
Submitted for presentation at the Fifth Annual Symposium on Human Interaction with Complex Systems, April 30-May 2, 2000, Urbana-Champaign, Ill.

1

Adaptiveness

U
npredictabilityW

or
kl

oa
d

Or

a

uw

a

uw

Increased human manage-
ment role yields increased
human workload

Increased automation man-
agement role yields increased
unpredictability to human

Figure 1a. Conceptual relationship between system
adaptiveness, human workload and unpredictability.

“TASKING” INTERFACES TO KEEP THE OPERATOR IN CONTRO L

Christopher A. Miller, Michael Pelican , Robert Goldman
Honeywell Technology Center

3660 Technology Dr.
Minneapolis, MN 55418 U.S.A.

ABSTRACT
The ongoing debate in the HCI community between direct
manipulation and intelligent, automated agents points to
a fundamental problem in complex systems. Humans want
to remain in charge even if they don’t want to (or can’t)
make every action and decision themselves. We have been
exploring a middle road through “tasking interfaces”—
interfaces which share a task model with a projective
planner to enable human operators to flexibly “call
plays” (i.e., stipulate plans) to various levels of abstrac-
tion, leaving the remainder to be fleshed out by the plan-
ner. The result is akin to ‘tasking’ a knowledgeable sub-
ordinate with more or less detailed instructions. We
describe a prototype tasking interface for Uninhabited
Combat Air Vehicles (UCAVs).

INTRODUCTION
As systems become more complex, the temptation is to
control them via “automation” (e.g., Billings, 1997)—
either with systems which fully perform the task, or with
‘decision aids’ which provide guidance but leave final
execution to humans. In spite of extensive technological
achievements in automation, advanced automation suffers
from a basic sociological problem. Human operators want
to remain in charge. For example, in developing the Ro-
torcraft Pilot’s Associate Cockpit Information Manager
(Miller & Funk, 1997), we asked multiple pilots and de-
signers to develop a consensus list of goals for a “good”
cockpit configuration manager. Two of the top three items
on the list were “Pilot remains in charge of task alloca-
tion” and “Pilot remains in charge of information pre-
sented.”

There are good reasons to design systems at the higher
levels of automation. By definition (Sheridan, 1987), such
systems share responsibility, authority and autonomy over
many work behaviors with human operator(s) to accom-
plish their goals of reducing workload and information
overload. While operators may wish to remain in charge,
today’s complex systems no longer permit them to be
fully in charge of all system operations—at least not in
the same way as in earlier cockpits and workstations.

The problem is shown conceptually in Figure 1a. The re-
lationship between the adaptiveness of a human-machine
system is a function of the workload and unpredictability
it causes the operator. This implies that for any increase
in adaptiveness (the ability of to perform in an appropri-
ate, context-dependent manner across situations) there
must be an accompanying increase in one or both of the
other legs of the triangle. Either human workload or un-
predictability (the human’s inability to know what the
automation will do) must increase. Since adaptiveness is
generally the goal of added complexity (though systems
can be complex without achieving it), this is equivalent to
saying that any increase in system complexity must affect
the operator in two ways—either (1) the added complex-
ity must be controlled by the human, resulting in in-
creases in workload, or (2) the added complexity must be
managed by automation, resulting in increases in unpre-
dictability. The ongoing debate (Maes, 1994; Schneider-
man, 1997) in the HCI design community over intelligent
agents vs. direct manipulation interfaces is a manifesta-
tion of these alternatives.

In recent work developing an interface for Uninhabited
Combat Air Vehicles (UCAVs), we have explored a mid-
dle road between ‘full’ human control and delegation to
automation. In brief, our solution is to allow human op-
erators to interact with advanced automation flexibly at a

 2

Event
Handling

Control
Algorithms

Playbook
GUI

Tasking
Instructions Provably correct

plans

Provably safe
reactions

Feedback

System control

Mission
Analysis

Shared Task Model

Special Purpose
Tools

Figure 2. General Architecture for Tasking Interfaces.

Flexibility across Spectrum

Figure 1b. A 'Tasking
Interface' provides

multiple methods of
increasing adaptivenss.

variety of levels. This
allows the human
operator to smoothly
vary the ‘amount’ of
automation s/he uses
depending on such
variables as time
available, workload,
criticality of the de-
cision, degree of trust,
etc.—variables known
to influence human
trust and accuracy in
automation use (Riley, 1996). It also allows the human to
flexibly act within the limitations imposed by the capa-
bilities and constraints of the world—a strategy shown to
produce superior aviation plans and superior human un-
derstanding of plan considerations in (Layton, Smith &
McCoy, 1994) and which lies at the heart of recent ad-
vances in ecological interface design (Vicente, 1996).
While this does not eliminate the dilemma presented in
Figure 1a, it mitigates it by allowing operators to choose
various points on the spectrum for interaction with auto-
mation (see Figure 1b). We call human-machine systems
of this sort “tasking” interfaces, because they allow pos-
ing a task to automation at all the different levels one
might ‘task’ a knowledgeable subordinate.

PROPOSED SOLUTION— TASKING
INTERFACES: REQUIREMENTS AND

ARCHITECTURE
There are three primary challenges involved in the con-
struction of a tasking interface:

(1) A shared vocabulary must be developed, through

which the operator can flexibly pose tasks to the auto-
mation and the automation can report how it intends
to perform those tasks.

(2) Sufficient knowledge must be built into the interface
to enable making intelligent choices within the task-
ing constraints imposed by the user.

(3) One or more interfaces must be developed which will
permit inspection and manipulation of the tasking vo-
cabulary to pose tasks and review task elaborations in
a rapid and easy fashion.

Figure 2 presents our general architecture for tasking in-
terfaces. The three primary components each address one
of the challenges described above. In our approach, a
Graphical User Interface (GUI) in the form of a “play-
book” and a Mission Analysis Component (MAC) are
based on and communicate with each other and with the

human operator via a Shared Task Model. The human op-
erator communicates tasking instructions in the form of
desired goals, tasks, partial plans or constraints, via the
Playbook GUI, in accordance with the task structures de-
fined in the shared task model. These are, in fact, the
methods used to communicate commander’s intent in cur-
rent training approaches for U.S. battalion level com-
manders (Shattuck, 1995). The MAC is a projective plan-
ning system capable of understanding these instructions
and (a) evaluating them for feasibility or b) expanding
them to produce fully executable plans. The MAC may
draw on special purpose planning tools to perform these
functions, wrapping them in the task-sensitive environ-
ment of the tasking interface as a whole. Outside of the
tasking interface itself, but essential to its use, are two
additional components. Once an acceptable plan is cre-
ated, it is passed to an Event Handling component, which
is a reactive planning system capable of making moment
by moment adjustments to the plan during execution. The
Event Handling component then passes these instructions
to control algorithms that actually effect behaviors in the
controlled system automation.

USAGE SCENARIO
Additional description of these components is beyond the
scope of this paper; see Miller & Goldman, 1997 and
Miller, Pelican & Goldman, 1998 for more details. In-
stead, we will focus on an illustration of the human inter-
action with one implementation of a tasking interface.

The following scenario illustrates how a user interacts
with the tasking interface prototype we have developed to
plan a UCAV mission. Current and emerging UCAV in-
terfaces either require operators to remotely control the
aircraft via a dedicated cockpit mockup, or they rely on
very high level behaviors (e.g., Close Air Patrol circuits
or waypoint-designated routes) which can be easily but
inflexibly commanded. The first approach provides high
predictability and adaptiveness, but at the cost of very
high operator workload; the second approach minimizes
operator workload and provides highly predictable behav-
ior, but only at the cost of adaptiveness. Neither approach

 3
Figure 4. Pop-up window for “Airfield Denial”.

Figure 3. The Tasking Interface prototype at startup.

is sufficient for usefully placing one or more UCAVs at
the disposal of an operator who is concurrently piloting
his/her own aircraft.

Building on prior Honeywell control algorithms and
simulation work supporting scenarios of multiple unin-
habited F-16s, we have developed a tasking interface to
enable a human leader to lay out a mission plan for the
UCAV’s. This interface will support the stipulation of
full and partial plans and constraints for the UCAVs ei-
ther separately or in conjunction. To date, we have con-
centrated on a ground-based tasking interface due to its
lighter demands on user, simulation and interface design.
However, we believe that with suitable GUI modifica-
tions, this approach will be suited to in-flight tasking as
well.

Our prototype tasking interface as illustrated in Figures 3-
7. The interface illustrated in these figures is our current
Playbook GUI. This interface runs in conjunction with a
prototype MAC, communicating via a Shared Task
Model. The MAC interacts with a specialty route plan-
ning algorithm. Plans produced by this tasking interface
can be ‘flown’ in simulation using realistic control algo-
rithms developed by Honeywell’s Guidance and Control
group.
Figure 3 (and, in larger format, Figure 7) shows the five
primary regions of the Playbook GUI. The upper half of
the screen is a Task Composition Space that the plan
composed thus far. At startup, this area presents the three
top-level tasks (or ‘mission types’) the system currently
knows about: Interdiction, Airfield Denial, and Suppress
Enemy Air Defenses (SEAD). The lower left corner of
the interface is an Available Resource Space, currently
presenting the set of aircraft available for use. The lower
right corner contains an interactive Terrain Map of the
area of interest. As noted above, some planning interac-
tions can be more easily performed or understood via di-
rect, graphical presentation against the terrain of interest.
The space between these two lower windows (empty at
startup) is a Resource in Use Space—once resources are
selected, they will be moved to this space, where they can
be interacted with in more detail. Finally, the lower set of
control buttons is always present. This includes options
such as “Finish Plan” for handing the partial plan off to
the MAC for completion and/or review, “Final Route” for
accessing the route planner to create a route within con-
straints specified, “Print” and “Show Schedule” for ob-
taining a Gantt chart timeline of the activities planned for
each actor, etc.

The mission leader would interact with the tasking inter-
face to, first, declare that the “task” for the day was “Air-
field Denial.” Most interactions with the Playbook GUI
are via mouse buttons. In this case, the three top-level
mission task boxes have “or” relationships between them,
meaning the pilot must select one. Figure 4 shows the
pop-up window when the user clicks on “Airfield De-
nial.”
From this pop-up menu, the human “tasker” can tell the
MAC to “Plan this Task” (that is, develop a plan using
this task) or indicate that s/he will “Choose airfield de-
nial” as a task that s/he will flesh out further. The pop-up
menu also contains a context-sensitive list of subtasks that
the tasker can choose to include under this task (only one
is appropriate at this level: “Suppress Air Defenses”).

At this point, having been told only that the task for the
day is “Airfield Denial,” a team of trained human pilots
would have a very good general picture of the mission
they would fly. Similarly, our interface (via the MAC and
the Shared Task Representation) knows what a typical
airfield denial plan consists of. But just as a leader in-
structing a human flight team could not leave the instruc-
tions at that, so the tasker is required to provide more in-

 4

Figure 6. Stipulating subtasks under “Ingress”.

Figure 5. Second-level expansion of ‘Airfield De-

formation to instantiate the high level task. Here, the
tasker must provide the items listed in the next block in
the pop-up window in Figure 4 (e.g., a target, a homebase,
etc.) and, as for all plans, the specific aircraft to be used.
S/he selects aircraft by clicking on the available aircraft
resources and moving them to the Resources in Use Area.
By clicking on “Choose Target”, the user activates the
Terrain Map and a subsequent click there will designate a
target location.

The human leader could provide substantially more detail
(such as route, munitions, roles for wingmen, etc.) but
s/he could also hand the task off to at this point and let a
human team develop the plan. The tasker can also do this,
handing the task to the MAC via the “Finish Plan” button.
We will assume that the user provides more plan specifi-
cations. Both the tasker and the interface know, thanks to
their Shared Task Model, that any Airfield Denial plan
must consist of Ingress, Strike and Egress subtasks, in that
order. “Airfield Denial” may also include a Defense Sup-
pression subtask that runs in parallel with Strike. After
the tasker selects “Choose Airfield Denial”, the Task
Composition Space is reconfigured as in Figure 5 to show
the next level of options. The small arrows between the
task blocks indicate that all subtasks are sequential.

To provide detailed instructions about how to perform the
Ingress task, the tasker must choose it, producing the “ge-
neric” Ingress task shown in Figure 6. Note that this is not
a default method of doing “Ingress” so much as a generic,
uninstantiated template—roughly what a human expert
knows about how Ingress can or should be performed. A
trained pilot knows that Ingress can be done either in for-
mation or in dispersed mode and, in either case, must in-
volve a “Take Off” subtask followed by one or more “Fly
to Location” subtasks. Figure 6 illustrates the GUI after
the user selects “Formation Ingress”. The MAC automati-
cally fills in the set of steps it knows must be accom-
plished to do Ingress in formation— that all aircraft must
takeoff and then fly to a specified location. In the event
that there are further specifications the user can or must
supply, the MAC will generate them in context-sensitive

pop-up windows (e.g., specifying the airfield to take off
from.)
The user can continue to specify and instantiate tasks
down to the “primitive” level where the subtasks are be-
haviors the control algorithms (see Figure 2) in our simu-

lator can be relied upon to execute in flight. Alternatively,
at any point after the initial selection of mission task and
its required parameters, the tasker can hand the partly de-
veloped plan over to the MAC for completion and/or re-
view by means of the “Finish Plan” button. In extreme
cases, a viable “Airfield Denial” plan could be created
with as few as five choices (select aircraft, target, home-
base, staging and rendezvous points). If the MAC is inca-
pable of developing a viable plan within the constraints
imposed, (e.g., if the user has stipulated distant targets
that exceed aircraft fuel supplies) MAC will inform the
user of these difficulties via pop-up windows.

Figure 7 shows the completed plan provided by the MAC
after the stipulation of the Ingress task as described
above. The user has asked for a Final Route generated by
the route planner on the basis of the MAC’s inputs. This
output is presented in the Terrain Map window.

LESSONS AND CONCLUSIONS
Our prototype interface builds plans for 3 types of multi-
UCAV missions (corresponding to 3 top-level tasks).
Other types of interfaces are entirely possible (see Miller
& Goldman, 1997, for a more ambitious, though unim-
plemented example) and we hope to explore their devel-
opment as we carry the tasking interface concept into al-
ternate domains and gain more experience with user
interactions with this type of automation. Our approach to
tasking interfaces builds a bridge of flexibility between
‘pure’ direct manipulation interfaces where the user is
always in charge but must incur the associated workload,

 5

Figure 7. Finished plan returned by the MAC after User ‘calls’ the Ingress task.

and ‘pure’ intelligent agent automation where the user is
free from undue workload but at the cost of surrendering
control and predictability to a system that may not do
what s/he wants. While operators of complex systems are
rarely comfortable giving over authority to automation at
all times, they are quite willing to use it when helpful.
Tasking interfaces are a method of allowing the operator
to remain fully in charge, yet of enabling almost full
autonomy for an aiding agent. Perhaps by requiring (and
enabling) automation to behave more like an intelligent
subordinate, operators will be more tolerant of its weak-
nesses and more willing to let it show its capabilities in
some settings. Through use, then, users may become more
familiar with their automation’s strengths and weaknesses
and, ultimately, better at using it when it is needed.

ACKNOWLEDGEMENTS
This work was funded by a Honeywell Initiatives Grant.
The authors would like to that Dan Bugajski, Don Shaner
and John Allen for their help in the development and im-
plementation of the ideas presented.

REFERENCES

Billings, C. (1997). Aviation Automation: The search for
a human-centered approach. Lawrence Erlbaum:
Mahwah, NJ.

Layton, C., Smith, P, and McCoy, E. (1994). Design of a
cooperative problem solving system for enroute flight
planning: An empirical evaluation. Human Factors,
36(1). 94-119.

Maes, P. (1994). Agents that Reduce Work and Informa-
tion Overload. Communications of the ACM, 37(7),
31-40.

Miller, C. & Funk, H. (1997). Task-based Interface Man-
agement: A Rotorcraft Pilot’s Associate Example.
Proceedings of the AHS Crew Systems Technical Spe-
cialists Meeting, (Philadelphia PA, September).

Miller, C. & Goldman, R. (1997). HEC paper
Miller, C., Pelican, M., and Goldman, R. (1999). “Task-

ing” Interfaces for Flexible Interaction with Automa-
tion: Keeping the Operator in Control. In Proceedings
of the International Conference on Intelligent User
Interfaces. Redondo Beach, CA: January 5-8.

Riley, V. (1996). Operator reliance on automation: The-
ory and data. In R. Parasuraman and M. Mouloua
(Eds.), Automation and Human Performance: Cur-
rent Theory and Applications. Lawrence Erlbaum:
Hillsdale, NJ, 19-36.

Shattuck, L. (1995). Communication of Intent in Distrib-
uted Supervisory Control Systems. Unpublished dis-
sertation. The Ohio State University, Columbus, OH..

Sheridan, T. Supervisory Control. (1987). In G. Salvendy
(Ed.), Handbook of Human Factors. John Wiley &
Sons, New York. 1244-1268.

Shneiderman, B. (1997). Direct manipulation for compre-
hensible, predicatable, and controllable user inter-
faces, Proceedings of the ACM International Work-
shop on Intelligent User Interfaces ’97, New York,
NY, 33-39.

Vicente, K. J. (1996). Improving dynamic decision mak-
ing in complex systems through ecological interface
design: A research overview. System Dynamics Re-
view, 12. 251-279.

