
Delegation Architectures:

Playbooks and Policy for Keeping Operators in Charge

Christopher A. Miller

Smart Information Flow Technologies

1272 Raymond Ave

St. Paul, MN 55108 U.S.A.

cmiller@sift.info

Abstract

We argue that as Unmanned Military Vehicles become more
intelligent and capable, and as we attempt to control more of
them with fewer humans in the loop, we need to move
toward a model of delegation of control rather than the
direct control (that is, fine grained control with, generally,
tight and fast control loops) that characterizes much current
practice. We identify and describe five delegation methods
that can serve as building blocks from which to compose
complex and sensitive delegation systems: delegation
through (1) providing goals, (2) providing full or partial
plans, (3) providing negative constraints, (4) providing
positive constraints or stipulations, and (5) providing
priorities or value statements in the form of a policy. We
then describe two implemented delegation architectures that
illustrate the use of some of these delegation methods: a
“playbook” interface for UAV mission planning and a
“policy” interface for optimizing the use of battlefield
communications resources.

UMV Control as Human-Automation

Delegation

While Unmanned Military Vehicles (UMVs—that is, any
unmanned vehicle, whether ground, air, sea, undersea or
space, used for military purposes) hold the promise of
radical change and improvement for a wide range of
military applications they also pose a host of challenging
problems. Chief among these is how to enable a human
operator, who may well be heavily engaged in other tasks
of his or her own (such as exploring a building, maintaining
radio contact with headquarters or even avoiding fire), to
retain sufficient control over the UMV(s) to ensure safe,
efficient and productive outcomes. This problem is, of
course, magnified when the UMVs may be responsible for
the lives of many soldiers or civilians, may be capable of
unleashing lethal force on its own, and when a single
human may be striving to control groups or even swarms of
potentially autonomous and independent actors and may be
concurrently engaged in other, high tempo and criticality
tasks of his or her own.

Yet this problem is not completely novel. Humans have
been striving to retain control and produce efficient
outcomes via the behavior of other autonomous agents for
millennia. It just so happens that those “agents” have been
other humans. Not surprisingly, we have developed many
useful methods for accomplishing these goals, each
customized to a different domain or context of use. When
we have some degree of managerial authority over another
human actor and yet will not be directly commanding
performance of every aspect of a task, we call the
relationship (and the method of commanding task
performance) delegation. Delegation allows the supervisor
to set the agenda either broadly or specifically, but leaves
some authority to the subordinate to decide exactly how to
achieve the commands supplied by the supervisor. Thus, a
delegation relationship between supervisor and subordinate
has many requirements:

1. The supervisor retains overall responsibility for
the outcome of work undertaken by the
supervisor/subordinate team and retains the
authority commensurate with that responsibility.

2. The supervisor has the capability to interact very
flexibly and at multiple levels with the
subordinate. When and if the supervisor wishes to
provide detailed instructions, s/he can; when s/he
wishes to provide only loose guidelines and leave
detailed decision making up to the subordinate,
s/he can do that as well—within the constraints of
the capabilities of the subordinate.

3. To provide useful assistance within the work
domain, the subordinate must have substantial
knowledge about and capabilities within the
domain. The greater these are, the greater the
potential for the supervisor to offload tasks
(including higher level decision making tasks) on
the subordinate.

4. The supervisor must be aware of the subordinate’s
capabilities and limitations and must either not
task the subordinate beyond his/her abilities or

must provide more explicit instructions and
oversight when there is doubt about those abilities.

5. There must be a “language” or representation
available for the supervisor to task and instruct the
subordinate. This language must (a) be easy to
use, (b) be adaptable to a variety of time and
situational contexts, (c) afford discussing tasks,
goals and constraints (as well as world and
equipment states) directly (as first order objects),
and (d) most importantly, be shared by both the
supervisor and the subordinate(s).

6. The act of delegation will itself define a window
of control authority within which the subordinate
may act. This authority need not be complete
(e.g., checking in with the supervisor before
proceeding with specific actions or resources may
be required), but the greater the authority, the
greater the workload reduction on the supervisor.

Items 4 and 6 together imply that the space of control
authority delegated to automation is flexible—that the
supervisor can choose to delegate more or less “space,” and
more or less authority within that space (that is, range of
control options), to automation. Item 5 implies that the
language available for delegation must make the task of
delegating feasible and robust—enabling, for example, the
provision of detailed instructions on how the supervisor
wants a task to be performed or a simple statement of the
desired goal outcome.

Types of Delegation

We have developed a variety of architectures within which
to support human delegation interactions with automation.
Of particular interest as a core enabling technology is the
“language” or representation for delegation described in
item #5 above. As Klein (1996) points out, without

successfully sharing an understanding of the tasks, goals
and objectives in a work domain, there can be no
successful communication of intent between actors. We
believe there are five kinds of delegation actions or
delegation methods that should be supported within such a
representation, as described in Table 1 below. Note that
each method forms a building block, and they can be
combined into more effective and flexible composite
delegation interactions. Note also that the subordinate has
a specific responsibility in response to each method, as
articulated below.

In the remainder of this paper, I will described two
delegation architectures we are developing. While neither
system enables all of the types of delegation described
above, and neither is fully implemented yet, collectively
they illustrate the five types of delegation and provide a
rich and highly flexible set of interactions for human-
automation delegation.

Playbook—Delegation of Goals, Plans and

Constraints

The first architecture is based on the metaphor of a sports
team’s playbook. A playbook works because it provides
for rapid communication about goals and plans between a
supervisor (e.g., a coach) and a group of intelligent actors
(the players) who are given the authority to determine how
to act within the constraints inherent in the coach’s play.
Our Playbook architecture supports delegation action types
1-4 in principle and has been implemented in prior
prototypes to include action types 2 and 4.

The basic Playbook system architecture is presented in
Figure 1. The Playbook ‘proper’ consists of a User
Interface (UI) and a constraint propagation planner known
as the Mission Analysis Component (MAC) that
communicate with each other and with the operator via a

Table 1. Five types of delegation.

Supervisor’s Delegation Action Subordinate’s Responsibility

1. Stipulation of a goal to be achieved—where a goal is

a desired (partial) state of the world.

Achieve the goal(s) if possible (via any means

available), or report if incapable.

2. Stipulation of a plan to be performed—where a plan

is a series of actions, perhaps with sequential or

world state dependencies.

Follow the plan if possible (regardless of

outcome) or report if incapable.

3. Provide constraints in the form of actions or states to

be avoided.

Avoid those states or actions if possible, report

if not.

4. Provide “stipulations” in the form of actions or states

(i.e., sub-goals) to be achieved.

Achieve those states or perform those actions if

possible, report if not.

5. Provide an “optimization function” or “policy” that

enables the subordinate to make informed decisions

about the desirability of various states and actions

Work to optimize value within the

“optimization function” or “policy”.

Shared Task Model. The operator communicates
instructions in the form of desired goals, tasks, partial plans
or constraints, via the UI, using the task structures of the
shared task model. The MAC is an automated planning
system that understands these instructions and (a) evaluates
them for feasibility and/or (b) expands them to produce
fully executable plans. The MAC may draw on special
purpose planning tools (e.g., an optimizing path planner) to
perform these functions, wrapping them in its task-sensitive
environment. Outside of the tasking interface, but essential
to its use, are two additional components. An Event
Handling component, itself a reactive planning system

capable of making momentary adjustments during
execution, takes plans from the Playbook. These
instructions are sent to control algorithms that actually
effect behaviors.

Operator interaction with the Playbook can be via a variety
of user interfaces customized to the needs of the work
environment, but operator commands are ultimately
interpreted in terms of the Shared Task Model. To date,
we have developed prototype playbooks for Unmanned
Combat Air Vehicle (UCAV) teams (Miller, Pelican,
Goldman, 2000), and Tactical Mobile Robots (Goldman,
Haigh, Musliner, Pelican, 2000), and prototypes for the
RoboFlag game (Parasuraman, Galster, Squire, Furukawa
and Miller, in press) and for real-time interaction with
teams of heterogeneous UMVs (Miller, Funk, Goldman and
Wu, 2004; Goldman, Miller, Wu, Funk and Meisner,
2005). Below, we provide a description of user interaction
with one playbook interface we developed with Honeywell
Laboratories to illustrate the general concept.

We developed the playbook illustrated in Figure 2 to
enable a human leader to create a full or partial mission

Event

Handling

Control
Algorithms

Playbook

GUI

Tasking

Instructions Provably correct

plans

Provably safe

reactions

Feedback

System control

Mission

Analysis

Shared Task Model

Special Purpose

Tools

Figure 2. General Playbook Architecture.

Figure 1. Prototype Playbook User Interface for UCAV Mission Planning.

plan for UCAVs. This initial work was intended as a
ground-based tasking interface to be used for a priori
mission planning, but current Playbook work is exploring
interface modifications to enable real-time and in-flight
tasking and task performance monitoring as well.

Figure 2 shows five primary regions of this Playbook UI.
The upper half of the screen is a Mission Composition
Space that shows the plan composed thus far. In this area,
the operator can directly manipulate the tasks and
constraints in the plan. The lower left corner of the
interface is an Available Resource Space, currently
presenting the set of aircraft available for use. The lower
right corner contains an interactive Terrain Map of the area
of interest, used to facilitate interactions with significant
geographic information content. The space between these
two lower windows (empty at startup) is a Resource in Use
Space—once resources (e.g., UCAVs, munitions, etc.) are
selected for use, they will be moved here where they can be
interacted with in more detail. Finally, the lower set of
control buttons is always present for interaction. This
includes options such as “Finish Plan” for handing the
partial plan off to the MAC for completion and/or review
and “Show Schedule” for obtaining a Gantt chart timeline
of the activities planned for each actor, etc.

At startup, the Mission Composition Space presents the
three top-level plays (or ‘mission types’) the system
currently knows about: Interdiction, Airfield Denial, and
Suppress Enemy Air Defenses (SEAD). The mission
leader would interact with the Playbook to, first, declare
that the overall mission “play” for the day was, say,
“Airfield Denial.” In principle, the user could define a new
top-level play either by reference to existing play structures
or completely from scratch, but this capability has not been
implemented yet.

This action is an example of type 2 delegation—providing
a specific task for subordinates to perform. But because
this is a very high level task in a hierarchical task network,
the supervisor has left a great deal of freedom to the
subordinates (in this case, the MAC and the UAVs
themselves) to determine exactly how a “Airfield Denial”
mission is to be performed. If this were the only delegation
information the supervisor provided, the subordinates
would be obligated to do their best to perform that action
(an Airfield Denial mission), but would have a great deal of
authority as to how best to accomplish it.

At this point, having been told only that the task for the day
is “Airfield Denial,” a team of trained pilots would have a
very good general picture of the mission they would fly.
Similarly, the tasking interface (via the Shared Task
Model) knows that a typical airfield denial plan consists of
ingress, attack and egress phases and that it may also
contain a suppress air defense task before or in parallel
with the attack task. But just as a leader instructing a
human flight team could not leave the delegation
instructions at a simple ‘Let’s do an Airfield Denial
mission today,’ so the operator of the tasking interface is

required to provide more information. Here, the human
must provide four additional items: a target, a homebase, a
staging and a rendezvous point. Each of these is a
stipulation, or positive constraint, telling the subordinates
that whatever specific plan they come up with to
accomplish the higher level mission must include these
attributes—and thus, they are examples of type 4
delegation interactions. Most of these activities are
geographical in nature and users typically find it easier to
specify them with reference to a terrain map. Hence, by
selecting any of them from the pop up menu, the user
enables direct interaction with the Terrain Map to designate
an appropriate point. Since the Playbook knows what task
and parameter the point is meant to indicate, appropriate
semantics are preserved between user and system. As for
all plans, the specific aircraft to be used may be selected by
the user or left to the MAC. If the user wishes to make the
selection, s/he views available aircraft in the Available
Resource Space and chooses them by clicking and moving
them to the Resources in Use Area.

The mission leader working with a team of human pilots
could, if time, mission complexity or degree of trust made
it desirable, hand the mission planning task off to the team
members at this point. The Playbook operator can do this
as well, handing the task to the MAC via the “Finish Plan”
button. The leader might wish, however, to provide
substantially more detailed delegation instructions. S/he
can do this by progressively interacting with the Playbook
UI to provide deeper layers of task selection, or to impose
more stipulations on the resources to be used, waypoints to
be flown, etc. For example, clicking on “Airfield Denial”
produces a pop-up menu with options for the user to tell the
MAC to “Plan this Task” (that is, develop a plan to
accomplish it) or indicate that s/he will ‘Choose airfield
denial’ as a task that s/he will flesh out further. The pop-up
menu also contains a context-sensitive list of optional
subtasks that the operator can choose to include under this
task. This list is generated by the MAC with reference to
the existing play structures in the play library, filtered for
current feasibility.

After the user chooses ‘Airfield Denial’ the system knows,
via the Shared Task Model, that this task must include an
Ingress subtask (as illustrated in Figure 2). The supervisor
does not have to tell intelligent subordinates this; it is a part
of their shared knowledge of what an ‘Airfield Denial’ task
means—and how it must be performed. To provide
detailed instructions about how to perform the Ingress task,
however, the user can choose it, producing a “generic”
Ingress task template or “play”. This is not a default
method of doing “Ingress” but a generic, uninstantiated
template—corresponding to what a human expert knows
about what constitutes an Ingress task and how it can or
should be performed. A trained pilot knows that Ingress
can be done either in formation or in dispersed mode and,
in either case, must involve a “Take Off” subtask followed
by one or more “Fly to Location” subtasks. Similarly, the
user can select from available options (e.g., formation vs.

dispersed Ingress, altitude constraints on takeoff, etc.) on
context-sensitive, MAC-generated menus appropriate to
each level of decomposition of the task model. One of our
current challenges in creating Playbooks

TM
 for real-time

interactions is to enable them to be sensitive to the current
state of affairs and of task performance so as to make
intelligent assumptions about task performance possible—
for example, if the supervisor wishes to command a
currently airborne UAV, perhaps in a holding pattern, to
perform an ‘Airfield Denial’ mission, both supervisor and
subordinate should know that the Takeoff portion of an
Ingress task is no longer necessary and should either be
eliminated or be shown as already accomplished.

The user can continue to specify and instantiate tasks down
to the “primitive” level where the sub-tasks are behaviors
the control algorithms (see Figure 1) on the aircraft can be
relied upon to execute. Alternatively, at any point after the
initial selection of the top level mission task and its
required parameters, the supervisor can hand the partly
developed plan over to the MAC for completion and/or
review. In extreme cases, a viable “Airfield Denial” plan
for multiple aircraft can be created in our prototype with as
few as five selections and more sophisticated planning
capabilities could readily reduce this number. But
potentially more important, the operator (like a human
supervisor dealing with intelligent subordinates) can also
provide more detailed instructions whenever s/he deems
them necessary or useful to mission success and in the way
s/he sees fit.

This Playbook illustrates delegation interactions 2 and 4
(plans and stipulations). The subordinates’ role in these
types of interaction are described in the table above—to
perform the plan through any set of sub-methods that
adhere to the stipulations provided by the supervisor, or to
report that this is infeasible. One of the MAC’s roles in the
above example is to report when it is incapable of
developing a viable plan within the constraints imposed,
(e.g., if the user has stipulated distant targets that exceed
aircraft fuel supplies). In a real-time delegation system, the
MAC will be responsible for continual monitoring of
performance to report when world states mean that plan
performance is no longer capable of (or likely to)
accomplish the user’s parent plan (e.g., because of
equipment failures, adverse head winds, enemy
countermeasures, etc.)

The Playbook architecture is, we believe, also capable of
supporting delegation interaction types 1 and 3 (goals and
negative constraints) as well. Supporting goal-based
delegation interactions would require a slight modification
to the shared task representation. Currently, we have used
a representation that explicitly includes only hierarchically
organized and sequenced tasks (i.e., actions to be
performed). Tasks implicitly encode the goals they
accomplish, but there are representations (such as Geddes
Plan-Goal Graphs—Sewell and Geddes, 1990) that
explicitly interleave both plans and goals and a linked
hierarchy. Use of such a representation, along with related

modifications to the UI and MAC, would enable the
supervisor to say, effectively, “Today we’re going to
achieve a State” (e.g., the destruction of a given airfield)
rather than or in addition to, the plan-based representation
used above which allows only the issuing of task-based
delegation commands (e.g., “Today we’re going to fly an
airfield-denial mission”). The incorporation of negative
constraints into the interaction (delegation interaction
method #3), would require a less substantial modification
to the Playbook architecture—potentially requiring only a
UI addition to enable the supervisor to incorporate negative
commands about task types and state parameters (e.g., “do
NOT fly through this valley or use this type of munition”)
and then requiring the MAC to create plans which avoid
those negative constraints.

Policy—Delegation via Abstract Policy

Statements

The final type of delegation interaction offers the ability to
provide priorities between alternate goals and states and to
do so more abstractly than the above methods. Sometimes
supervisors don’t have a single, concrete world state goal in
mind, much less a specific plan for accomplishing it.
Sometimes supervisors must issue commands well in
advance to cover a wide range of largely unanticipatable
circumstances. In these cases, the delegation instructions
will be less a specific statement of actions to take or world
states to be sought or avoided, but rather a general
statement of outcomes that would be more or less good or
valuable (or, conversely, bad or to be avoided) than others.
We refer to the set of such abstract value statements that a
supervisor might provide as his or her “policy” for
performance in the domain.

We have developed policy-based architectures for two
applications: providing commanders’ guidance to a
resource controller for battlefield network communications
(prioritizing communications bandwidth in accordance with
the commander’s intent—Funk, Miller Johnson and
Richardson, 2000), and providing visualization and
feedback to dispatchers in upset contexts in commercial
aviation (Dorneich, Whitlow, Miller and Allen, 2004). We
will describe the first of these below.

A policy statement is an abstract, general, a priori statement
of the relative importance or value of a goal state in the
domain. In its simplest form, policy provides a method for
human operators to mathematically define what constitutes
“goodness.” Once defined, a policy statement can be
treated as a rule and evaluated against a current or
hypothetical context—if the rule is true in the context, then
the context incurs the “goodness” (or badness) value
stipulated by the rule. Alternate contexts (which could be
tied to the expected outcomes of alternate decisions) can
then be evaluated against each other by examining the set
of policy rules that are satisfied or violated and the
resulting set of goodness/badness values accrued. A set of

individual policy statements can be bundled together, and
these policy bundles can be used to flexibly define the
priorities that apply in a given situation (priorities can
change given different circumstances).

A policy-based delegation system requires at least three
components: (1) a representation for specifying the
“policy” in terms of the value of various partial world
states, (2) a user interface for allowing one or more users to
input their policies and, if desired, view results of policy
application, (3) a computational framework that allows
evaluation of a current situation or hypothetical proposed
situation against the expressed policy, and (4) an engine
that allows application of the policy either to the control of
resource application or to a visualization of sensed data
about a current situation or projected data about a future or
simulated situation.

In the development of a policy-based delegation system for
communications resource usage, we were striving to
provide a means for commanders to tell an automated
network management system their “policies” for how to
prioritize the use of communications bandwidth in order to
satisfy the most important requests most fully. Note,
however, that “most important” was not a static concept but
rather changed across commanders and situations. For this
application, we developed a policy representation that
allowed commanders to assign, a priori and abstractly, a
value to various kinds of communications requests. As
communications requests then came in from various field
units or operators, they could be matched against the
commander’s policy statements and a value assigned to
each of them. This value was then used by a resource
optimizing controller to determine which requests should
get network bandwidth with what priority.

This process is conceptually illustrated in Figure 3. Each
commander’s policy is created as a set of statements (as
illustrated at the top of the figure) each of which assigns an
importance (or value) function to a defined sub-region in a
multidimensional space. In this case, individual policy
statements are illustrated abstractly as defined by the
dimensions: owner (Wi) who is the originator of an
information request, source (Si) which is the location of the
information to be transmitted, destination (Di) which is the
destination to which the information is to be transmitted
(i.e., a specific machine or IP address, which need not be
that of the owner), and description of the information
content (Ci) to be transmitted, along with an importance
assigned to that policy statement. For example, policy
statements might be based on a single dimension
(‘Requests for weather information [Content] get
Importance 0.2’) or on a combination of dimensions
(‘Requests owned by the Zone Reconnaissance task
[Owner] for weather information [Content] from Satellite
476B [Source] to 3rd Air Calvary Division [Destination]
get Importance 0.8). If the policy element regions are
allowed to overlap, then they must be sequenced (typically
from most to least specific) to indicate the order of
precedence.

In practice, the commander’s policy is then used to assign
an importance value to any incoming request for
communication resources (illustrated conceptually in the
lower portion of Figure 3). Each policy statement defines a
region within the multidimensional space defined by the
parameters from which policy statements can be built.
We’ve represented that multidimensional space as a simple
plane in the figure, and then defined multiple regions
within that space with an assigned value for each to
represent the valuation contained in each separate policy
statement. Each incoming request is matched against the
sequenced series of policy statements the commander has
made. The first policy element that matches the request
determines the importance of that request and informs an
automated resource manager about the relative value of
satisfying that request.

While conceptually simple, many useful functions can be
performed within this framework. First, it is not necessary
that importance be construed as an all-or-nothing value as it
is depicted in Figure 3. Instead, we have explored more
sophisticated representations that allow the requestor to
provide a description of how s/he wants the information
requested along several dimensions (e.g., freshness,
reliability, initiation-time, accuracy, resolution, scope, etc.)
Then the resource management system can treat the
importance value as a maximum number of value “points”
to be awarded for satisfying the request perfectly, while
still awarding itself points for partial satisfaction. This
permits more sensitive management of resources to be
performed.

Second, it is rarely the case that a single commander or
supervisor is the only one who may have an interest in
dictating policy about how subordinates behave. Rather,
each commander must allocate his/her resources in
accordance with the policies of those above. We support
this requirement (Figure 4) by modeling policies that exist
at nodes in a command hierarchy. As requests come in,
they are matched against the commander’s policy that
governs them (command node N1.2.2 in Figure 4), but
must then also be matched against his/her commander’s
policy (i.e., the command node in charge of node N1.2.2 in

.1

Cmdr N’s Policy

Request with
importance .5

Match

Owner Source Destination Content Importance

({W1} {S1} {D1} {C1} .9)
({W2} {S2} {D2} {C2} .8)
({W3} {S3} {D3} {C3} .5)
(* * * * .1)

.9

.8
.5

Incoming request

Separate Policy Elements in Cmdr N’s Policy

Figure 3. Representation for a policy for network
bandwidth prioritization.

Figure 4—node N1.2)—and so on, up the chain of
command (i.e., node N.1 in Figure 4). We allow each
commander to stipulate how this matching policy element
should be resolved with the subordinate commander’s
matching policy element: as a ceiling or floor value, or
linear or weighted combination of the values. Even when a
single well-defined chain of command does not exist the
policies of different “interest groups” may be represented
with relative weights on the importance values that each
would assign to a potential outcome. We have used this
approach (Dorneich, et al., 2004) in representing the many,
varied interests which impact the decisions of a commercial
airline’s dispatch operators (e.g., crew scheduling,
maintenance scheduling, marketing, passengers, finance,
etc.).

Folding this policy-based form of delegation interaction
(method 5) into an overall architecture that includes the
other methods is not as difficult as it might first appear.
While we have not yet developed a system that
accomplishes this, the way forward is clear. Policy is
simply an assignment of value or priority to the goal states
and tasks in the other delegation interaction types.
Priorities for resource usage and the desirability of various
outcomes stem, after all, from a superior’s goals and plans
for subordinates (whether human or machine). If, for
example, I task a given unit under my command to perform
an Airfield Denial task, and I know that their task is the
most important of all concurrent tasks to me, then I have
effectively said that giving them the resources they require
to perform that task (specific aircraft, munitions, fuel,
communications bandwidth, etc.) represents the highest
value to me. In other words, delegation interactions that
provide specific goals, plans, stipulations and constraints to
subordinates carry with them specific policy implications.
Whenever a commander can provide more specific
delegation instructions, this will generally get him/her
closer to the results desired from his/her subordinates, but
this will not always be the case. Hence, the ability to
stipulate more abstract policies should probably be
preserved in a complete delegation system as a means of
covering unexpected and unfamiliar situations.

Conclusions and Future Work

While the work described above represents a general
framework for delegation interactions suitable for human
interaction with smart automation of various kinds and,
perhaps uniquely, suitable for the tasking of multiple
UMVs, our work has thus far progressed only to the proof
of concept stage. As noted above, we have currently
implemented only portions of the various methods of
delegation that a fully flexibly delegation interface might
benefit from, and have done so in disparate systems.
Furthermore, our proof of concept implementations have
not yet afforded us the opportunity to do rigorous human in
the loop evaluations to demonstrate improved performance,
if any.

These situations are changing, however. We are currently
engaged in exploration of human interaction with Playbook
-like interfaces (Parasuraman, et al., in press) and are
performing work on a Playbook interface for real-time
interactions with heterogeneous UMV assets by operators
who may be concurrently involved in other critical tasks
(under a DARPA-IXO SBIR grant-- cf. Miller, et al., 2004;
Goldman, et al., 2005). One of the goals of this work will
be to develop task libraries and task construction tools and
interface concepts to move the delegation interface work
along toward implementation and utility.

Of course, anyone who has worked with a poorly trained,
or simply mismatched, subordinate is well aware that it is
possible for delegation to cause more work than it saves.
Our challenge, and that of others who adopt a delegation
framework for human interaction with complex and largely
autonomous automation, will be to ensure that this does not
happen--through judicious use of technology and
substantial usability analysis and testing. On the positive
side, however, we benefit from the knowledge that
delegation approaches to interaction with intelligent yet
subordinate actors have worked repeatedly throughout
history and, particularly, the history of warfare. As
automation in the form of UMVs increasingly takes its
place as one of those actors we want to be intelligent,
capable and effective yet remain subordinate, we will
increasingly need methods for enabling it to interact with
us in the ways that we trust and are familiar with. Since
delegation is the primary method that fits that bill, it only
makes sense to pursue delegation approaches to human
interaction with automation.

Acknowledgements

An earlier version of this paper was presented at the NATO

Research and Technology Organization Special Workshop
on Uninhabited Military Vehicles, June 10-13, 2003;
Leiden, Holland.

N1.2

N1.2.1 N1.2.2

N1.1

N1

su
pports

Assigned Importance =.9

Assigned Imp. =.5
Resolved Imp. (use superior) = .5

Assigned Imp. =.7
Resolved Imp. (average) = .6

Request

Figure 4. Applying and resolving policy across echelons
in a command hierarchy.

Many people have contributed to the ideas presented

above. A partial list includes Robert Goldman, Harry

Funk, Michael Pelican, Dave Musliner, Karen Haigh,

Michael Dorneich, Stephen Whitlow, John Allen, and Jim

Richardson.

References

Dorneich, M.C., Whitlow, S. D., Miller, C. A., Allen, J. A.

2004. A Superior Tool for Airline Operations. Ergonomics

in Design, 12(2). 18-23.

Funk, H., Miller, C., Johnson, C. and Richardson, J. 2000.

Applying Intent-Sensitive Policy to Automated Resource

Allocation: Command, Communication and Most

Importantly, Control. In Proceedings of the Conference on

Human Interaction with Complex Systems. Urbana-

Champaign, Ill. May.

Goldman, R.P., K. Haigh, D. Musliner, & M. Pelican.
2000. MACBeth; A Multi-Agent, Constraint-based
Planner. In Notes of the AAAI Workshop on Constraints

and AI Planning, Austin, TX, pp. 1-7.

Goldman, R., Miller, C., Wu, P., Funk, H. and Meisner, J.
2005. Optimizing to Satisfice: Using Optimization to
Guide Users. In Proceedings of the American Helicopter

Society’s International Specialists Meeting on Unmanned

Aerial Vehicles. January 18-20; Chandler, AZ.

Klein, G. 1998. Sources of Power: How People Make
Decisions. Cambridge, MA; MIT Press.

Miller, C., Pelican, M. and Goldman, R. 2000. “Tasking”
Interfaces for Flexible Interaction with Automation:
Keeping the Operator in Control. In Proceedings of the
Conference on Human Interaction with Complex Systems.
Urbana-Champaign, Ill. May.

Miller, C., Funk, H., Goldman, R. and Wu, P. 2004. A
“Playbook” for Variable Autonomy Control of Multiple,
Heterogeneous Unmanned Air Vehicles. In Proceedings of

the 4th Conference on Human Performance, Situation

Awareness and Automation. Daytona Beach, FL; March

22-25.

Parasuraman, R., Galster, S., Squire, P., Furukawa, H. and
Miller, C. In press. A Flexible Delegation-Type Interface

Enhances System Performance in Human Supervision of
Multiple Robots: Empirical Studies with RoboFlag.
Accepted for inclusion in J. Adams, guest ed. IEEE

Systems, Man and Cybernetics—Part A, Special Issue on

Human-Robot Interactions.

Sewell, D. and Geddes, N. 1990. A plan and goal based

method for computer-human system design. In D. Diaper,

ed. Human-Computer Interaction—INTERACT ’90.
Elsevier Science; North-Holland. pp. 283-288.

