
INTRODUCTION

As systems become more complex, there is
often a need to control them via automation – that
is, using a device, machine, or system that ac-
complishes, fully or partially, a function that was
or could be performed by a human (Parasuraman,
Sheridan, & Wickens, 2000). Examples of this
trend are rife in domains ranging from aviation to
health care (Billings, 1997; Degani, 2004; Para-
suraman & Mouloua, 1996; Sheridan, 2002).

Automation provides clear benefits, and many
complex human-machine systems cannot be
operated successfully without it. Billings (1997)

documented payoffs of aviation automation in
four key areas: safety, reliability, economy, and
comfort. But automation also poses novel prob-
lems for operators. Poorly designed automation
can increase workload and training requirements,
decrease situation awareness, and, in extreme cir-
cumstances, lead to accidents (e.g., Billings,
1997; Casey, 1993; Degani, 2004; Parasuraman
& Riley, 1997; Reason, 1997; Sarter, Woods, &
Billings, 1997; Vicente, 2003).

This “double-edged sword” of automation use
(Bainbridge, 1983) has motivated repeated ques-
tions about what to automate to what level or
degree for optimal control, performance, and

Designing for Flexible Interaction Between Humans and
Automation: Delegation Interfaces for Supervisory Control

Christopher A. Miller, Smart Information Flow Technologies, Minneapolis, Minnesota,
and Raja Parasuraman, George Mason University, Fairfax, Virginia

Objective: To develop a method enabling human-like, flexible supervisory control
via delegation to automation. Background: Real-time supervisory relationships with
automation are rarely as flexible as human task delegation to other humans.
Flexibility in human-adaptable automation can provide important benefits, includ-
ing improved situation awareness, more accurate automation usage, more balanced
mental workload, increased user acceptance, and improved overall performance.
Method: We review problems with static and adaptive (as opposed to “adaptable”)
automation; contrast these approaches with human-human task delegation, which
can mitigate many of the problems; and revise the concept of a “level of automation”
as a pattern of task-based roles and authorizations. We argue that delegation requires
a shared hierarchical task model between supervisor and subordinates, used to dele-
gate tasks at various levels, and offer instruction on performing them. A prototype
implementation called Playbook® is described. Results: On the basis of these analy-
ses, we propose methods for supporting human-machine delegation interactions that
parallel human-human delegation in important respects. We develop an architecture
for machine-based delegation systems based on the metaphor of a sports team’s
“playbook.” Finally, we describe a prototype implementation of this architecture,
with an accompanying user interface and usage scenario, for mission planning for
uninhabited air vehicles. Conclusion: Delegation offers a viable method for flexible,
multilevel human-automation interaction to enhance system performance while
maintaining user workload at a manageable level. Application: Most applications
of adaptive automation (aviation, air traffic control, robotics, process control, etc.)
are potential avenues for the adaptable, delegation approach we advocate. We pre-
sent an extended example for uninhabited air vehicle mission planning.

Address correspondence to Christopher A. Miller, Smart Information Flow Technologies, LLC, 1272 Raymond Ave., St. Paul,
MN 55108; cmiller@sift.info. HUMAN FACTORS, Vol. 49, No. 1, February 2007, pp. 57–75. Copyright © 2007, Human Factors
and Ergonomics Society. All rights reserved.



58 February 2007 – Human Factors 

safety. Technologists tend to push to automate
tasks as fully as possible – the “technological im-
perative” (Sheridan, 1987). Human factors engi-
neers and others concerned with safety and the
human role in advanced systems have tended to
highlight the risks of increased automation (e.g.,
Perrow, 1986; Reason, 1997; Woods, 1996) and to
argue against the use of higher levels of automation.

An approach to human-automation relation-
ships that retains the benefits of automation while
minimizing its costs and hazards is needed. For
reasons to be discussed, we believe that such an
approach requires that neither human nor auto-
mation be exclusively in charge of most tasks 
but, rather, uses intermediate levels of automa-
tion (LOAs) and flexibility in the role of auto-
mation during system operations and places
control of that flexibility firmly in the human
operator’s hands. Operators need to be able to
delegate tasks to automation, and to receive per-
formance feedback, in much the same way that
delegation is performed in successful human-
human organizations: at various levels of detail
and granularity and with various constraints, 
stipulations, contingencies, and alternatives (see
Milewski & Lewis, 1999, for a review).

The use of intermediate LOAs as a way of
improving human-automation performance has
been proposed before (Endsley & Kiris, 1995;
Wickens, Mavor, Parasuraman, & McGee, 1998).
However, these previous proposals saw the choice
of an intermediate LOAas a design option (for an
exception, see Moray, Inagaki, & Itoh, 2000).
Once an LOAwas designed into a system, it could
not be changed during operation. In contrast, we
propose that the LOA should be adjustable dur-
ing system operations. This is consistent with the
adaptive automation concept (Inagaki, 2003;
Parasuraman, Bahri, Deaton, Morrison, & Barnes,
1992; Rouse,1988; Scerbo,1996). However, many
users may be unwilling to accept system-driven
adaptation, and any such adaptive changes may
increase the system’s unpredictability to the user
(Billings & Woods, 1994). Previous research has
demonstrated the effectiveness of adaptive auto-
mation, but in most of this work the automation
decides how to adapt its own behavior (Banks &
Lizza,1991; Colucci,1995; Dornheim,1999; Duley
& Parasuraman, 1999; Hancock, Chignell &
Lowenthal, 1985; Kaber & Riley, 1999; Maybury
& Wahlster, 1998; Miller & Hannen, 1999;
Parasuraman, 1993; Parasuraman, Mouloua, &

Hilburn, 1999; Prinzel, Freeman, Scerbo, Mikulka,
& Pope, 2003; Rouse, 1988; Scallen, Hancock, &
Duley, 1995; Scerbo, 2001). In contrast, we propose
that the human should remain in charge, deciding
how much automation to use. This approach has
been characterized as adaptable automation
(Opperman, 1994; Scerbo, 2001). We believe that
adaptable automation can lead to benefits similar
to those of adaptive automation while avoiding
many of its pitfalls.

In this paper, we propose and provide sup-
porting evidence for a delegation approach to
adaptable human-automation interaction. We
first examine traditional LOA characterizations
and discuss why a delegation approach demands
they be extended. We then present one specific
implementation of a delegation approach, based
on a sports team “playbook” metaphor. (The term
Playbook® as a human-automation interaction ap-
plication is a registered trademark of Smart Infor-
mation Flow Technologies, LLC.) We describe the
major characteristics of this theoretical framework
for supervisory control and outline the benefits for
human and system performance.

INTERMEDIATE LOAS

Costs of Automation Extremes

The promised, and frequently realized, benefits
of automation are generally sufficient to drive
developers away from the lowest LOA: purely
manual performance. The economic benefit of
automation is a strong, but not the only, motiva-
tor. Automation also offers substantial benefits 
in human workload reduction, improved perfor-
mance, and safety when it is properly designed and
used (Billings, 1997; Bright, 1955; Lorenz, No-
cera, Rottger, & Parasuraman, 2002; Parasuraman
& Riley, 1997; Parasuraman et al., 2000; Reason,
1997).

The case against always automating at the high-
est level technologically feasible has been harder
to make. Nevertheless, much research shows dis-
advantages from reducing the human role in 
system control and problem solving (Amalberti,
1999; Bainbridge, 1983; Billings, 1997; Lewis,
1998; Parasuraman & Riley, 1997; Parasuraman
et al., 2000; Rasmussen, 1986; Sarter et al., 1997;
Satchell, 1998; Sheridan, 1992; Wickens et al.,
1998; Wiener & Curry, 1980).

High LOAs, particularly of decision-making
functions, may reduce the operator’s awareness



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 59

of system and environmental dynamics (Endsley
& Kiris, 1995; Kaber, Omal, & Endsley, 1999).
Humans tend to be less aware of changes when
those changes are under the control of another
agent (whether automation or human) than when
they make them themselves (Wickens, 1994).
Mode errors also illustrate the impact of automa-
tion on awareness of system characteristics
(Sarter & Woods,1994,1995). Another major issue
influencing how effectively human operators use
automation is trust (Lee & Moray, 1992, 1994).
Operators may not use well-designed, reliable
automation if they believe it to be untrustworthy,
or they may continue to rely on automation even
when it malfunctions if they are overconfident in
it. Highly automated systems are prey to both
sorts of errors (Parasuraman & Riley, 1997).

If higher LOAs can result in complacency and
loss of awareness, it is perhaps not surprising that
they can also result in skill degradation. The
pilots of increasingly automated aircraft feared
this effect with regard to psychomotor skills such
as aircraft attitude control (Billings, 1997), but it
has also been demonstrated for decision-making
skills (Kaber et al., 1999).

Automation can also produce workload ex-
tremes, both low and high. That high LOAs could
leave an operator bored is, perhaps, understand-
able, but that automation can increase workload
is one of the “ironies of automation” (Bainbridge,
1983), given that many automated systems are
introduced as workload-saving moves. If auto-
mation is implemented in a “clumsy” manner
(e.g., if executing an automated function requires
extensive data entry when operators are already
very busy), workload reduction may not occur
where it is most needed (Wiener, 1988). Also, if
engagement of automation requires considerable
“cognitive overhead” (Kirlik, 1993; Parasuraman
& Riley, 1997) to evaluate the benefit of automa-
tion versus the cost of performing the task man-
ually, then users may experience greater overall
workload in using the automation.

The most significant effect of using too high a
LOA may be degraded overall performance of
the human-machine system. In an experiment
involving aircraft route planning, Layton, Smith,
and McCoy (1994) provided operators with one
of three levels of support, ranging from “sketch-
ing only,” in which the human sketched a desired
route and the system provided feasibility feed-
back, to “full automation,” in which a recom-

mended best route was automatically provided.
An intermediate level allowed the user to ask for
a route with specific characteristics, which the
system then provided if possible. Operators in the
intermediate and high automation conditions
were found to explore more routes because the
manual sketching condition was too difficult to
allow much exploration, and in the full auto-
mation condition users tended to accept the first
route suggested without exploring it or its alter-
natives deeply. Even when they did explore, the
system’s recommendation tended to narrow and
bias their search. Particularly in trials when 
the automation performed suboptimally (e.g.,
because it failed to adequately consider uncer-
tainty in weather predictions), humans using 
the intermediate LOA produced better overall
solutions.

Finally, high LOAs frequently lack user accept-
ance, perhaps particularly from the highly skilled
operators of complex, high-criticality systems
such as aircraft, military systems, and process
control. For example, Miller (1999) interviewed
several pilots and designers to develop a consen-
sus list of prioritized goals for a “good” cockpit
configuration manager for the Rotorcraft Pilot’s
Associate (Colucci, 1995), an adaptive automa-
tion system for managing information displays
and cockpit functions to conform to pilot intent.
Although the participants were generally enthu-
siastic about the technology, two of the top three
items on the consensus list were “pilot remains 
in charge of task allocation” and “pilot remains in
charge of information presented.” Similarly,
Vicente (1999) and Bisantz, Cohen, Gravelle, and
Wilson (1996) cited examples of human interac-
tions with even low-criticality automation, such
as food planning aids in fast-food restaurants,
showing that operators can become frustrated
when forced to interact with automation that
removes their authority to do their jobs in the best
way they see fit. Vicente (1999) summarized find-
ings from Karasek and Theorell (1990) showing
that jobs in which human operators have high
psychological demands coupled with low deci-
sion latitude (the ability to improvise and exploit
one’s skills for job performance) lead to higher
incidences of heart disease, depression, pill con-
sumption, and exhaustion.

More complete reviews of issues in human in-
teraction with automation may be found elsewhere
(Degani, 2004; Lee & See, 2004; Parasuraman &



60 February 2007 – Human Factors 

Riley, 1997; Parasuraman et al., 2000; Sheridan,
2002; Vicente, 1999).

Trade-Off Space for Effects of LOA

The findings summarized in the previous sec-
tion show that a mixture of human and auto-
mation involvement is frequently desirable, as
compared with the extremes of full or no automa-
tion. Thus, human-machine systems must be
designed for an appropriate relationship, allow-
ing both parties to share responsibility, authority,
and autonomy in a safe, efficient, and reliable
fashion.The effects of different human-automation
relationships over a task or function can be viewed
as a trade-off space. Figure 1 presents a concep-
tual view of this space over three relevant para-
meters:

1. The competency of the human-machine system:
Competency refers to correct behavior in context.
Therefore, a system becomes more competent
whenever it provides correct behaviors more fre-
quently or encompasses a greater number of con-
texts (e.g., by making finer distinctions between
contexts).

2. The mental workload for the human to interact with
the system: Workload refers to the attentional and
cognitive “energy” the human must exert to use the
system (Moray, 1979; Parasuraman & Hancock,
2001; Wickens & Hollands, 2000). Mental work-
load for the human is modeled because it is the
major constraint on the other two dimensions.

3. The unpredictability of the system to the human
operator: Unpredictability refers to the inability of
the human to know exactly what the automation
will do when. Unpredictability is a consequence of
the human not personally taking all actions in the
system – of not being “in control” directly and

immediately. Unpredictability is inversely related
to the workload required to maintain awareness of
the actions being taken by the system. It impacts
overall situation awareness by reducing awareness
of those specific aspects of the situation that pertain
to the understanding of the automation behaviors
and the system functions they control. Doing tasks
directly costs more workload, but the payoff is
greater awareness of how the task is being done. For
example, while driving a car, a driver’s awareness
of the behavior of the car, the roads, hazards, and so
forth will likely be very good, although his or her
workload will be comparatively higher than if
someone else were driving. Good system and inter-
face design, improved feedback to the user about
automation (Nikolic & Sarter, 2000; Parasuraman,
2000), increased reporting requirements, and good
hiring and training practices can all serve to reduce
unpredictability. However, in general, any form of
task delegation – whether to automation or other
humans – must necessarily result in added unpre-
dictability if it offloads tasks.

The triangle in Figure 1 illustrates the rela-
tionship, or trade-off space, among these three
dimensions. Other dimensions are certainly rele-
vant to achieving competency, including operator
skill, competencies and training, understanding
of the domain, fatigue, and environmental stres-
sors. We have emphasized these three dimen-
sions as both relevant to supervisory control
interactions and amenable to modification during
use or interaction.

Performance to a given level of competency can
be achieved only through some mix of workload
and unpredictability (Milewski & Lewis, 1999).
A user’s workload can be reduced by allocating
some functions to automation, but only at the
expense of increased unpredictability (at least

Figure 1. The spectrum of trade-off relationships among system competency, human workload, and unpredictabil-
ity. Adapted with permission from Miller, Pelican, and Goldman (2000), © IEEE.



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 61

with regard to those functions); conversely, reduc-
ing unpredictability by having the user perform
functions increases workload. It is sometimes
possible to reduce both workload and unpredict-
ability for a given level of competency through
better design, corresponding to shortening the
height of the triangle.

In this trade-off model, any increase in human-
machine system competency must affect the
human in that either (a) the added functionality
must be controlled by the human, resulting in
workload increases, or (b) it must be managed by
automation, resulting in unpredictability increas-
es. Opperman (1994) identified these alternatives
as “adaptive” and “adaptable” approaches to auto-
mation usage, respectively (see also Scerbo, 2001)
depending on whether the automation or the
human determines and executes the necessary
adaptations, respectively.

Another implication of the model is that these
approaches are the end points of a spectrum with
many alternatives in between, each representing
a different trade-off among workload, unpredict-
ability, and competency and each a different mix
of human and automation roles and responsibili-
ties. The range of alternatives may be constrained
by automation and/or human capabilities, but
within the feasible range, an alternative must be
selected. This selection is the process of choos-
ing an automation “level” or relationship – that
is, of selecting who will be responsible for which
tasks and what the performance constraints,
authorizations, and reporting requirements will
be (Parasuraman et al., 2000). When this division
of labor is done by a designer prior to operation,
it is part of the design for that system. When it is
done by a supervisor for a human team (either
prior to an operation or dynamically during it),
the process may be called “delegation” or, more
generally, “tasking” and task management.

Flexible LOA

Traditionally, the chief difference between
task delegation as performed by a supervisor and
task allocation performed by a system designer
has been that the supervisor had much more flex-
ibility in what, when, and how to delegate and
better awareness of the task performance condi-
tions. By contrast, the system designer had to fix
a relationship at design time for static use in all
contexts for the to-be-built system. More recent-
ly, adaptive automation (Banks & Lizza, 1991;

Miller & Hannen, 1999; Parasuraman, Mouloua,
& Molloy, 1996; Rouse, 1988; Scallen et al.,
1995; Scerbo, 1996) has been developed, which
chooses an LOA for tasks based on contextual
criteria such as location, workload, experience,
and physiological state. In such systems, the divi-
sion of labor between human and machine is not
fixed but, rather, varies under the control of the
automation.

The adaptive automation concept was pro-
posed about 30 years ago (Rouse, 1976). Only
recently, however, have technologies matured to
enable empirical evidence of its effectiveness 
to be provided. Studies have shown that adaptive
systems can regulate operator workload and en-
hance performance while preserving the benefits
of automation (Hilburn, Jorna, Byrne, & Para-
suraman, 1997; Kaber & Endsley, 2004; Moray
et al., 2000; Prinzel et al., 2003). The performance
costs described previously of certain forms of
automation – reduced situation awareness, com-
placency, skill degradation, and so forth – may
also be mitigated (Kaber & Riley, 1999; Parasura-
man, 1993; Parasuraman et al., 1996; Scallen et
al., 1995), although if adaptive systems are imple-
mented “clumsily,” performance can be even worse
than with fully manual systems (Parasuraman et
al., 1999). For a recent review of adaptive auto-
mation research, see Inagaki (2003). Adaptive
aiding systems have been successfully flight 
tested in the Rotorcraft Pilot’s Associate (Dorn-
heim, 1999).

Adaptive automation is truly “adaptive” in
Opperman’s (1994) sense because it chooses the
LOAto apply. By contrast, a supervisor’s task del-
egation within a team is more nearly “adaptable”
(Cooke, Salas, Cannon-Bowers, & Stout, 2000)
because the supervisor can choose which tasks to
give to a subordinate, how much to dictate about
how to perform subtasks, and how much attention
to devote to monitoring, approving, reviewing,
and correcting task performance.

This ability to delegate tasks to subordinates
is clearly a powerful form of organizing and per-
forming work. It is also deeply familiar to any-
one who has worked in a team, especially in a
supervisory setting. As we will describe, we have
sought to provide delegation-like interactions for
adaptable control over flexible automation.
Before presenting that work, however, we must
first define a “level of automation” and then
argue for an extension to traditional definitions to



62 February 2007 – Human Factors 

support delegation-based approaches to supervi-
sory control.

CHARACTERIZING LOAS

To discuss alternative forms of automation, a
scheme for characterizing roles and responsibil-
ities is helpful. Such characterizations have tra-
ditionally been made in terms of LOAs: defining
a spectrum of possible relationships ranging from
full human to full automation control.

Prior Taxonomies for LOAs

Bright (1955), perhaps the first to propose
such a spectrum of LOA, viewed automation as
evolving through 17 levels of competency and
noted that intermediate stages might well de-
mand greater human workload, skill, and training
requirements than lower levels. Sheridan’s (1987;
see also Sheridan & Verplank, 1978) seminal 
definition of supervisory control included the
provision that control automation allow the
human to behave as if he or she were interacting
with an intelligent, human subordinate – in Sheri-
dan’s (1987) words, “setting initial conditions
for, intermittently adjusting and receiving infor-
mation from a computer that itself closes a control
loop (i.e., interconnects) through external sen-
sors, effectors, and the task environment” (p.
1244). Sheridan and Verplank (1978) described a
10-point spectrum of automation levels in which
the end points are full control autonomy for the
human (essentially no role for automation) and
vice versa. The intermediate levels in this spec-
trum, then, represent alternative forms of super-
visory control interactions. A version of this list
is shown in Table 1.

A problem with unidimensional models of
human-automation relationships is that they are

ambiguous about the application domain of the
relationship. Parasuraman et al. (2000) noted that
Sheridan’s (Sheridan & Verplank, 1978) levels
referred mainly to automation that makes deci-
sions, offers suggestions, and/or executes actions.
There are, however, other jobs automation can
do: for example, sensing and analyzing informa-
tion to detect situations of interest, without nec-
essarily offering any advice on what to do with
the information. Parasuraman et al. (2000) ap-
plied a simple, stage model of human informa-
tion processing to arrive at four functions that
must be accomplished to perform most tasks: (a)
information acquisition, (b) information analysis,
(c) decision and action selection, and (d) action
implementation.

Because these functions can be performed by
either human or automation in various mixes, in
effect Parasuraman et al. (2000) added a second
dimension to Sheridan’s (Sheridan & Verplank,
1978) spectrum – that of the function or task the re-
lationship is defined for. Most human-automation
systems can be characterized by a mix of LOAs
across these four functions, as in Figure 2. One
system (System A) might be highly autonomous
in information acquisition but comparatively low
on the other functions, whereas a second (System
B) might offer a high LOA across all four func-
tions. For example, some flight-booking Web
sites currently provide a high LOA for infor-
mation acquisition – searching across multiple
airlines and other Web sites – and a few also 
perform some information analysis (sorting
flights by their cost or proximity to desired depar-
ture times). None currently provides specific rec-
ommendations, much less actually executes
(autonomously) the ticket purchase, but these
capabilities are easily envisioned and technolog-
ically feasible.

TABLE 1: Levels of Automation

1. Human does it all
2. Computer offers alternatives
3. Computer narrows alternatives down to a few
4. Computer suggests a recommended alternative
5. Computer executes alternative if human approves
6. Computer executes alternative; human can veto
7. Computer executes alternative and informs human
8. Computer executes selected alternative and informs human only if asked
9. Computer executes selected alternative and informs human only if it decides to

10. Computer acts entirely autonomously

After Sheridan and Verplank (1978).



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 63

Extending LOAs

An implication of the Parasuraman et al.
(2000) Levels × Functions model is that a parent
task can be decomposed and that a single auto-
mation level need not be applied homogenously
across the subtasks. However, in this model a par-
ent task is decomposed into abstract subfunctions
based on information-processing stages, whereas
other decomposition methods could provide more
insight into how a task may be performed. Alter-
natives include (a) finer-grained functional decom-
positions such as operator functional modeling
(Mitchell,1987),Goals-Operations-Methods-Scripts
(GOMS) models (Card, Moran, & Newell, 1983),
and Plan-Goal Graphs (Geddes, 1989) that stress
the subfunctions causally required to achieve a
parent, and/or (b) sequential process models such
as Program Evaluation and Review Technique
(PERT) or Critical Path Method charts (e.g., Mar-
tinich, 1996) and Petri nets (Murata, 1989) that
stress the temporal ordering and duration of sub-
functions. Such decompositions are inherently
hierarchical and may proceed through any num-
ber of levels to some primitive “stopping” level
(Diaper, 1989) that may be imposed by biology,
physics, or, more commonly, the purpose of the
decomposition.

Thus, although the two-dimensional LOAmod-
el offered by Parasuraman et al. (2000) represents
a major advance over earlier unidimensional
models, it arguably does not go far enough. The

subdivision of a parent task into four information-
processing phases represents only a single level
of decomposition into abstract task categories. In
practice, tasks are accomplished by hierarchical-
ly decomposable sequences of specific activities:
the parent task’s subtasks. Automation may be
applied differently to every subtask constituting
the parent task. Thus, the profile of automation
levels sketched in Figure 2 could stretch instead
over as many subtasks and levels as one wants or
needs to divide a parent task into.

In fact, the relationship between automation
“level” and task decomposition is more complex
than this. As is well understood (Billings, 1997;
Parasuraman et al., 2000; Woods, 1996), automa-
tion does not merely shift responsibility for tasks
but can change their nature as well. In a task
decomposition, this means that some subtasks
may be eliminated while others are added. This
implies that there will generally be multiple alter-
nate decompositions depending on, among other
things, what LOA is used. Each alternative con-
stitutes a different combination of human and
automation subtasks and, thus, a different method
of accomplishing the parent task.

When one identifies an LOA for a complex
system using Sheridan’s (Sheridan & Verplank,
1978) dimensions, one is in principle identifying
something like an average or modal level over the
subtasks the human-automation system accom-
plishes. Similarly, when one uses a Levels × Stages
model such as in Parasuraman et al. (2000), one

Figure 2. Levels of automation by information-processing phase for two systems. Used with permission from
Parasuraman, Sheridan, and Wickens (2000), © IEEE.



64 February 2007 – Human Factors 

is performing an abstract and coarse-grained
decomposition of the parent task into subtasks
clustered by information-processing stage. As-
signing levels by subtask stages offers more sen-
sitivity than assigning them only to the parent
task, but it is still an abstraction. In practice, one
could identify the specific subtasks to be per-
formed and represent an automation level for
each of them.

Why would one want to? More and finer-
grained subtasks are not necessarily better, and in
fact Parasuraman et al. (2000) explicitly stated
that they chose a four-stage model to simplify
design considerations. Precision may be inher-
ently desirable for some purposes (e.g., training
and detailed design), but our interest is in sup-
porting flexible task delegation. As we discussed,
for any intermediate LOA for a task, there are
roles for both humans and automation in its sub-
tasks, yet someone must coordinate those roles.
Insofar as human supervisors are required to
manage, or at least be aware of, that division of
labor, they must understand the decomposition 
of the task and of the allocation and coordination
requirements among its subtasks. Supervisory
control is a process of task delegation, and dele-
gation requires task decomposition.

Task decomposition seems to reflect the way
humans delegate responsibilities to subordinates
and reason about task performance when receiv-
ing feedback (Klein, 1998). Hierarchically decom-
posed task models, which embody both functional
and sequential relationships among tasks, may in
fact be an accurate representation of the mental
model (Gentner & Stevens, 1986) that supervisors
and workers in supervisory control domains use
and share (Stout, Cannon-Bowers, Salas, & Milan-
ovich, 1999), but we are not yet making so strong
a claim. Instead, we claim merely that such mod-
els form a useful structure for discussing work in
a domain and, therefore, a useful vocabulary for
issuing supervisory control instructions, reason-
ing about work to be performed, and organizing
reports on the progress of such work.

In short, delegation is a process of assigning
specific roles and responsibilities for the subtasks
of a parent task for which the delegating agent re-
tains authority (and responsibility). Furthermore,
communication about intent to subordinates is
frequently in terms of specific goals, methods,
and/or constraints on how, when, and with what
resources the subtasks should be accomplished

(Jones & Jasek, 1997; Klein, 1998; Shattuck,
1995). For these reasons, it is essential that those
subtasks be modeled explicitly if delegation
interactions are to occur.

Using Extended LOA in Design

The realization that an LOA is a defined com-
bination of roles and responsibilities between
human and automation for a task to be performed,
and that that task can generally be decomposed
into subtasks with their own LOAs, opens the
doors for more explicit communication between
human and automation concerning the tasks to be
accomplished. We are striving to push this com-
munication into the run-time environment, more
closely emulating delegation in human-human
work relationships. Our method allows the oper-
ator to smoothly adjust the “amount” or “level”
of automation used by permitting, but not re-
quiring, instructions to automation about what
specific behaviors it should perform and which
behaviors should be left to the human. Supervi-
sors could be expected to make such decisions
depending on variables such as time available,
workload, decision criticality, and trust.

Although this does not eliminate the trade-off
between workload and unpredictability present-
ed in Figure 1, delegation mitigates it by allow-
ing operators to choose a point on the spectrum
for their interaction with automation. In other
words, the decision about how much and what
kind of responsibilities to delegate must still be
made, but instead of a designer making it at
design time (as in traditional automation design),
our approach places it in the hands of the opera-
tors at execution time, enabling them to behave
more like a supervisor in human-human interac-
tions. This strategy follows the advice of both
Rasmussen, Pejtersen, and Goodstein (1994) and
Vicente (1999) to allow the operator to “finish the
design” opportunistically in the context of use.

It is critical that such an approach avoid two
potential problems. First, it must make the task of
instructing automation to behave as desired
achievable without excessive workload. Second,
it must ensure safe and effective overall behavior.
We have created a design metaphor and a system
architecture that address these concerns. We call
the general class of systems that can take instruc-
tion at various, flexible levels tasking or dele-
gation interfaces because they allow posing a
task to automation as one might delegate to 



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 65

a knowledgeable subordinate. Examples we would
label tasking interfaces can be found in Jones and
Jasek (1997) and Hayes and Pande (2002). We call
our particular approach Playbook because it uses
the metaphor of a sports team’s book of approved
plays. We have conceptualized and constructed
various Playbook applications to date. Implement-
ed prototypes in the domains of premission plan-
ning for uninhabited air vehicles (UAVs), ground
mobile robot control, a robot-based “capture the
flag” game, and dynamic tasking of heterogeneous
UAVs by dismounted soldiers are described and
illustrated in Parasuraman and Miller (2006).

Next we will describe the Playbook concept as
an example of a delegation interface and provide
a specific, detailed example of a prototype Play-
book proof-of-concept, ground-based mission
planning tool for commanding UAVs. Finally, we
will discuss future extensions, open questions,
and anticipated payoffs of delegation interfaces
in more depth.

A PLAYBOOK APPROACH TO 
TASKING INTERFACES

One aspect of Sheridan’s (1987) formulation
of supervisory control is the need for a human
supervisor to teach or program the automation
based on the requirements of the task and con-
text. Tasking interfaces facilitate instructing auto-
mation by creating a shared knowledge structure

of tasks that serves as the vocabulary for tasking
interactions. This same knowledge can be used
to improve the safety and efficacy of plans devel-
oped by allowing automation to review and 
critique human planning. Finally, the Playbook
approach streamlines delegation by offering a
compiled set of plans, or “plays,” with short, easily
commanded labels that can be further modified as
needed.

We see three primary challenges involved in
the construction of any tasking interface:

1. A shared vocabulary must be developed, via which
the operator can flexibly pose tasks to the automa-
tion and the automation can report how it will per-
form them.

2. Sufficient knowledge must be built into the automa-
tion to enable it to make intelligent choices within
the instructions provided by the user. If intelligence
(including awareness) is insufficient in the subordi-
nate system, tasking may still be possible, but the
results will be unsafe, untrustworthy, and generally
unacceptable.

3. One or more interfaces must be developed to per-
mit inspection and manipulation of the vocabulary
to pose and review tasks rapidly and easily.

Figure 3 presents our general architecture for
tasking interfaces. Although we are still devel-
oping applications that achieve the vision we de-
scribe in this section, we have constructed various
partial prototypes, all of which obey the basic
structure illustrated. One of these prototypes will

Figure 3. General tasking interface architecture. Adapted with permission from Miller, Pelican, and Goldman (2000),
© IEEE.



66 February 2007 – Human Factors 

be described in detail after a general description
of the architecture and function of each compo-
nent in Figure 3.

The three primary components in Figure 3
each address one of the challenges described pre-
viously. A user interface (UI) and an analysis and
planning component (APC) communicate with
each other and with the operator via a shared 
task model. Because the shared task model is the 
“language” in which the user and the Playbook’s
reasoning components interact, it is drawn as
encompassing both the UI and APC. The opera-
tor communicates tasking instructions as desired
goals, tasks, partial plans, or constraints via the
UI, using the task structures of the shared task
model. The APC is an automated planning sys-
tem that understands these instructions and (a)
evaluates them for feasibility and/or (b) expands
them to produce fully executable plans. The APC
may draw on special-purpose planning tools to
perform these functions, although these are not,
strictly speaking, a part of the Playbooks we have
developed. Outside of the tasking interface, but
essential to its use, are two additional compo-
nents for making momentary adjustments during
execution: an event-handling component for
real-time modifications to plans and the vehicle
(or other controlled element) control algorithms
themselves. Because the shared task model, UI,
and APC are unique to tasking interfaces, we will
describe them in detail.

Shared Task Model

A critical enabling technology for tasking
interfaces is the ability to represent and reason
about the goals and plans operators use to talk
about work to be performed. By explicitly repre-
senting these entities in a format that is familiar
to a human yet interpretable by a planning sys-
tem, one gains a level of coordination beyond
that previously possible.

The concept of modeling user tasks is well es-
tablished in human factors engineering (Diaper,
1989; Kirwan & Ainsworth, 1992). Task modeling
techniques are typically comparatively informal
(e.g., paper and pencil or spreadsheet based)
means of capturing the steps that knowledgeable
users go through to accomplish goals in known
circumstances. In essence, they decompose an
identified method of goal accomplishment into a
series of partially ordered steps along with a pro-
cedure or script for when and how to employ the

steps (Shepherd, 1989). The process can be re-
peated iteratively, producing a means-ends hier-
archy for goal accomplishment.

To be used in a tasking interface, a task model
must meet several requirements. First, it must be
organized via functional decomposition: Each
task or goal must be decomposable into alternate
methods of achievement, down to some layer of
primitive actions that are executable by the event-
handling and control algorithms of the to-be-
controlled system. This form of decomposition is
common in task analysis but is not universal. Some
approaches to using task analyses (especially those
for instructional purposes) decompose a single
method into progressively smaller steps without
representing alternative methods of achieving the
parent goal. For tasking interactions, if there are
no alternative performance methods, then a flex-
ible tasking interface is not necessary.

Second, the decomposition should be specif-
ic, representing executable methods of achieving
goals rather than abstract categories such as
information-processing stages (Parasuraman et
al., 2000). A“task,” therefore, represents an encap-
sulated set of behaviors that constitute a known
method of accomplishing a domain goal. Tasks in
the hierarchy therefore provide a vocabulary of
goals with associated partial plans and leave de-
grees of freedom (i.e., which subtask methods to
use) for the operator during execution. Thus, this
approach partially overcomes criticism (Such-
man, 1987; Vicente, 1999) against using static,
prescriptive procedures or scripts in task-based
instruction as brittle and impossible to exhaus-
tively specify. Whereas our task hierarchies are,
indeed, prescriptive, this is precisely the nature of
delegation interactions: to prescribe a goal and a
method of its performance. The method prescribed
is never exhaustively stipulated, however, because
some authority must be left to the performing
agent if true delegation (and consequent workload
reduction) is to occur. In our delegation approach,
the task model ceases to be a static artifact around
which a system is designed; instead, it becomes
the language that a human supervisor uses to com-
municate appropriate performance methods dy-
namically in the context of use.

Third, tasks must be drawn from the way oper-
ators think about their domain and, ideally, should
make use of the same labeling conventions with
which operators are familiar. Task labels and 
definitions may be drawn from training materials,



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 67

operator interviews, and so forth. Finally, the task
model must be understandable by the automation
using it. As with a football team’s playbook, each
player must know what to do when a given play
is called. The whole task model need not be
shared by all members of the team, though both
understanding and flexibility will likely be facil-
itated by greater overlap and sharing between
portions of the model, but each member must
understand his or her portion, and the portions
must be “linked” in that those pieces a subordi-
nate understands and will perform when the par-
ent play is called are, in fact, what the superior
expects and intends. Coordination is, thus, an
emergent function of sharing the same playbook,
and complicated behaviors can be activated
rapidly by use of their labels.

Our task modeling representation is based on
a PERT chart-like formalism developed initially
by McDonnell-Douglas for use in their pilot’s
associate program (Keller & Stanley, 1992).
Using a representation that explicitly models the
distinction between goals and plans, such as
Geddes’s (1989) plan-goal graph, would enhance
this approach. The plan-goal distinction is a nat-
ural one for users to make in communicating
intent (Klein, 1998; Shattuck, 1995).

The operator who “calls plays” must interact di-
rectly with the task model, activating and combin-
ing tasks at various levels of decomposition. This
capability is provided via the user interface, which
is described next. We also provide a planning sys-
tem that can understand the operator’s commands
and either evaluate them for performability or de-
velop an executable plan that obeys, yet fleshes
them out. This analysis and planning component
is described subsequently.

User Interface (UI)

Operators must interact with the task model,
both to understand possible actions and to declare
those tasks they wish the system to pursue. Just
as a coach can activate a complex behavior via a
simple play name or can spend additional time
combining or modifying play elements to create
new plays, so operators should be able to tune
automation actions via the UI.

Some requirements for the UI are that (a) the
set of “plays” (maneuvers, procedures, etc.) rep-
resented must be those any well-trained operator
should know; (b) the general play “templates”
must be capable of being composed and instanti-

ated to create mission-specific plans; (c) the
operator must be able to select plays at various
hierarchical levels, leaving the lower levels to be
composed by the APC; and (d) operators must 
be able to either require or prohibit the use of spe-
cific plays or resources.

Using the shared task model as an infrastructure,
many interfaces are possible, each customized
for its usage context. Some useful Playbook UI
components will be described, and one interface,
designed for ground-based UAV mission plan-
ning, will be described in depth.

Playbook UIs must include some ability to
“call” predefined plays from a play library, usu-
ally at various hierarchical levels, and thereby
command their performance by automation. Play
calling may be more or less elaborate according
to the demands of the domain. An onboard UI for
fighter combat might enable literally “calling”
(via a speech interface) simple play-based com-
mands, though most other applications will benefit
from more detailed communication. This can be
provided minimally by allowing the operator to
instantiate the parameters of a play, thereby pro-
viding constraints or stipulations on resource
usage, initiation time, and so forth. More elabo-
rately, plays/tasks may need to be composed into
longer sequences (e.g., missions). A“play compo-
sition” work space and tool separate from a “play
command” tool will help in these cases. Many do-
mains will require creating new plays, either from
scratch or by storing the results of earlier play
composition. A different tool, or mode, should
support this type of interaction. Most domains
will need to visualize (and intervene in) the exe-
cution of commanded plays. Normal automation
interfaces may provide these in a raw form, but
referencing performance in terms of the intend-
ed plays should improve user understanding. The
UI must also support interaction with the APC via
issuing partial tasking instructions, receiving cri-
tiques, and previewing, accepting, and/or modi-
fying APC-generated plans. Finally, unlike the
following example, if the Playbook is to be used
to monitor and retask automation during execution,
then access to performance information, proba-
bly referenced against the initial, authorized
plan, and ongoing access to fine-grained play-
commanding capabilities will be necessary.

Interacting directly with an explicit task model
meets most of these requirements, but we have
found that it helps to make the UI multimodal.



68 February 2007 – Human Factors 

Visualization of the task model shows causal and
sequential relationships, but it does not do a good
job of conveying the particular assets involved in
each task, temporal duration of events, geograph-
ical location and progression of events, and so
forth. As we will illustrate in the following exam-
ple, access to auxiliary tools (such as Gantt charts
and interactive map displays) can meet these
needs and enhance overall usability.

Analysis and Planning Component (APC)

The APC (Goldman, Haigh, Musliner, &
Pelican, 2000) operates over full or partial plans
provided via the UI to (a) analyze the operator’s
plan for feasibility and goal achievement and 
(b) automatically generate candidate plan com-
pletions in keeping with the requirements and
prohibitions the human imposes. The APC can
critique (Guerlain, Obradovich, Rudmann, Sachs,
Smith, et al., 1999) the operator-specified plan
for feasibility and constraint violations, and it can
weed out candidate subplays that have been made
infeasible by earlier decisions. Finally, the APC
can complete (i.e., develop to an executable level)
a partial plan from whatever level the human
chooses. The APC will either incorporate and
obey human-specified portions of the plan or
report that no plan can be completed within the
constraints.

The APC uses a hierarchical task network
planner (Erol, Hendler, & Nau, 1994) in conjunc-
tion with constraint propagation techniques
(Hentenryck, 1989; Jaffar & Michaylov, 1987) to
perform the functions described. Many domain-
relevant task structures are known before plan-
ning begins (e.g., the general steps in a UAV
mission). Rather than rediscover this outline
from scratch (as in more traditional artificial
intelligence planning approaches), the APC uses
task knowledge from the shared task model. This
both ensures that the APC’s concepts of available
plays mirror those of the users and makes its job
of creating plans much easier. In turn, the APC
must manage the resources, deadlines, and so
forth, checking for feasibility and conflicts. The
APC represents these limited quantities as con-
straints, and feasibility is defined as the project-
ed plan’s ability to achieve the declared goal state
(i.e., accomplish the top-level task) within re-
source limitations. As a plan is built, constraints
propagate both up, from subtasks to tasks, and
down, from tasks to their expansions. This con-

straint propagation process enables the planner to
identify flaws in the plan early.

When asked to complete a plan, the APC
fleshes out nonprimitive tasks by asserting one or
more subtask methods that can fill the parent
goal. The APC selects its best completion accord-
ing to resource usage or other optimization crite-
ria. The UI then displays the planning decisions to
the user, who can retract choices or make better-
informed decisions. When asked to critique a
user-defined plan, the APC again expands sub-
task methods to an executable level and reports
whenever it discovers constraint or goal viola-
tions or the lack of any feasible, executable plan.
Finally, the APC can also aid user decisions by
having feasible plays at the next decomposition
level be presented and infeasible ones eliminat-
ed or “grayed out,” if desired.

In combination, feasibility checking and plan
expansion make it possible, but not necessary, for
the APC to generate effective plans with minimal
user involvement. Continual feasibility analysis
minimizes effort expended on dead ends while
encouraging the user to specify mission-critical
aspects early. Once these are stipulated, develop-
ment can (but does not have to) be left entirely to
the APC with the assurance that it will produce a
plan that is both feasible within its constraint
knowledge and in keeping with the operator’s
stipulations. If time permits (or lack of trust
demands), the user may provide increasingly
detailed instructions down to the lowest level
primitive operators supported.

In fulfilling its role as a plan generator and/
or plan checker, the APC operates as a type of
decision-aiding or decision support system. Un-
like traditional decision support systems, however,
it operates at a flexible LOA, allowing operators
to provide whatever level of tasking they prefer.
The shared task model, and the UI that accesses
it, operates as a form of programming language
that the APC can understand. In this sense, it is
similar to the tasking instructions that supervisors
can give to subordinates: “programming” them to
perform tasks according to the supervisor’s intent
but allowing some (flexible) degree of autonomy
to accomplish that intent in the prevailing condi-
tions at execution time. As such, the Playbook and
its APC are not designed to always reduce work-
load. The act of providing instructions is poten-
tially workload intensive and, as previously noted,
Playbook is designed to provide operators the



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 69

flexibility to decide whether or not to incur addi-
tional workload in order to reduce uncertainty.

Finally, although our early versions of Play-
book, including that described later, operated
primarily in premission (or “batch”) planning, the
Playbook concept encompasses the execution and
monitoring of plans as well.Recent work(see Gold-
man, Miller, Wu, Funk, & Meisner, 2005; Miller,
Goldman, Funk, Wu, & Pate, 2004) has begun to
incorporate plan execution capabilities in Play-
book. The delegation concept still applies even
during execution; the time span between issuing
an instruction and the subordinates’ execution of
it simply shrinks. Stability of control becomes an
issue and may limit control authority. Current
Playbook implementations have limited capabil-
ity to autonomously retask assets within the com-
mander’s declared intent – for example, adjusting
speed or route to maintain critical times on target.
Real-time execution, monitoring, and control via
Playbook raise many interesting issues that need
further analysis but because of space limitations
they cannot be discussed here.

Auxiliary Components for a Tasking
Interface

The shared task model, UI, and APC are not
sufficient for most applications. As illustrated in
Figure 3, a Playbook must be integrated with a
reactive planning capability for event handling
and with low-level, real-time control algorithms
if it is to enact plays on real-world equipment. In
practice, this means that tasking interfaces leave
some portion of the decisions about how to enact
a plan to an intelligent agent at run time. This
problem, the gap between analysis/planning and
execution, is a familiar one in control and robot-
ics. Many of our implementations have used a
reactive planning architecture called cooperative
intelligent real-time control architecture (CIRCA;
Musliner, Durfee, & Shin, 1993), which integrates
projective and reactive planning with control
actuation. CIRCAbridges the analysis-execution
gap by synthesizing logically correct reaction
programs to achieve high-level goals. However,
little thought had been given in CIRCA’s devel-
opment to how an operator would provide those
goals. Our approach fills that gap.

At the bottom layer of the architecture (see
Figure 3), advanced control algorithms provide
for continuous vehicle control in a robotics or
UAV domain. The plan created jointly by human

and APC, along with reactive adaptations pro-
vided by the event-handling component, gives
these control functions the instructions they need.

USAGE SCENARIO

The Playbook approach described has been par-
tially implemented in multiple proof-of-concept
demonstration systems (Parasuraman & Miller,
2006), including ones for tactical mobile robots
and UAVs. None of these fully achieves the Play-
book vision, but one representative UAV proto-
type will be described briefly here.

Traditional UAV interfaces either require op-
erators to control the aircraft remotely via a ded-
icated cockpit mockup or rely on very high-level
behaviors (e.g., close air patrol circuits or way-
point-designated routes) that can be easily but
inflexibly commanded. Playbook provides flexi-
bility between these points. Here, we concentrate
on a ground-based tasking interface to be used for
a priori mission planning. We intend this proto-
type, however, as an illustration of the general
concept and, with appropriate interface modifi-
cations, it will be suited to dynamic, real-time,
and even in-flight tasking as well. The prototype
is illustrated in Figure 4.

Figure 4 shows the five primary regions of this
Playbook UI as they appear after the user has
interacted with it to fully develop an executable
airfield denial mission. The upper half of the
screen is a mission composition space that shows
the plan composed thus far. The lower left corner
of the interface is an available resource space, cur-
rently presenting the set of aircraft available for
use. The lower right corner contains an interac-
tive terrain map of the area of interest, used to
facilitate interactions with significant geographic
content. The space between these lower windows
(empty at startup) is a resource in use space; once
resources (UAVs, munitions, etc.) are selected,
they will be moved to this work space, where they
can be interacted with in more detail. Finally, the
lower set of control buttons is always present for
interaction. This includes options such as “finish
plan” for handing the partial plan off to the APC
for completion and “show schedule” for obtaining
a Gantt chart timeline of the activities planned.

At startup, the mission composition space pre-
sents the three top-level plays (or mission types)
the system currently knows about: interdiction,
airfield denial, and suppress enemy air defenses



70 February 2007 – Human Factors 

(SEAD). The mission leader interacts with the
Playbook to first, declare that the overall mission
play for the day was, say, “airfield denial.” In prin-
ciple, the user could define a new top-level play
either by reference to existing play structures or
completely from scratch, but this capability has
not been designed or implemented as yet.

Clicking on “airfield denial” produces a menu
with options for the user to tell the APC to “plan
this task” (i.e., develop a plan to accomplish it)
or to “choose airfield denial” as a task that the
operator will flesh out further. The pop-up menu
also contains a context-sensitive list of optional
subtasks that the operator can choose to include
under this task. This list is generated by the APC
with reference to the structures in the play library,
filtered for current feasibility.

At this point, having been told only that the
task for the day is “airfield denial,” a team of
trained pilots would have a very good general
picture of the mission they would fly. Similarly,

the tasking interface (via the shared task model)
knows that a typical airfield denial plan consists
of ingress, strike, and egress phases and that it
may also contain a suppress air defense task
before or in parallel with the attack task. How-
ever, just as a leader instructing a human flight
team could not leave the delegation instructions
at a simple “Let’s do an airfield denial mission to-
day,” so the operator of the Playbook must pro-
vide more information. Here, the user must provide
four additional items: a target, a home base, a stag-
ing point, and a rendezvous point. These items
are geographical in nature, and users typically find
it easier to stipulate them via a map. Hence, by
selecting any of them from the menu, direct inter-
action with the terrain map is enabled. Because
the Playbook knows what task and parameter a
map point is meant to indicate, appropriate
semantics are preserved. The specific aircraft to
be used may be selected by the user or left to the
APC. If the user wishes, available aircraft can be

Figure 4. Prototype Playbook interface for UAV mission planning. Adapted with permission from Miller, Pelican,
and Goldman (2000), © IEEE.



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 71

viewed in the available resource space and cho-
sen by clicking and moving them to the resources
in use space.

The mission leader working with a team of
human pilots could – if time, mission complexi-
ty, or trust made it desirable – hand the mission
planning task off to the team members at this
point. The Playbook operator can do this as well,
handing the task to the APC via the “finish plan”
button. The leader might wish, however, to provide
more detailed delegation instructions. This can
be accomplished by progressively interacting
with the Playbook UI to provide deeper layers of
task selection or to impose constraints or stipula-
tions on the resources to be used, way points to
be flown, and so forth. For example, after the user
chooses “airfield denial,” the system knows, via
the shared task model, that this task must include
an ingress subtask (as illustrated in Figure 4) and,
therefore, the user does not need to tell it this.
However, the user can provide detailed instruc-
tions about how to perform the ingress task by
simply “drilling down” into it. Choosing “in-
gress” produces a “generic” ingress task template
or “play.” This need not be a default method of
doing “ingress” but a generic, uninstantiated tem-
plate, corresponding to what a human expert
knows about what constitutes an ingress task and
how it can be performed. A trained pilot knows
that ingress can be done either in formation or in
dispersed mode and must involve a “takeoff”
subtask followed by one or more “fly to location”
subtasks. Similarly, the Playbook user can select
from available options (formation vs. dispersed
ingress, altitude constraints, etc.) on context-
sensitive, APC-generated menus at each level of
decomposition of the task model.

The user can continue to specify and instanti-
ate tasks down to the primitive level, where sub-
tasks are behaviors the control algorithms (see
Figure 3) can be relied upon to execute. Alterna-
tively, at any point after the selection of the top-
level task and its required parameters, the user
can hand the partly developed plan over to the
APC for completion and/or review. In extreme
cases, a viable airfield denial plan involving mul-
tiple UAVs could be created in our prototype with
as few as five selections, and more sophisticated
planning capabilities could reduce this number
further. If the APC is incapable of developing a
viable plan within the constraints imposed (e.g.,
if the user has stipulated distant targets that

exceed aircraft fuel supplies), it will inform the
user. The prototype described here gives users
limited ability to modify APC-generated plans
(only the ability to reject a plan and request a new
one with modified constraints), but we realize
that full, fielded implementations will require
richer “negotiations” about what is and is not fea-
sible, thereby making the planning process more
collaborative. We are taking the first steps toward
this by enabling the APC to respond with sug-
gested alternatives when the user’s request proves
infeasible (Goldman et al., 2005).

IMPLICATIONS, PRELIMINARY DATA,
AND FUTURE WORK

The Playbook we have described enables a
human supervisor to make use of varying LOAs
for the task of planning a UAV mission. It accom-
plishes this flexibility by enabling explicit refer-
ence to and manipulation of the levels in a task
hierarchy of domain functions. Once referenced,
desired actions or constraints can be readily com-
manded with regard to those functions. Equally
important is the presence of an intelligent plan-
ning and control environment that understands
the human expressions of intent and plans exe-
cution within them.

In short, this approach allows “delegation” of
the responsibility for planning and commanding
a UAV mission in many of the same ways a mis-
sion commander might delegate to a team of
experienced pilots. Using the task hierarchy, the
operator can delegate almost complete autonomy
to the automation and receive a complete plan for
review. This represents LOA8 for the overall task
of mission planning in Sheridan’s (Sheridan &
Verplank, 1978) hierarchy (see Table 1). It also
represents a trade-off among workload, uncer-
tainty, and competency that is at the right side of
the spectrum illustrated in Figure 1. Alternatively,
the human can also lay out very detailed instruc-
tions, making decisions and stipulating specific
actions to complete a mission plan to the primi-
tive level. This represents LOA 2 or 1 in Table 1
and a trade-off near the left side of Figure 1.

Most importantly, the human can also interact,
on a task-by-task basis, as desired or needed. If
the operator wishes to plan mission ingress in
detail, review computer-suggested alternatives
for attack, and tell the system that anything it
wishes to do for egress is acceptable as long as



72 February 2007 – Human Factors 

the UAVs return by 03:00 hr, this level of vari-
ability is supported. The resulting experienced
LOA for the overall mission-planning task might
be somewhere in the middle of the spectrum, but
this is merely a convenient averaging. In fact, the
LOA will have varied from task to task accord-
ing to the needs of the operator. Thus, our moti-
vation to decompose a task into its possible
components and assign automation to each of
them individually not only provides a theoretical
expansion of the LOAs that previous authors
have proposed but also provides the framework
for intent communication required to enable
complex but flexible, adaptable delegation actions.

Such interactions should result in significant
payoffs. Adaptable delegation approaches may
mitigate the “ironies” of automation (Bainbridge,
1983) and minimize the risks of traditional auto-
mation design, as noted previously. User-adaptable
delegation approaches may allow the benefits of
real-time adaptation while keeping the operator in
charge. Because such an interaction style allows
the user to cooperate with automation across a
range of task abstraction levels, it fulfills the prin-
ciple of allowing the operator to “finish the de-
sign” at the time of use. This should provide users
with more control authority, address their desire to
remain in charge, and ameliorate frustration, stress,
and lack of user acceptance (Karasek & Theorell,
1990; Miller,1999; Vicente,1999). Also, providing
the opportunity for true supervisory control, with
all the flexibility of delegation available to human
supervisors, should encourage enhanced human
engagement with automation in task performance.
This in turn should provide the following benefits:

• improved situation awareness relative to an inter-
face that automatically provides a solution at a fixed
LOA, at least with regard to those information ele-
ments with which the human is more directly con-
cerned;

• improved workload relative to an interface that pro-
vides less automation support and requires more
human task performance, again with regard to those
tasks for which a higher LOA is used; and

• improved overall human-machine performance rel-
ative to either human alone or machine alone.

We have begun to demonstrate the feasibility
of tasking interfaces in general and Playbook in
particular, though much work remains. Early
work on adaptive automation (Hancock et al.,
1985; Parasuraman et al., 1992; Rouse, 1988) need-

ed validation with empirical studies, which were
carried out subsequently (Kaber & Riley, 1999;
Parasuraman et al., 1996; for reviews, see Inagaki,
2003; Scerbo, 1996, 2001). Similarly, delegation
prototypes need to be evaluated to ascertain both
the usability of the specific interface design pre-
sented here and the performance benefits of the
concept as a whole. We recently conducted a
series of studies investigating some of the claimed
benefits using a simplified delegation interface in
a human-robot interaction task. Initial results (re-
ported in detail in Parasuraman, Galster, Squire,
Furukawa, & Miller, 2005) are promising. Space
does not permit detailed reporting here, but these
experiments, using a simplified, flexible, delega-
tion interface for a robotic “capture the flag”
game, showed that participants chose to make
use of flexible LOAs in response to differing en-
vironmental conditions. Furthermore, the use of
such flexibility was generally associated with the
best mission success rates and the shortest mis-
sion completion times across varying environ-
mental and “enemy” behavior conditions; these
effects could be nullified when the added work-
load of controlling large numbers of robots con-
flicted with the workload of selecting among
flexible interaction modes, but even in that case,
performance with the delegation interfaces was as
good as that with the best static or restricted UIs.

The claim that delegation interfaces do not
increase workload to unmanageable levels is a
critical one that requires validation. Kirlik (1993)
reported that workload costs associated with
deciding what LOA to employ can overwhelm
any payoffs of flexible automation (see also Para-
suraman & Riley, 1997). Tasking interfaces, like
human-human delegation, require thought about
what to delegate and what to retain. Whether
human operators (as opposed to designers) can
determine the best mix of tasks to delegate in var-
ious contexts is perhaps the largest open question
in pursuing flexible human supervisory control.
For example, Jones and Jasek (1997) reported
data suggesting that at least in the domain of
satellite communication planning, operators
tended to consistently use the highest LOAs
available, regardless of context or workload.

We have sought to create a style of interaction
with automation that mirrors delegation to an
intelligent assistant who knows the task domain.
We have adopted a playbook organization using
hierarchical task decomposition to facilitate and



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 73

speed the communication of intent. This is an
extraordinarily powerful form of human-human
interaction and, as such, has been adopted by mil-
itary, government, and commercial organizations
– not to mention sports teams – throughout his-
tory. However, just as an inefficient assistant or a
poorly trained teammate can require more work
than doing the job oneself, so a poorly designed
tasking interface may make the task more difficult.
Nevertheless, we believe that the delegation con-
cept offers a viable method for flexible, multilevel
interaction between humans and automated
agents in a manner that enhances system perfor-
mance while maintaining user workload at a
manageable level. We have illustrated one method
of constructing such a delegation Playbook for
rich, flexible user interactions and are beginning
the process of illustrating benefits from it. Future
work will continue this process of tuning and
evaluating the delegation interaction format.

ACKNOWLEDGMENTS

The initial formulation of the delegation inter-
face concept and the development of the proto-
type interface described here was funded by a
Honeywell Laboratories Initiatives Grant. The
preparation of this paper was funded, in part, by
grants from Defense Advanced Research Projects
Agency to R. Parasuraman and C. Miller (sub-
contract, Cornell University) and by Army Re-
search Laboratory to R. Parasuraman. The authors
would like to thank Dan Bugajski, Don Shaner,
and John Allen for their help in the development
and implementation of the ideas presented. Robert
Goldman and Michael Pelican were responsible
for the specific design and implementation of the
example shown in Figure 4. Harry Funk and
Dave Musliner participated in the initial devel-
opment of these concepts. We also thank Scott
Galster and Peter Squire for helpful discussions
on the use of Playbook interfaces.

REFERENCES

Amalberti, R. (1999). Automation in aviation: A human factors per-
spective. In D. Garland, J. Wise, & V. Hopkin (Eds.), Handbook of
aviation human factors (pp. 173–192). Mahwah, NJ: Erlbaum.

Bainbridge, L. (1983). Ironies of automation. Automatica, 19, 775–779.
Banks, S.,&Lizza,C.(1991). Pilots’Associate: Acooperative knowledge-

based system application. IEEE Expert, 6(3), 18–29.
Billings, C. E. (1997). Aviation automation: The search for a human-

centered approach. Mahwah, NJ: Erlbaum.
Billings, C. E., & Woods, D. D. (1994). Concerns about adaptive

automation in aviation systems. In M. Mouloua & R. Parasuraman
(Eds.), Human performance in automated systems: Current re-
search and trends (pp. 24–29). Hillsdale, NJ: Erlbaum.

Bisantz, A., Cohen, S., Gravelle, M., & Wilson, K. (1996). To cook or
not to cook: A case study of decision aiding in quick-service restau-
rant environments (Rep. No. GIT-CS-96/03). Atlanta: Georgia
Institute of Technology, College of Computing.

Bright, J. (1955). Does automation raise skill requirements? Harvard
Business Review, 36, 85–98.

Card, S., Moran, T., & Newell, A. (1983). The psychology of human
computer interaction. Mawah, NJ: Erlbaum.

Casey, S. (1993). Set phasers on stun. Santa Barbara, CA: Aegean.
Colucci, F. (1995, March–April). Rotorcraft Pilots’Associate update: The

army’s largest science and technology program. Vertiflite, 41, 16–20.
Cooke,N.J., Salas,E.,Cannon-Bowers,J.A.,&Stout,R.(2000). Measuring

team knowledge. Human Factors, 42, 151–173.
Degani, A. (2004). Taming Hal: Designing interfaces beyond 2001.

New York: Palgrave MacMillan.
Diaper, D. (1989). Task analysis for human-computer interaction.

Chichester, UK: Ellis Horwood.
Dornheim, M. (1999, October 18). Apache tests power of new cockpit

tool. Aviation Week and Space Technology, 151, 46–49.
Duley, J., & Parasuraman, R. (1999). Adaptive information management

in future air traffic control. In M. Scerbo & M. Mouloua (Eds.),
Automation technology and human performance: Current research
and trends (pp. 86–90). Mahwah, NJ: Erlbaum.

Endsley, M., & Kiris, E. (1995). The out-of-the-loop performance prob-
lem and level of control in automation. Human Factors, 37,
381–394.

Erol, K., Hendler, J., & Nau, D. (1994). UMCP: A sound and complete
procedure for hierarchical task network planning. In K. Hammond
(Ed.), AI planning systems: Proceedings of the 2nd International
Conference (pp. 249–254). Menlo Park, CA: AAAI Press.

Geddes, N. (1989). Understanding human operators’intentions in com-
plex systems. Unpublished doctoral dissertation, Georgia Institute
of Technology, Atlanta.

Gentner, D., & Stevens, A. (1986). Mental models. Hillsdale, NJ:
Erlbaum.

Goldman, R., Haigh, K., Musliner, D., & Pelican, M. (2000). MACBeth:
A multi-agent, constraint-based planner (Technical Report #WS-
00-02). In Notes of the AAAI Workshop on Constraints and AI
Planning (pp. 1–7). Menlo Park, CA: AAAI Press.

Goldman, R., Miller, C., Wu, P., Funk, H., & Meisner, J. (2005).
Optimizing to satisfice: Using optimization to guide users. In
Proceedings of the American Helicopter Society’s International
Specialists Meeting on Unmanned Aerial Vehicles [CD-ROM].
Alexandria, VA: American Helicopter Society.

Guerlain, S. A., Obradovich, J., Rudmann, S., Sachs, L., Smith, J. W.,
Smith, P. J., et al. (1999). Interactive critiquing as a form of decision
support: An empirical evaluation. Human Factors, 41, 72–89.

Hancock, P., Chignell, M., & Lowenthal, A. (1985). An adaptive human-
machine system. In Proceedings of the 15th IEEE Conference on
Systems, Man and Cybernetics (pp. 627–629). Piscataway, NJ:
IEEE Press.

Hayes, C., & Pande, A. (2002). Square-it and plan-merge: Decision
support systems for high quality manufacturing setup sequences.
In Proceedings of the 2002 ASME International Design En-
gineering Technical Conferences and Computers & Information in
Engineering Conference [CD-ROM]. New York: American Society
of Mechanical Engineering.

Hentenryck, P. (1989). Constraint satisfaction in logic programming.
Cambridge, MA: MIT Press.

Hilburn, B., Jorna, P., Byrne, E., & Parasuraman, R. (1997). The effect
of adaptive air traffic control (ATC) decision aiding on controller
mental workload. In M. Mouloua & J. Koonce (Eds.), Human-
automation interaction (pp. 84–91). Mahwah, NJ: Erlbaum.

Inagaki, T. (2003). Adaptive automation: Sharing and trading of con-
trol. In E. Hollnagel (Ed.), Handbook of cognitive task design (pp.
147–169). Mahwah, NJ: Erlbaum.

Jaffar, J., & Michaylov, S. (1987). Methodology and implementation
of a CLPsystem. In Proceedings of the 4th International Conference
on Logic Programming (pp. 196–216). Cambridge, MA: MIT Press.

Jones, P., & Jasek, C. (1997). Intelligent support for activity manage-
ment (ISAM): An architecture to support distributed supervisory
control. IEEE Transactions on Systems, Man, and Cybernetics –
Part A: Systems and Humans, 27, 274–288.

Kaber, D. B., & Endsley, M. (2004). The effects of level of automation
and adaptive automation on human performance, situation aware-
ness and workload in a dynamic control task. Theoretical Issues in
Ergonomics Science, 5, 113–153.



74 February 2007 – Human Factors 

Kaber, D. B., Omal, E., & Endsley, M. (1999). Level of automation
effects on telerobot performance and human operator situation
awareness and subjective workload. In M. Scerbo & M. Mouloua
(Eds.), Automation technology and human performance: Current
research and trends (pp. 165–170). Mahwah, NJ: Erlbaum.

Kaber, D. B., & Riley, J. (1999). Adaptive automation of a dynamic
control task based on workload assessment through a secondary
monitoring task. In M. Scerbo & M. Mouloua (Eds.), Automation
technology and human performance: Current research and trends
(pp.129–133). Mahwah, NJ: Erlbaum.

Karasek, R., & Theorell, T. (1990). Healthy work: Stress, productivity,
and the reconstruction of working life. New York: Basic Books.

Keller, K., & Stanley, K. (1992). Domain specific software design for
decision aiding. In Proceedings of the AAAI Workshop on Automat-
ing Software Design (pp. 86–92). Menlo Park, CA: AAAI Press.

Kirlik, A. (1993). Modeling strategic behavior in human-automation
interaction: Why an “aid” can (and should) go unused. Human
Factors, 35, 221–242.

Kirwan, B., & Ainsworth, L. (1992). A guide to task analysis. London:
Taylor & Francis.

Klein, G. (1998). Sources of power: How people make decisions.
Cambridge, MA: MIT Press.

Layton, C., Smith, P., & McCoy, E. (1994). Design of a cooperative
problem-solving system for en-route flight planning: An empirical
evaluation. Human Factors, 36, 94–119.

Lee, J., & Moray, N. (1992). Trust, control strategies, and allocation of
function in human-machine systems. Ergonomics, 35, 1243–1270.

Lee, J., & Moray, N. (1994). Trust, self-confidence, and operators’adap-
tation to automation. International Journal of Human-Computer
Studies, 40, 153–184.

Lee, J. D., & See, K. A. (2004). Trust in computer technology: Designing
for appropriate reliance. Human Factors, 46, 50–80.

Lewis, M. (1998, Summer). Designing for human-agent interaction.
Artificial Intelligence Magazine, 19, 67–78.

Lorenz, B., Nocera, F., Rottger, S., & Parasuraman, R. (2002). Automated
fault management in a simulated space flight micro-world.
Aviation, Space, and Environmental Medicine, 73, 886–897.

Martinich, J. (1996). Production and operations management: An
applied modern approach, New York: Wiley.

Maybury, M., & Wahlster, W. (1998). Readings in intelligent user inter-
faces. San Francisco: Morgan Kaufman.

Milewski, A., & Lewis, S. (1999). When people delegate (Tech.
Memorandum). Murray Hill, NJ: AT&T Laboratories.

Miller, C. (1999). Bridging the information transfer gap: Measuring
goodness of information fit. Journal of Visual Language and
Computation, 10, 523–558.

Miller, C., Goldman, R., Funk, H., Wu, P., & Pate, B. (2004). A play-
book approach to variable autonomy control: Application for 
control of multiple, heterogeneous unmanned air vehicles. In
Proceedings of FORUM 60, the Annual Meeting of the American
Helicopter Society (pp. 2146–2157). Alexandria, VA: American
Helicopter Society.

Miller, C., & Hannen, M. (1999). The Rotorcraft Pilot’s Associate: Design
and evaluation of an intelligent user interface for cockpit informa-
tion management. Knowledge Based Systems, 12, 443–456.

Miller, C., Pelican, M., & Goldman, R. (2000). “Tasking” interfaces to
keep the operator in control. In Proceedings of the Fifth Annual
Symposium on Human Interaction with Complex Systems (pp.
87–91). Piscataway, NJ: IEEE.

Mitchell, C. (1987). GT-MSOCC: A domain for research on HCI and
decision aiding in supervisory control systems. IEEE Transactions
on Systems, Man, and Cybernetics, 17, 553–572.

Moray, N. (1979). Mental workload. New York: Plenum.
Moray, N., Inagaki, T., & Itoh, M. (2000). Situation adaptive automa-

tion, trust and self-confidence in fault management of time-critical
tasks. Journal of Experimental Psychology: Applied, 6, 44–58.

Murata, T. (1989). Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77, 541–580.

Musliner, D., Durfee, E., & Shin, K. (1993). CIRCA: A cooperative
intelligent real-time control architecture. IEEE Transactions on
Systems, Man, and Cybernetics, 23, 1561–1574.

Nikolic, M. I., & Sarter, N. B. (2000). Peripheral visual feedback: A
powerful means of supporting attention allocation and human-
automation coordination in highly dynamic data-rich environ-
ments. Human Factors, 43, 30–38.

Opperman, R. (1994). Adaptive user support. Hillsdale, NJ: Erlbaum.
Parasuraman, R. (1993). Effects of adaptive function allocation on

human performance. In D. J. Garland & J. A. Wise (Eds.), Human

factors and advanced aviation technologies (pp. 147–157). Day-
tona Beach, FL: Embry-Riddle Aeronautical University Press.

Parasuraman, R. (2000). Designing automation for human use: Empirical
studies and quantitative models. Ergonomics, 43, 931–951.

Parasuraman, R., Bahri, T., Deaton, J., Morrison, J., & Barnes, M. (1992).
Theory and design of adaptive automation in aviation systems
(Progress Rep. No. NAWCADWAR-92033-60). Warminster, PA:
Naval Air Warfare Center.

Parasuraman,R.,Galster,S.,Squire,P.,Furukawa,H., & Miller, C. (2005).
A flexible delegation-type interface enhances system performance
in human supervision of multiple robots: Empirical studies with
RoboFlag. IEEE Systems, Man, and Cybernetics – Part A: Systems
and Humans, 35, 481–493.

Parasuraman, R., & Hancock, P. (2001). Adaptive control of workload.
In P. A. Hancock & P. E. Desmond (Eds.), Stress, workload, and
fatigue (pp. 305–320). Mahwah, NJ: Erlbaum.

Parasuraman, R., & Miller, C. A. (2006). Delegation interfaces for human
supervision of multiple unmanned vehicles: Theory, experiments,
and practical applications. In N. Cooke, H. Pringle, H. Pedersen,
& O. Connor (Eds.), Human factors of remotely piloted vehicles
(pp. 251–266). Amsterdam: Elsevier JAI Press.

Parasuraman, R., & Mouloua, M. (Eds.). (1996). Automation and human
performance: Theory and application. Mahwah, NJ: Erlbaum.

Parasuraman, R., Mouloua, M., & Hilburn, B. (1999). Adaptive aiding
and adaptive task allocation enhance human-machine interaction.
In M. W. Scerbo & M. Mouloua (Eds.), Automation technology and
human performance: Current research and trends (pp. 119–123).
Mahwah, NJ: Erlbaum.

Parasuraman, R., Mouloua, M., & Molloy, R. (1996). Effects of adap-
tive task allocation on monitoring of automated systems. Human
Factors, 38, 665–679.

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use,
misuse, disuse, abuse. Human Factors, 39, 230–253.

Parasuraman, R., Sheridan, T., & Wickens, C. (2000). Amodel for types
and levels of human interaction with automation. IEEE Trans-
actions on Systems, Man, and Cybernetics – Part A: Systems and
Humans, 30, 286–297.

Perrow, C. (1986). Normal accidents: Living with high-risk technolo-
gies. New York: Basic Books.

Prinzel, L., Freeman, F., Scerbo, M., Mikulka, P., & Pope, A. (2003).
Effects of a psychophysiological system for adaptive automation
on performance, workload and event-related potential P300 com-
ponent. Human Factors, 45, 601–614.

Rasmussen, J. (1986). Information processing and human-machine
interaction. Amsterdam: North-Holland.

Rasmussen, J., Pejtersen, A., & Goodstein, L. (1994). Cognitive sys-
tems engineering. New York: Wiley.

Reason, J. (1997). Managing the risks of organizational accidents.
Aldershot, UK: Ashgate.

Rouse, W. (1976). Adaptive allocation of decision making responsibility
between supervisor and computer. In T. B. Sheridan & G. Johannsen
(Eds.), Monitoring behavior and supervisory control (pp. 221–230).
New York: Plenum Press.

Rouse, W. (1988). Adaptive automation for human/computer control.
Human Factors, 30, 431–488.

Sarter, N., & Woods, D. (1994). Pilot interaction with cockpit automa-
tion: II. An experimental study of pilots’ model and awareness of
the flight management system. International Journal of Aviation
Psychology, 4, 1–28.

Sarter, N., & Woods, D. (1995). How in the world did we ever get into
that mode? Mode error and awareness in supervisory control.
Human Factors, 37, 5–19.

Sarter, N., Woods, D., & Billings, C. (1997). Automation surprises. In
G. Salvendy (Ed.), Handbook of human factors and ergonomics
(2nd ed., pp. 1926–1943). New York: Wiley.

Satchell, P. (1998). Innovation and automation. Aldershot, UK:
Ashgate.

Scallen, S., Hancock, P., & Duley, J. (1995). Pilot performance and
preference for short cycles of automation in adaptive function allo-
cation. Applied Ergonomics, 26, 397–403.

Scerbo, M. (1996). Theoretical perspectives on adaptive automation. In
R. Parasuraman & M. Mouloua (Eds.), Automation and human
performance: Theory and applications (pp. 37–63). Mahwah, NJ:
Erlbaum.

Scerbo, M. (2001). Adaptive automation. In W. Karwowski (Ed.),
International encyclopedia of ergonomics and human factors (pp.
1077–1079). London: Taylor & Francis.



FLEXIBLE DELEGATION FOR SUPERVISORY CONTROL 75

Shattuck, L. (1995). Communication of intent in distributed supervisory
control systems. Unpublished doctoral dissertation, Ohio State
University, Columbus.

Shepherd, A. (1989). Analysis and training in information technology
tasks. In D. Diaper (Ed.), Task analysis for human-computer inter-
action (pp. 15–55). Chichester, UK: Ellis Horwood.

Sheridan, T.(1987).Supervisory control. In G. Salvendy (Ed.), Handbook
of human factors (pp. 1244–1268). New York: Wiley.

Sheridan, T. (1992). Telerobotics, automation, and supervisory control.
Cambridge, MA: MIT Press.

Sheridan, T. (2002). Humans and automation: System design and
research issues. Santa Monica, CA: Human Factors and Ergonomics
Society/New York: Wiley.

Sheridan, T., & Verplank, W. (1978). Human and computer control of
undersea teleoperators (Tech. Rep.). Cambridge: Massachusetts
Institute of Technology, Man-Machine Systems Laboratory.

Stout,R.J., Cannon-Bowers, J. A., Salas, E., & Milanovich, D. M. (1999).
Planning, shared mental models, and coordinated performance: An
empirical link is established. Human Factors, 41, 61–71.

Suchman, L. (1987). Plans and situated actions: The problem of human
machine communication. Cambridge, UK: Cambridge University
Press.

Vicente, K. (1999). Cognitive work analysis: Towards safe, productive,
and healthy computer-based work. Mahwah, NJ: Erlbaum.

Vicente, K. (2003). The human factor. New York: Alfred Knopf.
Wickens, C. D. (1994). Designing for situation awareness and trust in

automation. In Proceedings of the International Federation of
Automatic Control (IFAC) Conference (pp. 174–179). Baden-
Baden, Germany: IFAC.

Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and
human performance. New York: Longman.

Wickens, C. D., Mavor, A., Parasuraman, R., & McGee, J. (1998). The
future of air traffic control: Human operators and automation.
Washington DC: National Academy Press.

Wiener, E. (1988). Cockpit automation. In E. Wiener & D. Nagel
(Eds.), Human factors in aviation (pp. 433–461). San Diego, CA:
Academic.

Wiener, E., & Curry, R. (1980). Flight-deck automation: Promises and
problems. Ergonomics, 23, 995–1011.

Woods, D. (1996). Decomposing automation: Apparent simplicity, real
complexity. In R. Parasuraman, M. Mouloua, & R. Molloy (Eds.),
Automaton and human performance: Theory and applications (pp.
3–17). Mahwah, NJ: Erlbaum.

Christopher A. Miller is the chief scientist of Smart
Information Flow Technologies, LLC. He received his
Ph.D. in psychology from the Committee on Cognition
and Communication in the Psychology Department of
the University of Chicago in 1991.

Raja Parasuraman is a professor of psychology and a
member of the Arch Lab at George Mason University.
He received his Ph.D. in psychology from Aston
University, UK, in 1976.

Date received: January 2, 2005
Date accepted: November 4, 2005


