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Abstract  

As Unmanned Air Vehicles (UAVs) become more common, several core challenges emerge including the need for single 
operators to control, or perhaps more accurately, to request services from, multiple UAVs without the degree of workload, 
specialized training and platform-specific control interfaces which characteristize of current UAV operation.  A challeng-
ing problem involves the dismounted, small unit soldier who may need services from a range of vehicles while in 
challenging situations such as urban combat.  We are developing an approach to UAV control that addresses these 
challenges.  We use the metaphor of a sports team’s playbook to enable both quick and complex, variable-initiative 
control of a variety of UAVs—the user of our Playbook “calls a play”  which need not (but may, if the user desires) specify 
what type or how many UAVs should be used to satisfy it.  We describe the Playbook-enhanced Variable Autonomy 
Control System (PVACS), which combines SIFT’s Playbook architecture and Geneva Aerospace’s Variable Autonomy 
Control System (VACS). We illustrate the capabilities and operations of PVACS in an extended walkthrough example 
involving a request for Overwatch—continued surveillance—of an urban intersection and the development and execution 
of a plan to satisfy that request using multiple, heterogeneous UAVs. 
 

Introduction   

As Unmanned Air Vehicles (UAVs) become more com-
mon in planning, procurement and use, several core chal-
lenges emerge.  First, current ratios of multiple operators 
per vehicle will be unacceptable the near future.  Second, 
current practices of providing a dedicated workstation for 
each vehicle or vehicle type will also be unacceptable 
when individuals must interact with multiple, heterogene-
ous vehicles.  Third, as UAVs become more available to 
lower echelons, new usability and training requirements 
will be imposed.  Not all operators will spend months train-
ing to be rated for a vehicle, nor will they devote full atten-
tion to vehicle management.  Instead, UAVs must be con-
trollable with much less training and while concurrently 
engaged in many other activities—even taking fire.   
 
The authors are developing an approach to UAV control 
that will address the above challenges.  We use the meta-
phor of a sports team’s playbook to enable both quick and 
complex variable-initiative control with a variety of 
UAVs—the user of our Playbook “calls a play”  which is 
akin to requesting a service from one or many UAVs which 
may or may not be specified in the request.  We are testing 
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this approach in the Playbook-enhanced Variable Auton-
omy Control System (PVACS) project, so-called because it 
combines SIFT’s prior work on Playbook interfaces and 
Geneva Aerospace’s prior work on the Variable Autonomy 
Control System (VACS).  

Delegation via Playbooks 

We begin with the realization that the problem of effec-
tively making use of intelligent, semi-autonomous agents to 
satisfy one’s needs and desires, without undue added work-
load or attentional demands, is hardly a new one in human 
history.  In fact, human supervisors of human subordinates 
have been solving this problem for millennia.  Humans 
generally don’ t control other human agents at the level of 
individual movements—roughly analogous to the current 
state of affairs where UAVs must be controlled via joystick 
commands—and in fact, there are strong reasons why this 
is never an effective management strategy (e.g., [1]).  In-
stead, human supervisors delegate tasks to subordinates, or 
they request services that subordinates determine how best 
to satisfy.  In either case, some objective or partial plan is 
communicated to the subordinate, perhaps along with con-
straints on how that objective may be achieved, but simul-
taneously some authority/autonomy for exactly how to 
achieve that objective in context is also given to the 
subordinate.   
 
When interaction with subordinates is effective it is be-
cause the effort the supervisor requires to request, instruct, 
oversee and manage the subordinate(s) is less than s/he 



would require to do the task without them, and/or because 
more tasks can be accomplished faster or better via delega-
tion than would otherwise be the case.  This saving or ex-
tending of the supervisor or requestor’s effort comes about 
specifically because the s/he does not have to plan and 
execute every detail of the desired behavior at the lowest 
levels of control available in the system.  Generally, more 
efficiency will be achieved the greater the degree of re-
sponsibility for planning and execution the requester can 
reliably delegate to his/her subordinates.  Where the reli-
ability of delegation (in terms of having the desired out-
come achieved via a desired method) breaks down, super-
visors can actually incur greater workload than if they had 
done the task themselves—because not only did they have 
to instruct and monitor the subordinate in the first place, 
but now they have to repair errors as well.   
 
Domains with a long history of attention to how to com-
municate intent effectively while simultaneously minimiz-
ing supervisor workload include business, construction, 
military command and control and sports teams.  The latter 
two are of special interest to us for the designing of a con-
trol architecture for UAVs.  Many sports teams (particu-
larly, but not exclusively, American football teams) 
achieve complex forms of coordinated behavior by means 
of a “playbook” .  A playbook contains predefined patterns 
of behavior that are understood by all participants on the 
team.  By means of a single, short play name or label, the 
quarterback or team captain can express his/her intent for a 
large number of independent actors to behave in a dynami-
cally-changing yet coordinated, focused, constrained and 
effective fashion.  Furthermore, plays can serve as a shared 
point of reference from which to build novel variations 
with minimal effort.  But it is worth noting that plays also 
require that the actors be capable of interpreting and apply-
ing the play to the context that exists when the play is 
called.  This may be as simple as deciding whether to step 
left or right depending on what direction the opponent is 
coming from in a football play, but it precludes completely 
rote behavior.  Actors must be allowed some autonomy 
about how to perform their delegated roles if there is to be 
any efficiency gain in the system.   
 
Service requests are like play calling in all but the degree 
of authority wielded by the requestor.  A supervisor is 
delegating tasks or goals to subordinates who are, pre-
sumably, under his or her control and have no other super-
visor concurrently tasking them.  A requester of service 
may use the same vocabulary of goals and tasks, but since 
his/her “commands”  are not going to subordinates that are 
under his/her full and exclusive control, the requester has 
somewhat less authority than the true supervisor—and 
somewhat less guarantee that the request will be satisfied 
completely.  This tradeoff may be useful, however, espe-
cially if (as is the case for many proposed battlefield 
UAVs) the subordinates are in high demand and can be 
used more effectively overall if they are shared among 
multiple users.   

A Playbook Architecture 

We have been developing a “playbook”  approach to the 
control of UAVs that strives to build the same kind of rela-
tionship between them and a human supervisor as exists 
between a captain and his/her team.  Figure 1 presents the 
basic architecture for our Playbook.  We will provide a 
brief discussion of the Playbook architecture here, fol-
lowed by a detailed walkthrough of a specific usage exam-
ple designed to illustrate both the user’s experience and the 
internal representation and reasoning of the Playbook in 
the remainder of the paper.   
 
Playbook consists of a user interface (UI) and an Artifi-
cially Intelligent Analysis and Planning Component (APC) 
that communicate via a shared model of the tasks that can 
be performed in a domain.  This task model is both hierar-
chically and sequentially organized allowing the stringing 
together of tasks or “plays”  in commandable sequences 
and/or drilling down within a given play to select alternate 
performance methods.  
 
Operators can interact with and request services from 
automation in highly sophisticated and flexible ways via 
Playbook.   Like the quarterback of a football team, a 
PVACS operator can command a very complex, very high 
level “play”—even one involving a heterogeneous mix of 
actors (vehicles)—via a fast and simple action.  Also like 
the quarterback, the operator can issue more specific re-
quests about individuals’  behaviors, albeit spending more 
time to “ flesh out”  the request, providing more instructions 
about specifically how it should be satisfied.   
 
The Playbook Analysis and Planning Component (APC) 
evaluates the feasibility of alternate methods of satisfying 
requested plays.  When given a high-level play request, the 
APC selects among various feasible methods, issues in-
structions to the VACS execution environment (see below) 
and monitors for necessary revisions during performance.  
When given lower-level, more specific and detailed re-
quests (such as a specific platform to use, a specific paths 
to be followed, or specific scan patterns to use), the APC 
reviews them for feasibility and either (a) reports when 
requested actions are infeasible, (b) passes ‘validated’  user-
requested plans to the execution environment and monitors 
their performance, or (c) fleshes out operator high level 
operator requests (like “Overwatch”) to an executable level 
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Figure 1.  General Playbook Architecture. 
 



(for example, choosing among available platforms, select-
ing waypoints for ingress and egress, identifying sensor 
steering parameters, etc.) within the constraints the opera-
tor has imposed.  
 
More details about the Playbook architecture and various 
UI designs are provided in [2]. In previous work, we have 
developed prototype playbooks for UCAV teams [3], Tac-
tical Mobile Robots [4], and the RoboFlag (robotic capture 
the flag) game [5].  The remainder of this paper will focus 
primarily on our current adaptation of the Playbook archi-
tecture to serve as a platform for controlling, and/or re-
questing services from, multiple heterogeneous UAVs in 
an urban combat context. 

VACS Control Execution Environment 

Playbook by itself is an environment for human interaction 
and planning and does not include the event handling and 
control capabilities necessary to execute missions on real 
(or realistically simulated) vehicles.  As in Figure 1, Play-
book must be integrated with a control architecture that 
provides these capabilities.  Geneva Aerospace’s Variable 
Autonomy Control System (VACS) provides a robust inte-
grated control architecture enabling a single operator to 
control multiple UAVs [6].   
 
The VACS architecture includes an Internet Protocol (IP) 
based network-centric communications package linking 
teams of UAVs and remote operator workstations. VACS 
fuses sensor and database information to autonomously 
adjust flight profiles to avoid terrain and mid-air collisions.  
Once VACS adjusts the flight profile, however, it relies on 
the human operator to decide if the mission plan must be 
revised (e.g., perhaps because time on target constraints 
have been violated).  Further, the human user must make 
all mission level decisions and interact with the various 
control levels.  
 
More details about VACS are provided in a companion 
paper in this volume [7].  Integration with Playbook ad-
vances VACS to higher levels of autonomy by providing 
automated means of developing and adjusting plans to 
achieve mission objectives.  Playbook possesses a hierar-
chical understanding of the operational intent and specific 
target tasking, and can provide high-level commands to the 
vehicle and sensor control systems following the command 
structure already in place in the VACS.  In essence, VACS 
provides a “ library”  of control execution behaviors from 
which plays, as well as more complex sequences of plays 
which form overall mission plans, can be composed.  The 
integrated Playbook + VACS (PVACS) capabilities are 
particularly relevant to projected operational concepts 
where busy and/or non-rated operators must supervise 
teams of heterogeneous vehicles. PVACS’ combination of 
very high level and variable autonomy control will allow 
busy operators to command sophisticated, coordinated 
behaviors simply and rapidly and/or allow operators with 
more time or training to impose highly specific commands 
to customize vehicle behavior to their exact needs. 

Extended Walkthrough Example: PVACS 
Control of Heterogeneous UAVs 

PVACS is being developed to enable a small unit soldier, 
with minimal training, to control or request services from 
multiple, heterogeneous UAVs while concurrently engaged 
in urban combat operations.  An example of PVACS op-
erations and functionality can be provided through an ex-
tended example scenario involving variable initiative, play-
like control of multiple, coordinated, heterogeneous UAVs.  
Our demonstration scenario involves a platoon commander 
engaged in urban operations who must coordinate multiple 
UAVs for sustained surveillance of a fixed location (e.g., 
an intersection) while simultaneously securing nearby 
buildings.  Since the soldier cannot devote sustained atten-
tion to managing the UAVs, they must operate largely 
autonomously.  Furthermore, the soldier might have little 
time to convey his or her intentions.  S/he can task the 
UAV team through PVACS by “calling”  a single, simple 
Overwatch play and providing a single parameter (the tar-
get area)—this constitutes a requested service which 
PVACS understands and will endeavor to satisfy through 
the best mix of vehicles available.  With our UI, this series 
of actions will be performable in under 15 seconds.    

Play Selection and Available Plays 
From the operator’s perspective, play calling can be an 
extremely simple, straightforward activity.  Not only does 
the platoon leader in our example not need extensive train-
ing to be “rated”  for control of a specific UAV, s/he may 
not know or care what kind of UAV will be used to satisfy 
the service s/he is requesting.  Instead, s/he will need train-
ing only in the specific UI available to call “plays”  and in 
the meaning of the various plays available to be called.  
This process will be further simplified by making use, 
where possible, of existing or intuitive human terminology 
for “plays”  to be executed.  
 
A “play”  is simply a named function or behavior for one or 
more UAVs to perform.  As such, plays may exist at finer 
and coarser levels—and more complex plays may be com-
posed from simpler plays.  The job of determining which 
degrees of freedom in play calling and play composition 
should be put in the hands of the human user vs. under the 
(sole) control of Playbook’s Analysis and Planning Com-
ponent (APC) is the job of a system designer.  There will 
be some plays that can only be activated by the human 
user, some that require human authorization, and (fre-
quently) some behaviors that exist at a level below that 
which the human has any interest, need or ability to control 
(e.g., low-level steering commands, fuel management be-
haviors, etc.) We will have more to say about the represen-
tation of plays below; for now, however, it is sufficient to 
regard a play as a high level behavior or action template 
that (a) can be requested by a simple command from a hu-
man user, (b) defines (or, perhaps more accurately, can be 
satisfied by) a range of possible behaviors from the subor-
dinate entities which will enact it, (c) decisions about how, 
exactly, to perform the play in the current context can, but 
do not have to be, constrained or actively made by the hu-



man user, but (d) any decisions which are not made by the 
human will be made by some mix of the APC and the exe-
cution environment.   
 
The set of plays that exist in any user’s Playbook must be 
determined by a designer and/or by the user (or his/her 
supervisors) prior to use.   Top-level plays are the highest, 
or coarsest level at which the user will be able to request 
services and, by virtue of being coarsest, they also repre-
sent the lowest workload (if not the most precise) way for a 
user to ask for a complex behavior.  Examples of top-level 
plays (emphasizing current and near-future movement and 
sensor capabilities of small unit UAVs) that we have ex-
plored for use by soldiers in this urban combat setting in-
clude: 

• Overwatch—sustained surveillance of a fixed tar-
get or area. 

• Track Target—sustained surveillance of a moving 
target 

• Area Recon—one-pass reconnaissance of an area 
• Route Recon—one pass reconnaissance of a route 
• Watch Perimeter—sustained surveillance of the 

perimeter of an area  
• Encircle Patrol—circle a target (such as a build-

ing) while maintaining a focus inward toward the 
center of the area (and, hence, the exits from the 
building) 

• Protect—surveillance of an area relative to my 
position as I move 

 
In our concept of operations, a Playbook operator will be 
able to “call”  any of these plays via a simple, small, port-
able and generic UI device such as a hardened PDA or 
laptop.  Play calling, at this top level, will generally be 
restricted to selecting the desired play from a short list of 
alternatives and, perhaps, providing a very limited number 
of user input parameters.  For example, to call Overwatch 
via a PDA-based UI such as the one illustrated in Figure 2, 
the user would select Overwatch from the pull-down menu 
on the first screen.  The Overwatch play allows the user to 
stipulate many different parameters in order to customize 
how the play is to be performed, but only one such parame-
ter is required—the target point or area for which surveil-
lance is to be provided.  This can be provided by reference 
to a map- or image-based display on the same device, as 
illustrated in the second screen in Figure 2.   
 
Other parameters that are critical to the performance of 
Overwatch may also be available at a top level, as shown 
in the third screen in Figure 2.  Smart default values (per-
haps configurable in a pre-mission briefing) should serve 
to minimize the user’s need to reset these variables, but 
they will always be available to him or her to enable a bet-
ter “ tuned”  version of the play.  Such parameters are 
roughly equivalent to a quarterback’s ability to “call sig-
nals”—present variants to a basic play template that are 
quickly and easily activated, if needed, but can otherwise 

be ignored.   Examples of such parameters for the Over-
watch play include: 

• Earliest acceptable “ time on target”—or, more 
specifically for this play, time when Overwatch is 
established and imagery is provided.  

• Earliest acceptable time off target 
• Latest acceptable time on target 
• Latest acceptable time off target 
• Stealth—to what degree should the resulting plan 

strive to keep the UAV(s) used covert? 
• Priority—what is the user’s perceived priority for 

this request? 
• Recipient—who should the output of this request 

be sent to (in addition to the requester)? 
• Platform/Vehicle—which of various possible 

UAVs should be used for this request 
• Sensor—which of various possible types of sen-

sors should be used for this request 
 
Note that while we can currently capture user inputs for all 
of these parameters, they are not yet all used in PVACS’ 
reasoning.  Current reasoning capabilities center on the 
various time and target parameters and the type of vehicle 
specified.  Future work with more sophisticated sensor and 
maneuver models may also include sensor resolution, im-
age distance and angle, etc., as user-settable parameters 
though we have not developed these capabilities as yet.   
 
For each of these parameters, the user may input a desired 
value.  If s/he does input a value, the value can be further 
designated as a “hard”  or “soft”  constraint.  A hard con-
straint is one that Playbook’s APC must meet if it is to 
have a valid plan.  If no plan can be found which satisfies 
this constraint, Playbook must report failure to the user.  
Soft constraints, by contrast, are simply “nice to haves” .  
Playbook will try to develop a plan that meets them, but 
retains the freedom to create plans which violate these con-
straints if necessary.  Furthermore, Playbook contains intel-
ligent default values for each of these parameters that are 
designed to frequently meet or be satisfactory to the user’s 
needs, thereby further reducing the need for user inputs.   
 
For example, the earliest acceptable time on target will 
generally be “ASAP”—a value that will be acceptable for a 
wide variety of instances where this play is called.  On the 
other hand, a reasonable default for the earliest acceptable 
time off target would be more likely to be dependent on the 
specific platforms and activities planned for a given unit 
and mission—and should probably be tuned as a part of a 
pre-mission briefing.  Still other defaults may be dynami-
cally composed based on intelligent heuristics present in 
the Playbook.  For example, the acceptable range of sen-
sors for use in the Overwatch play will be different if the 
play is commanded during the day than if it is commanded 
at night.   
 



 
Figure 2.  Conceptual PDA-based UI for Playbook Interactions by a Small-Unit Soldier involved in 
Urban Combat. 



Thus, for this example walkthrough, the user may request 
an Overwatch play to be performed for a designated area 
(e.g., an urban intersection) in as little as two user actions:  
(1) select Overwatch from the pull down play menu, and 
(2) designate the target area for the Overwatch on an asso-
ciated map screen.  If the operator has additional time 
and/or wishes to constrain the ways in which PVACS can 
satisfy the play, s/he may impose increasingly more de-
tailed restrictions—for example, stipulating the type of 
vehicle or sensor to be used, the duration etc., by stipulat-
ing and/or overriding the default parameters that come with 
the baseline version of the play.  In principle, but likely 
inappropriate for the simple PDA UI intended for field use 
as illustrated in Figure 2, still more detailed commanding is 
possible by “drilling down”  into the definition of the play 
itself and providing restrictions as to how Playbook can 
choose to satisfy the play requested.  To discuss this in 
depth, however, it will be necessary to provide some in-
formation about the representation of a play within Play-
book and about how playbook makes selections among 
available alternatives.  This will be presented in the next 
section below. 

Play Representation and Navigation 
Figure 3 provides a decomposition of the Overwatch play 
as it is represented in PVACS’ task representation.  All 
plays that PVACS knows about consist of a high-level task 
decomposition containing all the various known ways in 
which the task/play can be accomplished.  For example, the 
Overwatch play, as represented in Figure 3, must contain at 
least one sub-play called “Overwatch Sortie” .  The signifi-
cance of the diamond following Overwatch Sortie is that, 
after performing an Overwatch Sortie, the parent play 
(Overwatch) may iterate back through one or more subse-
quent instances of Overwatch Sortie, or it may not—a sin-

gle instance may be sufficient to complete the play.   
 
At any rate, drilling down further in the representation of 
Overwatch, we see that each instance of Overwatch Sortie 
may require an initial step of Obtain Aircraft (a task that 
can be satisfied by various methods including, perhaps: 
Requisition Loitering Aircraft, Request Launch, and Req-
uisition Engaged Aircraft, etc.).  Next, an Ingress task may 
be necessary and, if so, it will be composed of one or more 
Fly-To waypoint legs.  After Ingress is complete for the 
vehicle associated with this Sortie, the vehicle will Scan 
and may also maneuver, and these actions may repeat until 
some condition (generally, the time requirements for the 
parent Overwatch task) are completed.  Following Maneu-
vering and Scanning, the Sortie includes an Egress and a 
Destage task.   
 
Note that the user never sees (at least not during opera-
tions) this detailed view of the plan to be executed.  In-
stead, his or her interactions are with a simplified UI as 
illustrated in Figure 2 above.  Nevertheless, the meaning of 
the user’s actions has significance within the conceptual 
task decomposition described above.  More detailed inter-
actions would be possible via a larger format device used 
with more time and under less stressful conditions—for 
example, a laptop-based mission planning environment, 
perhaps integrated with FalconView,as illustrated in Figure 
4. 
 
Note also that new methods of achieving a play may be 
readily incorporated under this heading as they become 
available.  If, for example, an unmanned ground vehicle 
were available to provide surveillance of a (limited) ground 
area, this capability could be represented as, simply, an 
alternate branch or method of performing an Overwatch 
Sortie task and the Playbook Analysis and Planning Com-
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Figure 3.  A Plan Template for the Overwatch Play. 



ponent (APC) would reason over that branch in its attempt 
to develop a viable plan (as discussed below).    
 
This representation defines what “Overwatch”  means to the 
Playbook, the APC and, with minimal training, the human 
operator.  When the operator “calls”  an Overwatch play, 
s/he is telling the APC of Playbook that s/he wants to de-
velop a plan for the use of UAV resources that obeys the 
format of the template outlined in Figure 3.  Furthermore, 
when the operator provides additional constraints, s/he is 
telling the APC more about exactly which of the many pos-
sible plans which could satisfy the template are, in fact, 
desired.   
 
For example, when the operator stipulates the target for the 
Overwatch play as a specific intersection of streets for a 
specific period of time, Playbook’s APC knows that it must 
seek one or more sorties with available vehicles which are 
capable of arriving at that intersection by the latest accept-
able begin time, of remaining on target until the earliest 
acceptable end time, and of providing imagery of the target 
area to the requesting operator.  Furthermore, the times and 
positions for the Scan sub-tasks impose constraints that are 
propagated to the remaining portions of the task decompo-
sition, imposing in turn, constraints on the ingress and 
egress routes, and even on what vehicles may be chosen.  
In other words, whenever the user imposes a constraint on 

the range of acceptable plans, s/he reduces the degrees of 
freedom that the Playbook has for satisfying his or her re-
quest.  This will frequently be important to ensure that the 
right kind of Overwatch is provided—the kind that best 
meets the user’s needs.  It also serves as additional reasons 
for the user to avoid over constraining the play—because it 
may result in a situation where no achievable versions of 
the play meet the user’s request. 
 
Our goal is to provide a tasking environment in which the 
user may request a play or service without explicit regard 
to a specific, available UAV platform or a specific sensor 
type.  This both minimizes the users’  workload and training 
requirements and maximizes the ability to use available 
resources to meet ongoing users’  needs.  While users will 
have the opportunity to request a specific vehicle by class, 
equipment type or even specific tail number, they will not 
need to do so. 
 
There is another reason for avoiding equipment-based re-
quests.  We argue that when the user requests a specific 
vehicle type, s/he is short circuiting a process (perhaps out 
of convenience or need) whereby the bounding characteris-
tics of a range of acceptable solutions are provided.  When 
the user says “ I want a rotary winged UAV” there will gen-
erally be reasons for that request (e.g., s/he needs a stable 
image from a constant position).  By stating the conclusion 

User specifies play 
parameters

 
Figure 4.  A laptop-based interface for more detailed play calling interactions. 



rather than the motivation, s/he constrains Playbook’s rea-
soning more than is frequently necessary (e.g., there may 
be fixed wing UAVs equipped with point-synchronized 
cameras that would provide a stable image).  A request that 
stipulates that a rotary UAV must be used will rule out this 
potentially acceptable solution.  Even so, we recognize that 
users will frequently want to request specific equipment 
packages and we will support that within our Playbook UI.     
 
Next, we will describe how Playbook’s APC develops a 
plan within the specified request constraints provided by 
the user, as well as general execution constraints such as 
route, fuel and flight times. 

Planning in Playbook 
When Overwatch is commanded for a fixed target, Play-
book’s planning component attempts to create a valid, vi-
able path through the template outlined above—a path that 
corresponds to an executable plan to provide the service as 
requested by the human user.   Let us consider an example 
in which the user requests Overwatch of a specific urban 
intersection as illustrated in Figure 2 above.  The UI sends 
this request to Playbook’s Analysis and Planning Compo-
nent (APC) as an XML-RPC procedure call.1  The proce-
dure call contains the information specified by the user and 
the default parameter values that the user allows to remain 
in the play template.  
 
In this case, the request specifies Overwatch and includes 
the latest acceptable time on target (say, 0700) and the 
earliest acceptable time off target (0830).  Also in this 
case, the user has chosen not to specify any constraints on 
the vehicle or the sensor to be used.  This has the effect of 
leaving the APC more freedom to compose to create plays 
that meet the user’s stated needs, as we shall see below.  
On the other hand, if the user had made these specifica-
tions, Playbook’s APC would have attempted to create 
plans that met them, or would have reported it’s inability to 
do so.  In future work, we will strive to include specifica-
tions or constraints on the resolution and angle of the im-
agery to be provided  
 
Playbook’s Analysis and Planning Component (APC) is a 
Hierarchical Task Network (HTN) planning system.  The 
core of the APC is the open-source HTN planner SHOP2.  
An HTN planner generates mission plans by decomposing 
goals and tasks into subtasks.  In this case, we will see that 
the APC decomposes the Overwatch task into a sequence 
of primitive operations that can be executed by the VACS 
ground control station (under Playbook supervision). We 
have chosen HTN planning, as distinguished from so-
called “ first principles”  planners, because HTNs allow us 
to compose plans that agree with standard operating proce-
dures familiar to users  
 
                                                 
1 XML-RPC is a protocol that permits remote procedure 
calls encoded as XML and carried over HTTP.  It is a rela-
tively lightweight and easy-to-implement protocol for inter-
process communication.  See http://www.xml-rpc.com/. 

The APC contains a library of plan fragments that corre-
spond to the plays that the user can call.  This library is 
somewhat more detailed than the play template depicted in 
Figure 3 above.  For example, the play template in Figure 3 
shows that Overwatch can be performed by flying one or 
more Overwatch sorties.  The plan library contains specific 
information about how to decompose a single Overwatch 
play request into one or multiple sorties, as needed.   
 
Among other things, this library includes information about 
which plan fragments should be tried first and which 
later—either because they will do a better job of satisfying 
the request or because they can be investigated or devel-
oped more quickly.   This preference structure is currently 
somewhat simple, but can be made more sophisticated and 
intelligent as the system is developed.  In this case, for 
example, the plan fragment library includes search knowl-
edge that indicates that the single Overwatch Sortie variant 
should be tried before the Multiple Sortie variant, since 
this will require fewer resources and coordination de-
mands, thereby generally yielding a better overall plan. 
 
The APC begins to satisfy our example Overwatch request 
by first attempting to build a plan using a single Overwatch 
Sortie.  The APC consults its world model to discover 
which assets are available, and what constraints exist on 
their availability.  In our current simulations using Play-
book, this world model is an internal database defined in 
initial simulation configuration for each run.  In future 
networked contexts, the APC would get this information 
from tactical databases, Mobile Ad-hoc Networks 
(MANETs) or a Common Operating Picture which in-
cluded UAV information.  It is our assumption that such 
databases will include dynamic information about individ-
ual vehicles including type, equipment package, location 
and a simple availability window, indicating the time at 
which that becomes available and the time by which it must 
be relinquished by the user and returned to a destaging 
point (or otherwise relinquished from service).   
 
The APC first uses the availability information to see if any 
UAV could perform a single Overwatch Sortie that satis-
fies the users’  request, specifically a sortie that will put a 
UAV on target to deliver Overwatch imagery by 0700 and 
keep it there until 0830.  In this initial pass, detailed route 
planning (with associated waypoint development, fuel con-
sumption and travel time estimates) is not performed; pre-
liminary UAV suitability reasoning is based purely on the 
availability window reported as a part of the vehicle’s 
world state and on rough estimates of travel time.  Detailed 
route planning will be performed later (as described below) 
as a check on the plans that APC develops.  Note that the 
APC would be able to backtrack and correct itself if these 
preliminary estimates led it to believe that a UAV was suit-
able when, in fact, it was not.  From its initial world model, 
the APC learns that there are, let’s say, three UAVs avail-
able for tasking within its sphere of authority:  

1. a fixed-wing Dakota aircraft which is somewhat 
far away 



2. a GTMax rotorcraft1 which is nearby 
3. an Organic Air Vehicle (OAV) which, although 

very near, must be deployed by special request to 
its handling unit—a process that is estimated to 
take at least 45 minutes2. 

 
The APC attempts to satisfy the single Overwatch Sortie 
variant of the plan by finding a single vehicle whose avail-
ability window will enable it meet the time on target re-
quirements specified in the request.  We have also devel-
oped logic, for use in future versions of PVACS, that will 
automatically take into account the appropriateness of 
various sensor loads, for example, ruling out UAVs with-
out IR sensors for plays called at night.  In this case, all 
three vehicles have acceptable sensors for daylight video, 
but their availability is problematic.  The GTMax is 
nearby, but its limited endurance capability will not be able 
to satisfy the full duration of the user’s request.  While the 
Dakota has long endurance, it is far away and will not be 
able to meet the latest time on target requirement.  Simi-
larly, the OAV cannot be on target in time to meet the 
user’s request for Overwatch imagery.  Thus, none of the 
vehicles are capable of satisfying the parameters of the 
request by themselves and the APC is unable to develop a 
single Overwatch Sortie that will meet the customer’s 
needs with the available resources.    
 
Since the APC could not develop a viable plan for satisfy-
ing the user’s request via the Single Overwatch Sortie 
method, it next attempts to use the Multiple Overwatch 
Sortie method.  This method finds a UAV that can provide 
video of the target for a period that covers the latest ac-
ceptable time on target, and performs an Overwatch Sortie 
using that first UAV.  Then it determines how much of the 
user’s time period remains uncovered, and constructs a 
new Overwatch request for the remainder of the period.  
I.e., the Multiple Overwatch Sortie play says “ first fly an 
Overwatch Sortie that gives initial coverage, and then find 
a new Overwatch (which could itself by of a single or mul-
tiple sortie variant) that will satisfy the rest of the user’s 
request.”  
 
In our example, recall that the GTMax can begin providing 
Overwatch imagery by the user’s latest time on target re-
quirement, but cannot stay on target for the entire period, 
whereas the Dakota and OAV cannot reach the target in 
time.  So the APC will construct an initial Overwatch Sor-
tie for the GTMax, estimating how long it can stay over the 
target.  For the purposes of our example, let’s assume that 
the GTMax can stay over the target only until 0730. 
 
But now the APC will need to satisfy a new, recursive 
Overwatch request, this time to provide coverage over the 
                                                 
1 The GTMax is a version of the Yamaha RTMax rotary 
UAV that has been equipped with a specialized control 
package developed at Georgia Tech. 
2 We do not yet have a good model of OAV flight dynam-
ics in our simulation to enable Playbook reasoning and 
control—which is our primary reason for making it “sit 
out”  this portion of our walkthrough. 

target from 0730 until at least 0830.  Once again, the APC 
will try to find a single UAV that can perform an Over-
watch Sortie to satisfy the entire request.  This time, the 
APC will be successful, since the Dakota can be on target 
by 0730.   
 
This brings up the general issue of how APC knows to pre-
fer one method of satisfying the service request over other 
valid ones.  This is, in essence, the “common sense”  prob-
lem that is notoriously difficult for artificially intelligent 
systems to solve, and it represents a significant area for 
growth and tuning of our approach in the future.  The cur-
rent version of the APC relies on ordering heuristics to 
prefer one method to another.  As we mentioned above, the 
APC prefers plans that satisfy Overwatch requests with 
only a single sortie over those that use multiple UAVs.  In 
choosing UAVs for sorties, the APC currently prefers ro-
torcraft to fixed wing aircraft due to the stability of the 
image they can provide.  When multiple UAVs of the same 
type are available, the APC prefers vehicles whose avail-
ability window (taking into account travel time) more 
closely matches the needed scanning period so as not to 
waste available resources.   
 
Given these heuristics, the APC would attempt to satisfy 
the second Overwatch Sortie instance by first attempting to 
use the OAV (because, as a rotorcraft, its stable imagery 
would be preferred to the fixed-wing Dakota’s need to con-
tinuously circle the target area).  In this case, however, the 
OAV will not be ready for use when needed, thus that plan 
fragment fails and APC tries again with the Dakota which, 
this time, succeeds. 
 
The current heuristic approach is not an entirely satisfac-
tory solution to the problem of finding the best plan.  Diffi-
culties arise when composing different heuristics.  For ex-
ample, should the APC really prefer a single fixed-wing 
sortie to two rotorcraft sorties?  In future work, we will 
associate quality measures with different aspects of plans, 
and allow the APC to try to generate optimal plans.  We do 
not expect that full optimization will be feasible, for rea-
sons of tractability.  Instead, we expect to use a regime 
where the APC will quickly generate a plan that meets the 
hard constraints of the user’s request (a satisficing plan), 
and then opportunistically use available time to generate 
better plans using variations of branch and bound tech-
niques.     
 
For example, with better representations and reasoning 
about the capabilities of various sensors and the scan pat-
terns of the various aircraft, it would be possible for the 
APC to reason about which of the three aircraft described 
above would do the best job, in the circumstances, of 
providing imagery of a quality that the user needs and 
wants—and then to trade that benefit off (or allow the user 
to do so) against the potential cost of not providing the user 
with as full a time window of coverage as requested.  We 
note that the quality measures could, in principle, even be 
tuned for the specific mission or for user preferences in a 
pre-mission setting.  The user could also interact with the 
APC in its optimization phase to accept or reject plays that 
the APC feels are improvements.  This more sophisticated 



APC feels are improvements.  This more sophisticated 
reasoning capability might go on to realize that the OAV, 
once it becomes available, will provide a better, more sta-
ble and more constant image than the Dakota can and, 
therefore, add a third sortie to the plan to get better cover-
age later (as illustrated conceptually in Figure 5).   
 
In addition to decomposing the overall Overwatch request 
into two Overwatch Sorties, the APC must decompose the 
Overwatch Sorties into more primitive action sequences 
that can be executed by the VACS GCS. Execution will be 
discussed in more detail in the next section, but examples 
of executable behaviors include waypoint commands and 
sensing flight patterns.  More sophisticated UAVs could be 
expected to have more sophisticated execution behaviors 
and it might be possible for Playbook to create less de-
tailed plans for them.   
 
Consider how the APC plans the GTMax’s Overwatch 
Sortie.  First the APC must decompose the Ingress subtask.   
This part of the planning illustrates an important aspect of 
the planning process.  The first is the fact that the APC 
integrates constraints from ancillary information sources.  
In planning an Ingress, the APC will consult an external 
path planner that conducts an A* optimizing search over a 
discretized map to find a sequence of waypoints.  Note that 
alternate or special purpose planning algorithms could be 
incorporated in place of this search method with little prob-
lem.  The APC incorporates the waypoint specifications 
into a Fly Waypoint Sequence method. In doing so, it illus-
trates an additional aspect of the planning process:  as the 
APC builds the sequence of primitive actions (which, in 
general, includes concurrent actions of multiple UAVs), it 
reasons about the vehicle’s heading, 4D position, velocity, 
and the passage of time, projecting a state trajectory for 
each vehicle.  This is a relatively abstract series of states, 
linked by discrete transitions, as is appropriate for the 
APC’s role in constructing an outer loop controller for the 
UAVs. 
 
The plan developed by Playbook serves two purposes.  
First, it serves as program that will act as an outer loop 
controller to monitor execution, react to disturbances and 
replan in accordance with them.  Second, portions of the 
plan will be downloaded to the VACS GCS to preprogram 
the UAVs’  autopilots. The autopilots perform better when 
programmed with an entire route in advance (permitting 
later updates), rather than having the Playbook dole out 

waypoints one at a time.  An example sortie plan for one 
UAV, planned by Playbook and communicated to VACS, 
is illustrated in VACS Ground Control Station interface in 
Figure 6.  We will discuss Execution monitoring and revi-
sion in the next section below. 

Execution with Playbook and VACS 
The Playbook uses the developed mission plan in two dif-
ferent ways.  First, it extracts from the plan a sequence of 
waypoints that can be downloaded to the Variable Auton-
omy Control System (VACS) on each UAV.  All commu-
nications with the vehicles are mediated by the VACS 
Ground Control Station (GCS).  The Playbook Executive 
component also uses the mission plan as an outer loop con-
trol program, enabling it to issue commands to the VACS 
to perform discrete tasks, such as sensor steering, at appro-
priate times in the mission.  The GCS, in turn, relays vehi-
cle state information from the vehicle control systems to 
Playbook to enable plan monitoring, closed-loop control, 
and high-level exception handling and plan repair. 
 
Playbook relies on an execution environment such as 
VACS to provide intelligent default behaviors which 
would be assumed by a human tasking a subordinate—such 
as terrain avoidance, route following, collision avoidance, 
etc., not to mention such low level control behaviors such 
as turns, attitude adjustment, etc.  Similarly, Playbook does 
not take responsibility for unexpected conditions that may 
arise such as loss of communication or some forms of 
catastrophic vehicle faults.  These too are handled by 
VACS.   
 
Instead, Playbook provides mission-level command-
ing/requesting capabilities to the human operator—along 
with the intelligence required to make such commanding at 
a high level feasible.  As described above, Playbook’s 
planning process is carried out to a level of detail sufficient 
to allow the execution environment (i.e., VACS) to per-
form the plan with the selected vehicles.  In practice, this 
means that the lowest level of detail that the APC reasons 
about is within and, typically is the highest of, the levels of 
control behaviors the execution environment knows how to 
achieve.  Thus, the plans that Playbook passes to VACS 
are, essentially, a time-sequenced series of executable con-
trol behaviors—such as 4D waypoints, scan patterns, etc.  
Playbook generally does not pass a whole plan to VACS 
for execution, but rather passes those portions of the plan 
that are relevant in the current context.  This is done, in 
part, to minimize communication bandwidth. 
 
This interaction between Playbook and VACS also pro-
vides the opportunity to do higher level plan monitoring 
and repairs.  VACS, a sophisticated control execution and 
monitoring environment in its own right, is capable of mak-
ing many adjustments to “stay on plan” .  For example, en-
countering a headwind, VACS will automatically adjust the 
airspeed of the relevant vehicles to continue to maintain 
their adherence to 4D waypoints in the plan.  But VACS 
lacks a high-level understanding of the plan as a whole.  
For example, VACS by itself would be unable to under-
stand that its increase in airspeed will reduce the available 
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Figure 5.  Conceptual relationship between the various 
coverage options available in our scenario.  Coverage is 
indicated by the horizontal extent of a block; image qual-
ity by the height. 



fuel for time on target below the threshold assumed in the 
original sortie and will, therefore, require the planning of a 
subsequent sortie to fill in the resulting gap in the user’s 
requested service.   
 
Playbook receives continual updates from VACS about the 
state of the UAVs involved in Playbook’s plans.  This al-
lows not only the detection of conditions under which re-
pair plans are needed, but also the triggering of new plan 
phases. One example is the beginning of the scan phase of 
the Overwatch mission, at which point the UAV’s sensor 
must be steered to provide the desired target coverage.  
The Playbook will continually monitor the state of the ve-
hicles and compare them with plan-based world state ex-
pectations.  An Executive component within the APC will 
use this information to update future expectations and re-
ject disturbances to the plan.  The Executive will attempt to 
maintain the plan on track by making simple, local plan 
revisions.  When these local revisions are inadequate, it 
will reinvoke the APC to generate a new mission plan.  
Currently the Executive is relatively minimal, and concen-
trated on correct execution of the nominal mission plan.  
Enhancing the control capabilities of the Executive will be 
a major focus of the next phase of our work.  These capa-

bilities will include not only handling disturbances, but 
also incorporating ongoing user interactions (e.g., requests 
to tweak sensor targeting). 

Conclusions and Future Work 

The integration of the mission-level planning and manage-
ment capabilities of the Playbook approach with the execu-
tion environment of the Variable Autonomy Control Sys-
tem shows promise for addressing the critical UAV control 
needs of the small unit, dismounted soldier engaged in ur-
ban combat terrain as identified at the beginning of this 
paper.  Specifically, PVACS provides: 
 

1. the ability for a single operator to manage many 
UAVs in the satisfaction of his or her requests.  
In fact, the user need not be concerned with how 
many or what type of vehicles are used to satisfy 
requests means that a multiple aircraft plan in-
volves just as much workload on the part of the 
operator/requester as does a single aircraft plan. 

2. the ability for a single, generic workstation to be 
used to control multiple UAV platforms.  Again, 
the “play calling”  approach of PVACS enables a 
user to request services from a wide variety of 

 
Figure 6.  A PVACS-generated and managed route for a Dakota aircraft including ingress from position after takeoff, a 
racetrack observation position, and egress to a destaging point. 



unmanned platforms via the same interface plat-
form—and one that need not be dedicated solely 
to unmanned vehicle control.   We have illus-
trated how reasonably sophisticated plays can be 
requested, and refined, for a variety of UAVS via 
even a device as small and lightweight as a PDA, 
though obviously a larger display with higher 
resolution might afford greater control and visu-
alization opportunities. 

3. an opportunity to greatly reduce training re-
quirements for UAV control.  Because operators 
no longer need to know specific information 
about vehicle operating characteristics, training 
can be greatly reduced.  With PVACS, operators 
only need to learn the set of the plays or requests 
they can make—and these are driven by their op-
erational needs and even designed around their 
operating vocabulary, thereby further reducing 
training time. 

4. the ability to control multiple, heterogeneous 
UAVs while concurrently engaged in other activi-
ties.  Requesting services by calling plays greatly 
reduces the workload associated with planning 
for and controlling multiple UAVs.  It remains to 
be seen whether our approach would be usable 
and useful even under combat conditions, but our 
design makes such a scenario plausible, and will 
support the fine tuning of plays and UI capabili-
ties that might enable that goal. 

 
We have illustrated the ability to control (at least in the 
sense of requesting a specific service and tuning the fash-
ion in which that request can be satisfied) the behavior of 
multiple, heterogeneous UAVs in an urban combat envi-
ronment.  While the Overwatch play we used in our ex-
tended walkthrough is not the most complex form of coor-
dinated UAV behavior that might be desired, it is a start.  
The PVACS approach provides promise for enabling many 
more sophisticated behaviors and “plays”  which we will 
explore in future work.   
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