Submitted for presentation at the Fifth Annual Sgsiyom on Human Interaction with Complex Systems| 2@-May 2, 2000, Urbana-Champaign, Il

“TASKING” INTERFACES TO KEEP THE OPERATOR IN CONTRO L

Christopher A. Miller, Michael Pelican , Robert Goldman
Honeywell Technology Center
3660 Technology Dr.
Minneapolis, MN 55418 U.S.A.

ABSTRACT
The ongoing debate in the HCI community betweesttlir
manipulation and intelligent, automated agents poto
a fundamental problem in complex systems. Humans wa
to remain in charge even if they don’t want to ¢an’t)
make every action and decision themselves. Weliesre
exploring a middle road through “tasking interfates
interfaces which share a task model with a projexti
planner to enable human operators to flexibly “call
plays” (i.e., stipulate plans) to various levelsadfstrac-
tion, leaving the remainder to be fleshed out leyptan-
ner. The result is akin to ‘tasking’ a knowledgesabub-
ordinate with more or less detailed instructionse W
describe a prototype tasking interface for Unintedi
Combat Air Vehicles (UCAVS).

INTRODUCTION
As systems become more complex, the temptatian is t
control them via “automation” (e.g., Billings, 199+
either with systems which fully perform the taskwath
‘decision aids’ which provide guidance but leaveafi
execution to humans. In spite of extensive teclgiotd
achievements in automation, advanced automatidarsuf
from a basic sociological problem. Human operateast
to remain in charge. For example, in developingRbe
torcraft Pilot's Associate Cockpit Information Mayea
(Miller & Funk, 1997), we asked multiple pilots add-
signers to develop a consensus list of goals fgoad”
cockpit configuration manager. Two of the top thiteens
on the list were “Pilot remains in charge of tabkca-
tion” and “Pilot remains in charge of informatiorep
sented.”

There are good reasons to design systems at therhig
levels of automation. By definition (Sheridan, 198uch
systems share responsibility, authority and autgnover
many work behaviors with human operator(s) to accom
plish their goals of reducing workload and inforroat
overload. While operators may wish to remain inrgha
today’s complex systems no longer permit them to be
fully in charge of all system operations—at leastin

the same way as in earlier cockpits and workstation

<
2.
<,
A%
TLN\%
9 C
(A

Adaptiveness

P

a a
<l A -
< >
Increased human manage- Increased automation man-
ment role yields increased agement role yields increased
human workload unpredictability to human

Figure 1a. Conceptual relationship between system
adaptveness, human workload and unprtability.

The problem is shown conceptually in Figure 1a. fidhe
lationship between the adaptiveness of a human-imach
system is a function of the workload and unpredititst
it causes the operator. This implies that for amyease
in adaptiveness (the ability of to perform in aprapri-
ate, context-dependent manner across situatioes) th
must be an accompanying increase in one or batteof
other legs of the triangle. Either human workloadi-
predictability (the human’s inability to know whiie
automation will do) must increase. Since adaptissng
generally the goal of added complexity (though exyst
can be complex without achieving it), this is eglént to
saying that any increase in system complexity ratfstt
the operator in two ways—either (1) the added cemypl
ity must be controlled by the human, resultingnin i
creases in workload, or (2) the added complexitgtrbe
managed by automation, resulting in increases pman
dictability. The ongoing debate (Maes, 1994; Scteei
man, 1997) in the HCI design community over inggdht
agents vs. direct manipulation interfaces is a feata-
tion of these alternatives.

In recent work developing an interface for Uninhedi
Combat Air Vehicles (UCAVs), we have explored a-mid
dle road between ‘full’ human control and delegatio
automation. In brief, our solution is to allow humap-
erators to interact with advanced automatleribly at a

variety of levels. This
allows the human
operator to smoothly
vary the ‘amount’ of
automation s/he uses
depending on such
variables as time
available, workload,
criticality of the de-
cision, degree of trust,
etc.—variables known
to influence human
trust and accuracy in
automation use (Riley, 1996). It also allows thenha to
flexibly act within the limitations imposed by tleapa-
bilities and constraints of the world—a strateggwh to
produce superior aviation plans and superior huaman
derstanding of plan considerations in (Layton, 8r&it
McCoy, 1994) and which lies at the heart of re@eht
vances in ecological interface design (Vicente,6)99
While this does not eliminate the dilemma preseirted
Figure 1a, it mitigates it by allowing operatorsctmose
various points on the spectrum for interaction vaittio-
mation (see Figure 1b). We call human-machine syste
of this sort “tasking” interfaces, because thepwlpos-
ing a task to automation at all the different lsvahe
might ‘task’ a knowledgeable subordinate.

25 2
- >

Flexibility across Spectrum

Figure 1b. A 'Tasking
Interface’ provides
multiple methods of

increasing adaptivenss.

PROPOSED SOLUTION— TASKING
INTERFACES: REQUIREMENTS AND
ARCHITECTURE
There are three primary challenges involved inctbre
struction of a tasking interface:

(1) A shared vocabulary must be developed, through
which the operator can flexibly pose tasks to thi®-a
mation and the automation can report how it intends
to perform those tasks.

(2) Sufficient knowledge must be built into the intexda
to enable making intelligent choices within thektas
ing constraints imposed by the user.

(3) One or more interfaces must be developed which will

permit inspection and manipulation of the tasking v
cabulary to pose tasks and review task elaborations
a rapid and easy fashion.

Figure 2 presents our general architecture folingsk-
terfaces. The three primary components each addness
of the challenges described above. In our appraach,
Graphical User Interface (GUI) in the form of adp!
book” and a Mission Analysis Component (MAC) are
based on and communicate with each other and téth t

Tasking
Playbook |Instructions Mission Provably correct
GUI Feedback Analysis plans
Shared Task Model Event Provably safe
Handling reactions
SpeCITé:)lgs PO A%gpﬂﬁ%s Syster:n control
V9
il Q&

Figure 2. General Architecture for Tasking Integs.

human operator via a Shared Task Model. The hurpan o
erator communicates tasking instructions in thenfof
desired goals, tasks, partial plans or constraudshe
Playbook GUI, in accordance with the task strudute-
fined in the shared task model. These are, in thet,
methods used to communicate commander’s interdrin ¢
rent training approaches for U.S. battalion lewehe
manders (Shattuck, 1995). The MAC iprajectiveplan-
ning system capable of understanding these insinst
and (a) evaluating them for feasibility or b) exgegy

them to produce fully executable plans. The MAC may
draw on special purpose planning tools to perfdresé
functions, wrapping them in the task-sensitive som
ment of the tasking interface as a whole. Outsidb®
tasking interface itself, but essential to its wse,two
additional components. Once an acceptable plareis c
ated, it is passed to an Event Handling compongmth

Is areactiveplanning system capable of making moment
by moment adjustments to the plan during execuiitwe.
Event Handling component then passes these instnsct
to control algorithms that actually effect behasior the
controlled system automation.

USAGE SCENARIO
Additional description of these components is belythre
scope of this paper; see Miller & Goldman, 1997 and
Miller, Pelican & Goldman, 1998 for more details- |
stead, we will focus on an illustration of the humater-
action with one implementation of a tasking intega

The following scenario illustrates how a user iatés
with the tasking interface prototype we have depetbto
plan a UCAV mission. Current and emerging UCAV in-
terfaces either require operators to remotely cbtie
aircraft via a dedicated cockpit mockup, or thdy om
very high level behaviors (e.g., Close Air Patriotaits
or waypoint-designated routes) which can be edsity
inflexibly commanded. The first approach provideghh
predictability and adaptiveness, but at the coseoy
high operator workload; the second approach miremiz
operator workload and provides highly predictal#bdy-
ior, but only at the cost of adaptiveness. Neitpgroach

is sufficient for usefully placing one or more UCAt
the disposal of an operator who is concurrentlgtjpip
his/her own aircraft.

Building on prior Honeywell control algorithms and
simulation work supporting scenarios of multiplenin
habited F-16s, we have developed a tasking intertiac
enable a human leader to lay out a mission plathtor
UCAV'’s. This interface will support the stipulatiar
full and partial plans and constraints for the UGA&I-
ther separately or in conjunction. To date, we hzore
centrated on a ground-based tasking interfacedliis t
lighter demands on user, simulation and interfaesagh.
However, we believe that with suitable GUI modifica
tions, this approach will be suited to in-flighskang as
well.

Our prototype tasking interface as illustrated iguiFes 3-
7. The interface illustrated in these figures is cwrrent
Playbook GUI. This interface runs in conjunctioritwa
prototype MAC, communicating via a Shared Task
Model. The MAC interacts with a specialty routerpla
ning algorithm. Plans produced by this taskingriiaiee
can be ‘flown’ in simulation using realistic conitadgo-
rithms developed by Honeywell's Guidance and Cdntro
group.

Figure 3 (and, in larger format, Figure 7) showesfilie
primary regions of the Playbook GUI. The upper loélf
the screen is a Task Composition Space that time pla
composed thus far. At startup, this area preséstthree
top-level tasks (or ‘mission types’) the systenrently
knows about: Interdiction, Airfield Denial, and Supss
Enemy Air Defenses (SEAD). The lower left corner of
the interface is an Available Resource Space, otlyre
presenting the set of aircraft available for udee Tower
right corner contains an interactive Terrain Majphef
area of interest. As noted above, some planniregant
tions can be more easily performed or understoadivi
rect, graphical presentation against the terraintefest.
The space between these two lower windows (empty at
startup) is a Resource in Use Space—once resoarees
selected, they will be moved to this space, whieeg tan
be interacted with in more detail. Finally, the Evset of
control buttons is always present. This includesoog
such as “Finish Plan” for handing the partial ptdiito
the MAC for completion and/or review, “Final Routist
accessing the route planner to create a routerwdtbm-
straints specified, “Print” and “Show Schedule” &dr-
taining a Gantt chart timeline of the activitieamhed for
each actor, etc.

airfield_denial

]

L

||||||

Finish Plan | Final Route | Print Schedule | Show Schedule | Abort | Quit |

Figure 3. The Tasking Interface prototype at gt

The mission leader would interact with the taskirgr-
face to, first, declare that the “task” for the degs “Air-
field Denial.” Most interactions with the PlayboGiUI
are via mouse buttons. In this case, the thredeigd-
mission task boxes have “or” relationships betwibem,
meaning the pilot must select one. Figure 4 shbwes t
pop-up window when the user clicks on “Airfield De-
nial.”

From this pop-up menu, the human “tasker” canthell
MAC to “Plan this Task” (that is, develop a planngs
this task) or indicate that s/he will “Choose aldi de-
nial” as a task that s/he will flesh out furthehelTpop-up
menu also contains a context-sensitive list of ashs that
the tasker can choose to include under this tasly me
IS appropriate at this level: “Suppress Air Defesige

At this point, having been told only that the téskthe
day is “Airfield Denial,” a team of trained humaiiqts
would have a very good general picture of the rarssi
they would fly. Similarly, our interface (via theAC and
the Shared Task Representation) knows what a typica
airfield denial plan consists of. But just as adkain-
structing a human flight team could not leave tisruc-
tions at that, so the tasker is required to prowee in-

airfield_denial ot

airfield_denial

Plan This Task
Choose airfield_denial

-i_is_ﬁp;;;r;srhir Defenses Subtask

Choose target

Choose homebase
Choose staging_point
Choose rendezvous_point

» N
Update Threat Information S

Figure 4. Po-up window for “Airfield Denial”

formation to instantiate the high level task. Heéhe,
tasker must provide the items listed in the neatklin

the pop-up window in Figure 4 (e.g., a target, anélbase,
etc.) and, as for all plans, the specific airctafibe used.
S/he selects aircraft by clicking on the availaditeraft
resources and moving them to the Resources in Usa A
By clicking on “Choose Target”, the user activates
Terrain Map and a subsequent click there will desig a
target location.

The human leader could provide substantially mestait!
(such as route, munitions, roles for wingmen, diat)
s/he could also hand the task off to at this pait let a
human team develop the plan. The tasker can alsoislo
handing the task to the MAC via the “Finish Planittbn.
We will assume that the user provides more placipe
cations. Both the tasker and the interface knoankb to
their Shared Task Model, that any Airfield Deni&drp
must consist of Ingress, Strike and Egress suhtasksat
order. “Airfield Denial” may also include a DefenSeap-
pression subtask that runs in parallel with Strikiger
the tasker selects “Choose Airfield Denial”, theska
Composition Space is reconfigured as in Figure $htaw
the next level of options. The small arrows betwien
task blocks indicate that all subtasks are seqalenti

BERY Beobienl Flammms

i 1 Tatriis 1l prrel
=" ° el y =
B Tikaiske

Phnmthordbae:

sy e

e | |

Fiaure 5. Secor-level exnansion of ‘Airfield le-

To provide detailed instructions about how to perféhe
Ingress task, the tasker must choose it, produbiegge-
neric” Ingress task shown in Figure 6. Note thé it not
a default method of doing “Ingress” so much asraege,
uninstantiated template—roughly what a human expert
knows about how Ingress can or should be perforded.
trained pilot knows that Ingress can be done eithéor-
mation or in dispersed mode and, in either cassf mu
volve a “Take Off” subtask followed by one or mé&Fdy
to Location” subtasks. Figure 6 illustrates the Gtér
the user selects “Formation Ingress”. The MAC awatm
cally fills in the set of steps it knows must be@o-
plished to do Ingress in formation— that all aiftraust
takeoff and then fly to a specified location. le #wvent
that there are further specifications the useraranust
supply, the MAC will generate them in context-séusi

pop-up windows (e.g., specifying the airfield tkeaff
from.)

The user can continue to specify and instantiatesta
down to the “primitive” level where the subtaske ae-
haviors the control algorithms (see Figure 2) ingimu-

UCAV Tactical Planner
mission

airfield_denial
ingress

formation_ingress

lakeofi ‘toloce
t

| do_takeoff
dispersed_ingress|o

|- Plan This Task
Choose formation_ingress

Choose airfield

=]

Fiaure 6. Stipulating subtasks under “Inare

lator can be relied upon to execute in flight. Atitively,
at any point after the initial selection of misstask and
its required parameters, the tasker can hand ttiy pa-
veloped plan over to the MAC for completion andir
view by means of the “Finish Plan” button. In exire
cases, a viable “Airfield Denial” plan could be ared
with as few as five choices (select aircraft, thrgeme-
base, staging and rendezvous points). If the MAGaa-
pable of developing a viable plan within the coaistis
imposed, (e.g., if the user has stipulated digengets
that exceed aircraft fuel supplies) MAC will infortime
user of these difficulties via pop-up windows.

Figure 7 shows the completed plan provided by tHe&M
after the stipulation of the Ingress task as dbsdri
above. The user has asked for a Final Route geelat
the route planner on the basis of the MAC's inplites
output is presented in the Terrain Map window.

LESSONS AND CONCLUSIONS
Our prototype interface builds plans for 3 typesnoiti-
UCAV missions (corresponding to 3 top-level tasks).
Other types of interfaces are entirely possible (dédler
& Goldman, 1997, for a more ambitious, though unim-
plemented example) and we hope to explore theieldev
opment as we carry the tasking interface conceptah
ternate domains and gain more experience with user
interactions with this type of automation. Our aygwh to
tasking interfaces builds a bridge of flexibilitgtiveen
‘pure’ direct manipulation interfaces where theruse
always in charge but must incur the associated lvadk

and ‘pure’ intelligent agent automation where teerus
free from undue workload but at the cost of suresimdy
control and predictability to a system that may ahmt
what s/he wants. While operators of complex syst@m@s
rarely comfortable giving over authority to autoroatat
all times, they are quite willing to use it wherigfel.
Tasking interfaces are a method of allowing therajoe
to remain fully in charge, yet of enabling almasit f
autonomy for an aiding agent. Perhaps by requiiang
enabling) automation to behave more like an irgeti
subordinate, operators will be more tolerant ofiesak-
nesses and more willing to let it show its capéibaiin
some settings. Through use, then, users may becmre
familiar with their automation’s strengths and weesses
and, ultimately, better at using it when it is need

ACKNOWLEDGEMENTS
This work was funded by a Honeywell Initiatives Gira
The authors would like to that Dan Bugajski, Dorasér
and John Allen for their help in the developmerd an-
plementation of the ideas presented.

REFERENCES

Billings, C. (1997).Aviation Automation: The search for
a human-centered approach.awrence Erlbaum:
Mahwah, NJ.

Layton, C., Smith, P, and McCoy, E. (1994). Desifa
cooperative problem solving system for enroutehtlig
planning: An empirical evaluatiorHHuman Factors,
36(1). 94-119.

Maes, P. (1994). Agents that Reduce Work and Irderm
tion Overload.Communications of the ACM, @7},
31-40.

Miller, C. & Funk, H. (1997). Task-based Interfadan-
agement: A Rotorcraft Pilot's Associate Example.
Proceedings of the AHS Crew Systems Technical Spe-
cialists Meeting (Philadelphia PA, September).

Miller, C. & Goldman, R. (1997). HEC paper

Miller, C., Pelican, M., and Goldman, R. (1999).a5k-
ing” Interfaces for Flexible Interaction with Aut@m
tion: Keeping the Operator in Control. Rmoceedings
of the International Conference on Intelligent User
InterfacesRedondo Beach, CA: January 5-8.

Riley, V. (1996). Operator reliance on automatidhe-
ory and data. In R. Parasuraman and M. Mouloua
(Eds.), Automation and Human Performance: Cur-
rent Theory and Applicationsd_awrence Erlbaum:
Hillsdale, NJ, 19-36.

Shattuck, L. (1995). Communication of Intent in fis
uted Supervisory Control Systemdnpublished dis-
sertation. The Ohio State University, Columbus, OH.

Sheridan, T. Supervisory Control. (1987). In G.vBatly
(Ed.), Handbook of Human Factarslohn Wiley &
Sons, New York. 1244-1268.

Shneiderman, B. (1997). Direct manipulation for poea
hensible, predicatable, and controllable user inter
faces, Proceedings of the ACM International Work-
shop on Intelligent User Interfaces '97, New York,
NY, 33-39.

Vicente, K. J. (1996). Improving dynamic decisioakn
ing in complex systems through ecological interface
design: A research overview. System Dynamics Re-
view, 12. 251-279.

UCAV Tactical

Planner

Howmywal)

> >

u7-213 u7-154

> >

u7-143 u7-214

> P

U7-045

> >

u7-117 U7-076

Tail: U7-154
Weapon: ECM Pod

4

Tail: U7-143
Weapon: JDAMs
Mission: ad_primary_strike

4

U7-067

Mission: ad_primary_strike

Tail: U7-067
Weapon: HARM
Mission: ad_suppress_defenses

Finish Plan _ Print Schedule = Show Schedule ~ Abort Quit

Figure 7. Finished plan returned by the MAC afieer ‘calls’ the Ingress task.

