collectively 
they illustrate the five types of delegation and provide a 
rich and highly flexible set of interactions for human-
automation delegation. 

Playbook—Delegation of Goals, Plans and 

Constraints 

The first architecture is based on the metaphor of a sports 
team’s playbook.  A playbook works because it provides 
for rapid communication about goals and plans between a 
supervisor (e.g., a coach) and a group of intelligent actors 
(the players) who are given the authority to determine how 
to act within the constraints inherent in the coach’s play.  
Our Playbook architecture supports delegation action types 
1-4 in principle and has been implemented in prior 
prototypes to include action types 2 and 4.   

The basic Playbook system architecture is presented in 
Figure 1.  The Playbook ‘proper’ consists of a User 
Interface (UI) and a constraint propagation planner known 
as the Mission Analysis Component (MAC) that 
communicate with each other and with the operator via a 

Table 1.  Five types of delegation. 

 
Supervisor’s Delegation Action Subordinate’s Responsibility 

1. Stipulation of a goal to be achieved—where a goal is 

a desired (partial) state of the world.  

Achieve the goal(s) if possible (via any means 

available), or report if incapable. 

2. Stipulation of a plan to be performed—where a plan 

is a series of actions, perhaps with sequential or 

world state dependencies. 

Follow the plan if possible (regardless of 

outcome) or report if incapable. 

3. Provide constraints in the form of actions or states to 

be avoided. 

Avoid those states or actions if possible, report 

if not. 

4. Provide “stipulations” in the form of actions or states 

(i.e., sub-goals) to be achieved. 

Achieve those states or perform those actions if 

possible, report if not. 

5. Provide an “optimization function” or “policy” that 

enables the subordinate to make informed decisions 

about the desirability of various states and actions 

Work to optimize value within the 

“optimization function” or “policy”.   

  



Shared Task Model. The operator communicates 
instructions in the form of desired goals, tasks, partial plans 
or constraints, via the UI, using the task structures of the 
shared task model. The MAC is an automated planning 
system that understands these instructions and (a) evaluates 
them for feasibility and/or (b) expands them to produce 
fully executable plans.  The MAC may draw on special 
purpose planning tools (e.g., an optimizing path planner) to 
perform these functions, wrapping them in its task-sensitive 
environment.  Outside of the tasking interface, but essential 
to its use, are two additional components.  An Event 
Handling component, itself a reactive planning system 

capable of making momentary adjustments during 
execution, takes plans from the Playbook.  These 
instructions are sent to control algorithms that actually 
effect behaviors.   

Operator interaction with the Playbook can be via a variety 
of user interfaces customized to the needs of the work 
environment, but operator commands are ultimately 
interpreted in terms of the Shared Task Model.   To date, 
we have developed prototype playbooks for Unmanned 
Combat Air Vehicle (UCAV) teams (Miller, Pelican, 
Goldman, 2000), and Tactical Mobile Robots (Goldman, 
Haigh, Musliner, Pelican, 2000), and prototypes for the 
RoboFlag game (Parasuraman, Galster, Squire, Furukawa 
and Miller, in press)  and for real-time interaction with 
teams of heterogeneous UMVs (Miller, Funk, Goldman and 
Wu, 2004; Goldman, Miller, Wu, Funk and Meisner, 
2005).  Below, we provide a description of user interaction 
with one playbook  interface we developed with Honeywell 
Laboratories to illustrate the general concept.  

We developed the playbook illustrated in Figure 2 to 
enable a human leader to create a full or partial mission 
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Figure 2.  General Playbook Architecture. 

 
Figure 1.  Prototype Playbook User Interface for UCAV Mission Planning. 



plan for UCAVs.  This initial work was intended as a 
ground-based tasking interface to be used for a priori 
mission planning, but current Playbook work is exploring 
interface modifications to enable real-time and in-flight 
tasking and task performance monitoring as well.   

Figure 2 shows five primary regions of this Playbook UI.  
The upper half of the screen is a Mission Composition 
Space that shows the plan composed thus far.  In this area, 
the operator can directly manipulate the tasks and 
constraints in the plan.  The lower left corner of the 
interface is an Available Resource Space, currently 
presenting the set of aircraft available for use.  The lower 
right corner contains an interactive Terrain Map of the area 
of interest, used to facilitate interactions with significant 
geographic information content.   The space between these 
two lower windows (empty at startup) is a Resource in Use 
Space—once resources (e.g., UCAVs, munitions, etc.) are 
selected for use, they will be moved here where they can be 
interacted with in more detail.  Finally, the lower set of 
control buttons is always present for interaction.  This 
includes options such as “Finish Plan” for handing the 
partial plan off to the MAC for completion and/or review 
and “Show Schedule” for obtaining a Gantt chart timeline 
of the activities planned for each actor, etc. 

At startup, the Mission Composition Space presents the 
three top-level plays (or ‘mission types’) the system 
currently knows about: Interdiction, Airfield Denial, and 
Suppress Enemy Air Defenses (SEAD).  The mission 
leader would interact with the Playbook to, first, declare 
that the overall mission “play” for the day was, say, 
“Airfield Denial.”  In principle, the user could define a new 
top-level play either by reference to existing play structures 
or completely from scratch, but this capability has not been 
implemented yet. 

This action is an example of type 2 delegation—providing 
a specific task for subordinates to perform.  But because 
this is a very high level task in a hierarchical task network, 
the supervisor has left a great deal of freedom to the 
subordinates (in this case, the MAC and the UAVs 
themselves) to determine exactly how a “Airfield Denial” 
mission is to be performed.  If this were the only delegation 
information the supervisor provided, the subordinates 
would be obligated to do their best to perform that action 
(an Airfield Denial mission), but would have a great deal of 
authority as to how best to accomplish it.   

At this point, having been told only that the task for the day 
is “Airfield Denial,” a team of trained pilots would have a 
very good general picture of the mission they would fly.  
Similarly, the tasking interface (via the Shared Task 
Model) knows that a typical airfield denial plan consists of 
ingress, attack and egress phases and that it may also 
contain a suppress air defense task before or in parallel 
with the attack task.  But just as a leader instructing a 
human flight team could not leave the delegation 
instructions at a simple ‘Let’s do an Airfield Denial 
mission today,’ so the operator of the tasking interface is 

required to provide more information.  Here, the human 
must provide four additional items: a target, a homebase, a 
staging and a rendezvous point. Each of these is a 
stipulation, or positive constraint, telling the subordinates 
that whatever specific plan they come up with to 
accomplish the higher level mission must include these 
attributes—and thus, they are examples of type 4 
delegation interactions.  Most of these activities are 
geographical in nature and users typically find it easier to 
specify them with reference to a terrain map.  Hence, by 
selecting any of them from the pop up menu, the user 
enables direct interaction with the Terrain Map to designate 
an appropriate point.  Since the Playbook knows what task 
and parameter the point is meant to indicate, appropriate 
semantics are preserved between user and system. As for 
all plans, the specific aircraft to be used may be selected by 
the user or left to the MAC. If the user wishes to make the 
selection, s/he views available aircraft in the Available 
Resource Space and chooses them by clicking and moving 
them to the Resources in Use Area.   

The mission leader working with a team of human pilots 
could, if time, mission complexity or degree of trust made 
it desirable, hand the mission planning task off to the team 
members at this point.  The Playbook operator can do this 
as well, handing the task to the MAC via the “Finish Plan” 
button.  The leader might wish, however, to provide 
substantially more detailed delegation instructions.  S/he 
can do this by progressively interacting with the Playbook 
UI to provide deeper layers of task selection, or to impose 
more stipulations on the resources to be used, waypoints to 
be flown, etc.  For example, clicking on “Airfield Denial” 
produces a pop-up menu with options for the user to tell the 
MAC to “Plan this Task” (that is, develop a plan to 
accomplish it) or indicate that s/he will ‘Choose airfield 
denial’ as a task that s/he will flesh out further.  The pop-up 
menu also contains a context-sensitive list of optional 
subtasks that the operator can choose to include under this 
task.  This list is generated by the MAC with reference to 
the existing play structures in the play library, filtered for 
current feasibility.   

After the user chooses ‘Airfield Denial’ the system knows, 
via the Shared Task Model, that this task must include an 
Ingress subtask (as illustrated in Figure 2).  The supervisor 
does not have to tell intelligent subordinates this; it is a part 
of their shared knowledge of what an ‘Airfield Denial’ task 
means—and how it must be performed.  To provide 
detailed instructions about how to perform the Ingress task, 
however, the user can choose it, producing a “generic” 
Ingress task template or “play”.  This is not a default 
method of doing “Ingress” but a generic, uninstantiated 
template—corresponding to what a human expert knows 
about what constitutes an Ingress task and how it can or 
should be performed.  A trained pilot knows that Ingress 
can be done either in formation or in dispersed mode and, 
in either case, must involve a “Take Off” subtask followed 
by one or more “Fly to Location” subtasks.  Similarly, the 
user can select from available options (e.g., formation vs. 



dispersed Ingress, altitude constraints on takeoff, etc.) on 
context-sensitive, MAC-generated menus appropriate to 
each level of decomposition of the task model.  One of our 
current challenges in creating Playbooks

TM
 for real-time 

interactions is to enable them to be sensitive to the current 
state of affairs and of task performance so as to make 
intelligent assumptions about task performance possible—
for example, if the supervisor wishes to command a 
currently airborne UAV, perhaps in a holding pattern, to 
perform an ‘Airfield Denial’ mission, both supervisor and 
subordinate should know that the Takeoff portion of an 
Ingress task is no longer necessary and should either be 
eliminated or be shown as already accomplished. 

The user can continue to specify and instantiate tasks down 
to the “primitive” level where the sub-tasks are behaviors 
the control algorithms (see Figure 1) on the aircraft can be 
relied upon to execute. Alternatively, at any point after the 
initial selection of the top level mission task and its 
required parameters, the supervisor can hand the partly 
developed plan over to the MAC for completion and/or 
review.   In extreme cases, a viable “Airfield Denial” plan 
for multiple aircraft can be created in our prototype with as 
few as five selections and more sophisticated planning 
capabilities could readily reduce this number.  But 
potentially more important, the operator (like a human 
supervisor dealing with intelligent subordinates) can also 
provide more detailed instructions whenever s/he deems 
them necessary or useful to mission success and in the way 
s/he sees fit.   

This Playbook illustrates delegation interactions 2 and 4 
(plans and stipulations).  The subordinates’ role in these 
types of interaction are described in the table above—to 
perform the plan through any set of sub-methods that 
adhere to the stipulations provided by the supervisor, or to 
report that this is infeasible.  One of the MAC’s roles in the 
above example is to report when it is incapable of 
developing a viable plan within the constraints imposed, 
(e.g., if the user has stipulated distant targets that exceed 
aircraft fuel supplies).  In a real-time delegation system, the 
MAC will be responsible for continual monitoring of 
performance to report when world states mean that plan 
performance is no longer capable of (or likely to) 
accomplish the user’s parent plan (e.g., because of 
equipment failures, adverse head winds, enemy 
countermeasures, etc.) 

The Playbook architecture is, we believe, also capable of 
supporting delegation interaction types 1 and 3 (goals and 
negative constraints) as well.  Supporting goal-based 
delegation interactions would require a slight modification 
to the shared task representation.  Currently, we have used 
a representation that explicitly includes only hierarchically 
organized and sequenced tasks (i.e., actions to be 
performed).  Tasks implicitly encode the goals they 
accomplish, but there are representations (such as Geddes 
Plan-Goal Graphs—Sewell and Geddes, 1990) that 
explicitly interleave both plans and goals and a linked 
hierarchy. Use of such a representation, along with related 

modifications to the UI and MAC, would enable the 
supervisor to say, effectively, “Today we’re going to 
achieve a State” (e.g., the destruction of a given airfield) 
rather than or in addition to, the plan-based representation 
used above which allows only the issuing of task-based 
delegation commands (e.g., “Today we’re going to fly an 
airfield-denial mission”).  The incorporation of negative 
constraints into the interaction (delegation interaction 
method #3), would require a less substantial modification 
to the Playbook  architecture—potentially requiring only a 
UI addition to enable the supervisor to incorporate negative 
commands about task types and state parameters (e.g., “do 
NOT fly through this valley or use this type of munition”) 
and then requiring the MAC to create plans which avoid 
those negative constraints. 

Policy—Delegation via Abstract Policy 

Statements 

The final type of delegation interaction offers the ability to 
provide priorities between alternate goals and states and to 
do so more abstractly than the above methods.  Sometimes 
supervisors don’t have a single, concrete world state goal in 
mind, much less a specific plan for accomplishing it.  
Sometimes supervisors must issue commands well in 
advance to cover a wide range of largely unanticipatable 
circumstances.  In these cases, the delegation instructions 
will be less a specific statement of actions to take or world 
states to be sought or avoided, but rather a general 
statement of outcomes that would be more or less good or 
valuable (or, conversely, bad or to be avoided) than others.  
We refer to the set of such abstract value statements that a 
supervisor might provide as his or her “policy” for 
performance in the domain. 

We have developed policy-based architectures for two 
applications: providing commanders’ guidance to a 
resource controller for battlefield network communications 
(prioritizing communications bandwidth in accordance with 
the commander’s intent—Funk, Miller Johnson and 
Richardson, 2000), and providing visualization and 
feedback to dispatchers in upset contexts in commercial 
aviation (Dorneich, Whitlow, Miller and Allen, 2004).  We 
will describe the first of these below. 

A policy statement is an abstract, general, a priori statement 
of the relative importance or value of a goal state in the 
domain.  In its simplest form, policy provides a method for 
human operators to mathematically define what constitutes 
“goodness.” Once defined, a policy statement can be 
treated as a rule and evaluated against a current or 
hypothetical context—if the rule is true in the context, then 
the context incurs the “goodness” (or badness) value 
stipulated by the rule.  Alternate contexts (which could be 
tied to the expected outcomes of alternate decisions) can 
then be evaluated against each other by examining the set 
of policy rules that are satisfied or violated and the 
resulting set of goodness/badness values accrued.  A set of 



individual policy statements can be bundled together, and 
these policy bundles can be used to flexibly define the 
priorities that apply in a given situation (priorities can 
change given different circumstances).  

A policy-based delegation system requires at least three 
components:  (1) a representation for specifying the 
“policy” in terms of the value of various partial world 
states, (2) a user interface for allowing one or more users to 
input their policies and, if desired, view results of policy 
application, (3) a computational framework that allows 
evaluation of a current situation or hypothetical proposed 
situation against the expressed policy, and (4) an engine 
that allows application of the policy either to the control of 
resource application or to a visualization of sensed data 
about a current situation or projected data about a future or 
simulated situation.    

In the development of a policy-based delegation system for 
communications resource usage, we were striving to 
provide a means for commanders to tell an automated 
network management system their “policies” for how to 
prioritize the use of communications bandwidth in order to 
satisfy the most important requests most fully.  Note, 
however, that “most important” was not a static concept but 
rather changed across commanders and situations.  For this 
application, we developed a policy representation that 
allowed commanders to assign, a priori and abstractly, a 
value to various kinds of communications requests.  As 
communications requests then came in from various field 
units or operators, they could be matched against the 
commander’s policy statements and a value assigned to 
each of them.  This value was then used by a resource 
optimizing controller to determine which requests should 
get network bandwidth with what priority. 

This process is conceptually illustrated in Figure 3.  Each 
commander’s policy is created as a set of statements (as 
illustrated at the top of the figure) each of which assigns an 
importance (or value) function to a defined sub-region in a 
multidimensional space.  In this case, individual policy 
statements are illustrated abstractly as defined by the 
dimensions: owner (Wi) who is the originator of an 
information request, source (Si) which is the location of the 
information to be transmitted, destination (Di) which is the 
destination to which the information is to be transmitted 
(i.e., a specific machine or IP address, which need not be 
that of the owner), and description of the information 
content (Ci) to be transmitted, along with an importance 
assigned to that policy statement.  For example, policy 
statements might be based on a single dimension 
(‘Requests for weather information [Content] get 
Importance 0.2’) or on a combination of dimensions 
(‘Requests owned by the Zone Reconnaissance task 
[Owner] for weather information [Content] from Satellite 
476B [Source] to 3rd Air Calvary Division [Destination] 
get Importance 0.8). If the policy element regions are 
allowed to overlap, then they must be sequenced (typically 
from most to least specific) to indicate the order of 
precedence. 

In practice, the commander’s policy is then used to assign 
an importance value to any incoming request for 
communication resources (illustrated conceptually in the 
lower portion of Figure 3). Each policy statement defines a 
region within the multidimensional space defined by the 
parameters from which policy statements can be built.  
We’ve represented that multidimensional space as a simple 
plane in the figure, and then defined multiple regions 
within that space with an assigned value for each to 
represent the valuation contained in each separate policy 
statement.  Each incoming request is matched against the 
sequenced series of policy statements the commander has 
made. The first policy element that matches the request 
determines the importance of that request and informs an 
automated resource manager about the relative value of 
satisfying that request.    

While conceptually simple, many useful functions can be 
performed within this framework.  First, it is not necessary 
that importance be construed as an all-or-nothing value as it 
is depicted in Figure 3.  Instead, we have explored more 
sophisticated representations that allow the requestor to 
provide a description of how s/he wants the information 
requested along several dimensions (e.g., freshness, 
reliability, initiation-time, accuracy, resolution, scope, etc.)  
Then the resource management system can treat the 
importance value as a maximum number of value “points” 
to be awarded for satisfying the request perfectly, while 
still awarding itself points for partial satisfaction.  This 
permits more sensitive management of resources to be 
performed.   

Second, it is rarely the case that a single commander or 
supervisor is the only one who may have an interest in 
dictating policy about how subordinates behave.  Rather, 
each commander must allocate his/her resources in 
accordance with the policies of those above. We support 
this requirement (Figure 4) by modeling policies that exist 
at nodes in a command hierarchy. As requests come in, 
they are matched against the commander’s policy that 
governs them (command node N1.2.2 in Figure 4), but 
must then also be matched against his/her commander’s 
policy (i.e., the command node in charge of node N1.2.2 in 
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Owner Source Destination Content Importance 

( {W1} {S1} {D1} {C1} .9 ) 
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.9 
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Figure 3.  Representation for a policy for network 
bandwidth prioritization. 



Figure 4—node N1.2)—and so on, up the chain of 
command (i.e., node N.1 in Figure 4). We allow each 
commander to stipulate how this matching policy element 
should be resolved with the subordinate commander’s 
matching policy element: as a ceiling or floor value, or 
linear or weighted combination of the values.  Even when a 
single well-defined chain of command does not exist the 
policies of different “interest groups” may be represented 
with relative weights on the importance values that each 
would assign to a potential outcome.  We have used this 
approach (Dorneich, et al., 2004) in representing the many, 
varied interests which impact the decisions of a commercial 
airline’s dispatch operators (e.g., crew scheduling, 
maintenance scheduling, marketing, passengers, finance, 
etc.). 

Folding this policy-based form of delegation interaction 
(method 5) into an overall architecture that includes the 
other methods is not as difficult as it might first appear.  
While we have not yet developed a system that 
accomplishes this, the way forward is clear.  Policy is 
simply an assignment of value or priority to the goal states 
and tasks in the other delegation interaction types.  
Priorities for resource usage and the desirability of various 
outcomes stem, after all, from a superior’s goals and plans 
for subordinates (whether human or machine).  If, for 
example, I task a given unit under my command to perform 
an Airfield Denial task, and I know that their task is the 
most important of all concurrent tasks to me, then I have 
effectively said that giving them the resources they require 
to perform that task (specific aircraft, munitions, fuel, 
communications bandwidth, etc.) represents the highest 
value to me.  In other words, delegation interactions that 
provide specific goals, plans, stipulations and constraints to 
subordinates carry with them specific policy implications.  
Whenever a commander can provide more specific 
delegation instructions, this will generally get him/her 
closer to the results desired from his/her subordinates, but 
this will not always be the case.  Hence, the ability to 
stipulate more abstract policies should probably be 
preserved in a complete delegation system as a means of 
covering unexpected and unfamiliar situations. 

Conclusions and Future Work 

While the work described above represents a general 
framework for delegation interactions suitable for human 
interaction with smart automation of various kinds and, 
perhaps uniquely, suitable for the tasking of multiple 
UMVs, our work has thus far progressed only to the proof 
of concept stage.  As noted above, we have currently 
implemented only portions of the various methods of 
delegation that a fully flexibly delegation interface might 
benefit from, and have done so in disparate systems.  
Furthermore, our proof of concept implementations have 
not yet afforded us the opportunity to do rigorous human in 
the loop evaluations to demonstrate improved performance, 
if any. 

These situations are changing, however.  We are currently 
engaged in exploration of human interaction with Playbook 
-like interfaces (Parasuraman, et al., in press) and are 
performing work on a Playbook  interface for real-time 
interactions with heterogeneous UMV assets by operators 
who may be concurrently involved in other critical tasks 
(under a DARPA-IXO SBIR grant-- cf. Miller, et al., 2004; 
Goldman, et al., 2005).  One of the goals of this work will 
be to develop task libraries and task construction tools and 
interface concepts to move the delegation interface work 
along toward implementation and utility.   

Of course, anyone who has worked with a poorly trained, 
or simply mismatched, subordinate is well aware that it is 
possible for delegation to cause more work than it saves.  
Our challenge, and that of others who adopt a delegation 
framework for human interaction with complex and largely 
autonomous automation, will be to ensure that this does not 
happen--through judicious use of technology and 
substantial usability analysis and testing.  On the positive 
side, however, we benefit from the knowledge that 
delegation approaches to interaction with intelligent yet 
subordinate actors have worked repeatedly throughout 
history and, particularly, the history of warfare.  As 
automation in the form of UMVs increasingly takes its 
place as one of those actors we want to be intelligent, 
capable and effective yet remain subordinate, we will 
increasingly need methods for enabling it to interact with 
us in the ways that we trust and are familiar with.   Since 
delegation is the primary method that fits that bill, it only 
makes sense to pursue delegation approaches to human 
interaction with automation. 
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