Submitted for presentation at the International €@wance on Intelligent User Interfaces. RedondocBe&A: January 5-8, 1999.

“Tasking” Interfaces for Flexible Interaction with

Automa-

tion: Keeping the Operator in Control

Christopher A. Miller, Michael Pelican and Robert Goldman
Honeywell Technology Center
3660 Technology Dr.
Minneapolis, MN 55418 U.S.A.
cmiller, pelican, goldman@htc.honeywell.com

ABSTRACT

The ongoing debate in the HCI community betweerair
manipulation and intelligent, automated agents tgoio a
fundamental problem in complex systems. Humang tean
remain in charge even if they don’t want to (or'amake
every action and decision themselves. We have bgen
ploring a middle road through the development asking
interfaces”—interfaces which share a task modeh veit
projective planning system to enable human opesator
flexibly “call plays” (that is, stipulate plans) aérious lev-
els of abstraction, leaving the remainder of thenpio be
fleshed out by the planning system. The resulikin to
‘tasking’ a knowledgeable subordinate to whom one ¢
give more or less detailed instructions. We désca pro-
totype tasking interface for developing missionngldor
Uninhabited Combat Air Vehicles (UCAVS).

Keywords

Tasking Interface, Mixed Initiative Planning and rfiol,
Task Model, Hierarchical Task Network Planning, tni
habited Combat Air Vehicles

INTRODUCTION

<
2.

0,
FA%
FLA\%
$ 3
S %,

Z

Adaptiveness

Py Y

a a
< »
<€ >
Increased human manage- Increased automation man-
ment role yields increased agement role yields increased

human workload unpredictability to human

Figure 1a. Conceptual view of the relationship between sys-

tem adaptiveness. human workload and unpredictabilitv.

higher levels of automation. By definition [17],cbusys-
tems share responsibility, authority and autonomgro
many work behaviors with human operator(s) to aquism
their goals of reducing operator workload and infation
overload. While operators may wish to remain iarge,
and it is critical that they do so, today’s compégstems no
longer permit them to be fully in charge of allt&ya opera-

As systems become more complex, there is increasingtions—at least not in the same way as in earliekpits

temptation to control them via “automation” [e.d]—
either in the form of subsystems which fully penfothe
task, or as ‘decision aids’ which provide guidabo¢ leave
the final execution to the human. In spite of extem tech-
nological achievements in automation technologyv(a$
as some spectacular failures), experience has stengy
shown that advanced automation suffers from a tssio-
logical problem. Human operators of complex system
want to remain in charge. For example, in develgphe
Rotorcraft Pilot's Associate Cockpit Information Neger
[10], we multiple pilots and designers to developoasen-
sus list of prioritized goals for a “good” cockgibnfigura-
tion manager. Two of the top three items on theviere
“Pilot remains in charge of task allocation” andl&P re-
mains in charge of information presented.”

There are good reasons to design and use systethe at

and workstations.

Conceptually, the problem can be presented agjwéila.
This figure shows the relationship between the tidapess
of a human-machine system as a function of the lvack
or unpredictability it causes for the human operat®his
view implies that for any increase in adaptiven@ss abil-
ity of the human-machine system to perform in aorapri-
ate, context-dependent manner across situatioes thust
be an accompanying increase in one or both of thero
two legs of the triangle. Either human workload e(th
amount of physical, attentional or cognitive “engrghe
human must exert to use the system) or unprediityain-
ability of the human to know what the automatiofl do at
any given time) must increase.

Since adaptiveness is generally the goal of addetplex-
ity (though systems can be complex without achig\vth
this is equivalent to saying that any increase uman-
machine system complexity must affect the humanaipe
in two ways—either (1) the added complexity musfiiky
controlled by the human, resulting in increasesankload,

or (2) the added complexity must be managed bynaato
tion, resulting in increases in unpredictabiliffhe ongoing
debate [9,18] in the HCI design community over lligent
agents vs. direct manipulation interfaces is a featation
of these alternative approaches.

In recent work developing an interface for Uninhedi
Combat Air Vehicles (UCAVSs), we have explored a dhéd
road between these alternatives. In brief, ountgmi is to
allow human operators to interact with advancedraat

tion flexibly at a variety of levels. This allows the human

operator to smoothly vary the ‘amount’ of automatsihe
uses depending on such variables as time availalole-
load, criticality of the decision, degree of trustc.—
variables known to influence human willingness acdu-
racy in automation use [13]. It further allows th@man to
flexibly act within the limitations imposed by tloapabili-
ties and constraints of the equipment and the wedd
strategy shown to produce superior aviation plamtssaipe-
rior human understanding of plan considerationg8jrand
which lies at the heart of recent advances in egcéd in-
terface design [19]. While this does not elimintte di-
lemma presented in Figure la, it mitigates it bgvaihg
operators to choose various points on the spectonrm-
teraction with

automation (see Figurg ‘

1b). We call human-

machine systems of thig =

sort “tasking” interfaces,| - .

because they allow|

posing a task to| € >

. Flexibility across Spectrum

automation at all the

different levels one e 1b. A Tasking Interface
H ‘ ’ igure . asking Interface

mlght task a provides multiple methods of

knowledgeable subor{ increasing adaptivenss.

dinate.

PROPOSED SOLUTION— TASKING INTERFACES
There are three primary challenges involved in ¢be-
struction of a tasking interface:

communicate with each other and with the humanaiper

via a Shared Task Model. The human operator communi

cates tasking instructions in the form of desiredlg, tasks,
partial plans or constraints, via the Playbook Gbllaccor-
dance with the task structures defined in the shaask
model. These are, in fact, the methods used to coriaate
commander’s intent in current training approacloesf.S.
battalion level commanders [16]. The MAC ipijective
planning system capable of understanding theseuoigins
and (a) evaluating them for feasibility or b) exgeng them
to produce fully executable plans. The MAC maywdom
special purpose planning tools to perform theseifurs,
wrapping them in the task-sensitive environmenttiod
tasking interface as a whole. Outside of the tagknter-
face itself, but essential to its use, are two @olthl com-
ponents. Once an acceptable plan is createdpéssed to

system capable of making moment by moment adjugemen

to the plan during execution. The Event Handlinghpo-
nent then passes these instructions to controtittiges that
actually effect behaviors in the controlled systaantoma-
tion. Since the GUI, MAC and the Shared Task Maiel
components unique to the construction of a taskiber-
face, they will be described in more detail in sepsa sub-
sections below.

Shared Task Model

A critical enabling technology for tasking interéscis the
ability to code, track and dynamically modify theats and
plans which human users have in operating thegraation
and equipment. By explicitly representing thesétiestin a
“task model” format that iboth familiar to a human opera-

tor and interpretable by a knowledge-based planning sys-

tem, we gain a level of coordination between huraad
system beyond that previously possible.

Beyond the comparatively static task models usedark-
flow support tools [14], a task model must meetesalre-
quirements to support a tasking interface. Fitstust be
organized via functional decomposition—each taskaal
must be decomposable into alternate methods oéwclg

(1) A shared vocabulary must be developed, throughtwhic

the operator can flexibly pose tasks to the autmmat _that goal, down to some bottom layer of executauiiei-

and the automation can report how it intends to per Tasking
form those tasks. Playbook | Instructionsf \jission | Provably correct
(2) Sufficient knowledge must be built into the intedao GUl [Feedbac Analysis plans
enable making intelligent choices within the tagkin Shared Task Model Event Provably safe
constraints imposed by the user. - Handling reactions
]]] Special Purpose Control
(3) One or more interfaces must be developed which |will Todls Algorithms | System control
permit inspection and manipulation of the taskimg v /"/’/
cabulary to pose tasks and review task elaboratioas AT,
rapid and easy fashion.)))
Figure2. General Architecture for Tasking Interfac

Figure 2 presents our general architecture foririgsikter-
faces. The three primary components each addressfon
the challenges described above. In our approaGraphi-
cal User Interface (GUI) in the form of a “playbdadnd a
Mission Analysis Component (MAC) are based on an

tive actions. A ‘task’, therefore, represents anagsulated
set of behaviors—perhaps including alternatives—etvhis
known as a method of accomplishing domain goalsBés
d [2] points out, the naming or labeling of tasks @& in-

volves a process of ‘rationalization’ or abstracttoward a
‘template’ which leaves the final customizationthé be-
haviors for the actor at runtime. This both mot@gbur in-
clusion of execution components beyond the interitself
to translate the plan into action in the use emvitent (cf.
Figure 2), and points to the importance of the tasklel as

a means of communication between user and systém.

also permits tasking at an abstract enough levelvier-

come many of the objections that Vicente [20] raise

against static, prescriptive ‘scripting’ approachestask-
based instruction, while adhering to one of histrarien-
ets: that designs need to be ‘finished at run time'the
executing agent.

The second requirement of a task model for a tgsikiter-
face is that the tasks represented must be draam fhe
way operators think about their domain. Thaths, label-
ing conventions used by the interface and the systeist
be the same as those used by the human operatasks’
may be drawn from training materials, operatorrivigavs,
etc., but the resulting model should be intuitivel &asily
readable by any experienced operator.

Finally, the task model must also be understandaiplall
automation systems using it. It should serve #mesfunc-
tion as a football team's playbook—each player lsaivat
he is supposed to do when a given play is calledydina-
tion is an emergent function stemming from all play
sharing the same playbook and complicated behagims
be activated rapidly by use of their ‘labels’.

Our task modeling representation is based on a PRt
like approach developed initially by McDonnell-Ddag
for use in their Pilot’'s Associate and Rotorcrafo®s As-
sociate programs [7]. One possible enhancementrtap-
proach would be shifting to a representation thxatieitly
models the distinction between goals and the ptaas
achieve them, such as Geddes Plan-Goal Graph [[5¢
plan-goal distinction is a natural one for usersrake in
communicating intent [16].

In the creation of our tasking interface, we hawterded
the operator’s ability to ‘call plays’ by enablitngm/her to
interact directly with the task model, activatingdacombin-
ing tasks at various levels of decomposition. Tdaipabil-

ity is provided via thé’laybook GUIdescribed in the next

section below. We have also provided a plannirgiesy
which is capable of understanding the operatoraroands
and either evaluating them for performability oevdloping
an executable plan which obeys, yet fleshes oatppiera-
tor's instructions. ThigMission Analysis Componerg de-
scribed in the following subsection.

Playbook Graphical User Interface

The human operator must have a method of inspeatidg
interacting with the task model, both to understtiredpos-
sible actions which could be taken to achieve kngaals
and, more importantly, to declare those tasks,gyqedrtial
plans and constraints s/he wishes the system sueut his

interface must provide the operator with a methbttall-

ing plays” as described above. Just as a quartedzacac-
tivate a complex set of behaviors by referring teiraple
play name and/or spend additional time (if avadaefin-
ing those behaviors by combining play elementsa@ak-
ing play parameters, so the operator should betallexi-

bly interact with his or her automation via the yPlaok
GUL.

Some requirements which the Playbook GUI mustlFutfi

clude: (1) the set of “plays” (e.g., maneuvers,cpores,
etc.) represented must be those any well-trainestabpr
should know (thus making it intuitive to learn amk), (2)
the general play ‘templates’ in the playbook cancben-
posed and instantiated to create any specific amsgian,
(3) The operator may select plays at various hibieal,
leaving the lower levels to be selected and congbgehe
MAC, and (4) operators may either require or prtite
use of specific plays or of specific resources iwith play.
This makes true mixed initiative planning possilzied
makes the tasking of a UCAV much like providingtias-
tions to a human wingman.

One Playbook GUI is presented in Figure 3. Whitehe-
gan with the development of a direct viewing ancdhipala-
tion tool for the task model itself, some limitat® of this
interface are clear. The underlying links to &tasdel
permit a wide variety of interfaces. The speciitributes
of the GUI must be driven by the uses to whick put. As
a simple example, a pre-mission planning tool véljuire
much more flexibility and precision in visualizirapd in-
teracting with the emerging plan, while an in-fighsking
tool will be constrained to be more simple—perhapsat-
tenuated menu of only those tasking options cusresate-
vant. Further, while a direct presentation of tdwk model
(as illustrated in Figure 3) generally provides thest de-
tailed and precise interaction with the emergingnplit is
not the most familiar or efficient presentation foany pilot
planning tasks. For UCAV tasking, potential uskeave
told us that interacting with the underlying tas&dal indi-
rectly via a map tool and a simple timeline viewuebbe
more intuitive, though the detailed task model $osthould
be retained for more complex mission specificationg/e
have included these concepts in the prototype rngskys-

Al
crPD
C!'D
C 3 D)
e E o c’'>
Attack 9 C L D
i
e —nl Co>
(ARTVSu_p;;)rI) (pecoy) (v Atack) &—_ D] g a %
r
Y Cod
CJCOC userControls O [] I!I

Figure 3. One possible instantiation of a playbook GUI.

tem described below.

Mission Analysis Component

The Mission Analysis Component (MAC) integratesjpce
tive planning technology with a human tasking med$ra.
MAC operates over full or partial mission plans \pded
via the Playbook GUI, performing two sub-functiorf$)
analyzing the operator's plan for feasibility andab
achievement by verifying constraints and (2) auticady
generating candidate completions of partial misgi@ms in
keeping with the requirements and prohibitions isgzbby
the pilot.

The hierarchical, typed representation of playthim play-
book simplifies choices for plan completion by fiimg the
types of plays that are useful at each level. TH&CMises a
hierarchical task network planner [3] in conjunatiwith
constraint propagation techniques [6,5] to perfonm two
functions described above. In broad outline, tinecture
of a UCAV mission is known before the planning In&s
gun. Rather than rediscover this outline (a maaditional
Al planning approach), the MAC must manage the
sources, deadlines, etc. between alternative apeahtre-
finements during the development of the plan. Wh&C
represents these limited quantities as constraimtand be-
tween individual plan operators that are maintaibgda
constraint management engine. These plan operaters
however, sequenced and composed by a hierarclaishl t
network planning algorithm in conjunction with anhan
operator.

The decomposition planner continuously determirfes t
feasibility of the current partially specified planThe
shared task model, resident as a plan library asbyplthe
MAC, specifies constraints on tasks and the subtésiy
expand into. As a plan is built, constraints pggia both
up, from sub-tasks to tasks, and down, from tasksheir
expansions. This constraint propagation processlenshe
planner to identify flaws in the plan early. Fomample, if
currently instantiated tasks require more fuel tiaalh be
available for the entire mission, the planner d#tect the
infeasibility and either automatically backtrackplianning
automatically, or notify the user, if evaluatingpkan re-
finement s/he suggested.

Concurrently with checking for feasibility, the MAii@shes
out the abstract (non-primitive) tasks in the plahen the
MAC identifies a non-primitive, it decomposes bgding
and then applying one or more subtask methodsthdn
case that more than one method applies, the plateve-
ops the alternative paths. Infeasible alternatarespruned

from consideration. The GUI then displays the cense

guences of planning decisions to the user, whoretract
previous choices, or make better-informed decisioos
among the available, feasible choices.

In combination, feasibility checking and automatlan ex-
pansion make it possible for the MAC to generatectie
plans with a minimum of user involvement. Contilnige-

re

sibility analysis minimizes the effort expended dead-
ends while encouraging the user to specify the ioniss
critical aspects of the operation as early as pessiOnce
these are stipulated, the development of the Hanbe left
entirely to the MAC with the assurance that it watbduce
a plan that is both feasible within its constrdinbwledge
and in keeping the operator’s stipulations. Ifdipermits
(or lack of trust demands), the user may provideweas-
ingly detailed instructions by selecting among kalde
plan alternatives, down to the lowest level priwgtopera-
tors supported by the tasking interface.

Integrating Pre-existing Tools—Route Planning

A benefit of the architecture we have producedhdd it en-
ables incorporating pre-existing tools into thekihased
environment that the interface provides. The efiscto
provide task-sensitive, intelligent behavior in lodhat
were not built to include these capabilities. Tieigture is
illustrated in our work with UCAV mission plannirgy in-
corporating a Honeywell route planner.

The route planner generates optimal (i.e., lowest)gaths
through digital models of actual terrain. The digion of
optimality can be tuned to the application. Pt@mmcorpo-
ration into our tasking interface, a human operatad to
deduce information about route start and endpaname-
ters from mission objectives and partial plans l{pps rep-
resenting multiple alternatives) and then prograenmt by
hand into the route planner. Similarly, resultsrirmultiple
route plans had to be interpreted and folded batk the
planning process.

The structure of the MAC provides a straightforwesay to
incorporate specialty problem solvers like the equianner.
We encapsulated the route planner within paranzetri
plan operators like ol | ow _t errai n task. When that
task is selected (by either the MAC or the usemjiinigs for
start and endpoints of the route segment are itgloefiom
higher level tasks and passed to the route plaatwerg
with cost parameters appropriate to the task (eppropri-
ate weightings on flight time, fuel requirementgpesure
and threat levels, etc.). The route planner dewetpopti-
mal route within these parameters and returnsthieédvViAC
along with new requirements on flight time and fushge.
The MAC will determine if these new requirementslaie
constraints on the plan. If so, the route plammeactions
will be undone. If no acceptable route can be duhe
user will be notified.

Integration and Operation

To be useful in the real world, our tasking integfamust
bridge the traditional gap between analysis andugi@n.

Analytic capabilities developed in previous Al phens
have used simple, abstract task representationbarelas-
sumed correct execution. Reactive planning and e

systems are essentially high level programminguaggs.
Reactive systems coordinate the behaviors of seresuad
effectors to handle contingencies—but without suppar

analysis of correctness. Honeywell is currentlyvatk on

an architecture, called CIRCA [12], that integrapesjec-
tive and reactive planning with control actuatio@IRCA
bridges the analysis/execution gap by synthesigingably
correct reaction programs to achieve high-levellggjodo
date, however, little thought has been given to laowop-
erator will provide those goals. Our tasking iraed fills
that gap.

At the bottom layer of our architecture, advancedtml

algorithms provide for continuous vehicle controllhese
algorithms provide several levels of functionalityThe

highest level is the ability to fly specific fliglgegments
(e.g. close or loose formation, "pop-up” for weapelease,
rendezvous). At a lower level are guidance fumgtitke

waypoint steering and terrain following. Finallgt the
lowest level are the attitude and rate stabilizationtrol

functions. The plan created jointly by the humaerator
and the MAC, along with reactive adaptations predidy
the event handling component, gives these contraitions
the instructions they need. The result is a sessrdbility
to task and control the automation functions inidewari-

ety of ways at the human'’s discretion.

USAGE SCENARIO

The following scenario how a user might interacthwthe
tasking interface prototype we have developed tn @
UCAV mission. Current and emerging UCAV interfaegs
ther require operators to remotely control theraftcvia a
dedicated cockpit mockup, or they rely on very higbel
behaviors (e.g., Close Air Patrol circuits or waiypo
designated routes) which can be easily but inflgxdom-
manded. The first approach provides high predilityb
and adaptiveness, but at the cost of very high aiper
workload; the second approach minimizes operataikwo
load and provides highly predictable behavior, dulty at
the cost of adaptiveness. Neither approach iscserffi for
usefully placing one or more UCAVs at the dispasfaan
operator who is concurrently piloting his/her ovirtiaft.

Building on prior Honeywell control algorithms astula-
tion work supporting scenarios of multiple unintiedi F-
16s, we have developed a tasking interface to eralbiu-
man leader to lay out a mission plan for the UCAVThis
interface will support the stipulation of full apartial plans
and constraints for the UCAVs either separatelynazon-
junction. To date, we have concentrated on a grdiased
tasking interface due to its lighter demands om,usmula-
tion and interface design. However, we believe thilh

suitable GUI modifications, this approach will hgtsd to
in-flight tasking as well.

Our prototype tasking interface as illustrated iguFes 4-9.
The interface illustrated in these figuis®our current Play-
book GUI. This interface runs in conjunction witproto-
type MAC, communicating via a Shared Task Modehe T
MAC interacts with a specialty route planning algon.
Plans produced by this tasking interface can kil in
simulation using realistic control algorithms depdd by
Honeywell's Guidance and Control group.

Figure 4 (and, in larger format, Figure 9) shows five
primary regions of the Playbook GUI. The upperf ludl
the screen is &ask Composition Spadbkat the plan com-
posed thus far. At startup, this area presentshitee top-
level tasks (or ‘mission types’) the system culsekhows
about: Interdiction, Airfield Denial, and SuppreBaemy
Air Defenses (SEAD). The lower left corner of timer-

[UCAV Tactical Planner Honeywell
mission
il icti airfield_denial sead

‘‘‘‘‘‘

,,,,,,
Finish Plan | Final Route | Print Schedule | Show Schedule | Abort | Quit |

Figure 4. The UCAV Tasking Interface prototype at startup.

face is anAvailable Resource Spaceurrently presenting
the set of aircraft available for use. The lowight corner
contains an interactivEerrain Mapof the area of interest.
As noted above, some planning interactions can beem
easily performed or understood via direct, graghpcasen-
tation against the terrain of interest. The spaeawvéen
these two lower windows (empty at startup) Resource in
Use Space-once resources are selected for use, they will
be moved to this workspace, where they can beaated
with in more detail. Finally, the lower set of ¢an buttons
is always present for interaction with the systefrhis in-
cludes options such as “Finish Plan” for handirg plartial
plan off to the MAC for completion and/or reviewFifial
Route” for accessing the route planner to creat®uie
within constraints specified, “Print” and “Show &clule”
for obtaining a Gantt chart timeline of the actastplanned
for each actor, etc.

The mission leader would interact with the taskimgrface
to, first, declare that the “task” for the day wdsrfield

Denial.” Most interactions with the Playbook GUkavia
mouse buttons In this case, the thrde|top-lev&dion task
boxes have * relat|onsh|ps betwgen them, meattiregy

-the pop-igmow

all”
a
From this pop-u&menu—th&human—ta%ker” can ttedl
a planngsthis

MAC to “Plan thi$ "r"J§I?’thhat is, . develop

task that s/h shoeutfurther—The POpt
contains a cdntext-sensitive list of subtasks thattasker
S S o] o
I
By Vil
Bhosssapowdinre:
mssngey
| S TR | |

Figure 5. P: Figure 7. Second-level expansion of ‘Airfield Denial’ task.

can choose to include under this task (only orapropri-
ate at this level: “Suppress Air Defenses”).

At this point, having been told only that the téskthe day
is “Airfield Denial,” a team of trained human pitotvould
have a very good general picture of the missiog theuld
fly. Similarly, our interface (via the MAC and tt&hared
Task Representation) knows what a typical airfigéchial
plan consists of. But just as a leader instructinguman
flight team could not leave the instructions attttsn the
tasker is required to provide more informationrtstantiate
the high level task. Here, the tasker must protigeitems
listed in the next block in the pop-up window irgtie 5
(e.g., a target, a homebase, etc.) and, as fqulatis, the
specific aircraft to be used. S/he selects airdmaftlicking
on the available aircraft resources and moving therhe
Resources in Use Area. By clicking on “Choose €tirg
the user activates the Terrain Map and a subsedgliekt
there will designate a target location. The rasaftthese
actions are illustrated in Figure 6.

The human leader could provide substantially maritl
(such as route, munitions, roles for the wingmaa,) dout
s/he could also hand the task off to intelligentnan team
members at this point and let them develop the.plahe
tasker can do this as well, handing the task td\A€ via
the “Finish Plan” button. We will assume, thoutftat the
user wishes to provide more plan specifications.

The final option on this pop-up menu allows theruse
“Update Threat Information” for use in planningria dy-
namically maintained, external database.

Both the tasker and the interface know, thankshtirt
Shared Task Model, that any Airfield Denial plansincon-
sist of Ingress, Strike and Egress subtasks, ih dhder.
“Airfield Denial” may also include a Defense Supgsi®n
subtask that runs in parallel with Strike. Afthe tasker se-
lects “Choose Airfield Denial”, the Task Compositio
Space is reconfigured as in Figure 7 to show the leeel
of options. The small arrows between the taskkslandi-
cate that all subtasks are sequential.

To provide detailed instructions about how to perfdhe
Ingress task, the tasker must choose it, produitiag‘'ge-
neric” Ingress task shown in Figure 8. Note thdg ts not
a default method of doing “Ingress” so much as @ege,
uninstantiated template—corresponding to what a&dmum
expert knows about how Ingress can or should be.
trained pilot knows that Ingress can be done eiihdor-
mation or in dispersed mode and, in either casest nmd
volve a “Take Off" subtask followed by one or méFdy to
Location” subtasks. Figure 8 illustrates the GUikeatthe
user selects “Formation Ingress”. The MAC autoozalty
fills in the set of steps it knows must be accosipd to do
Ingress in formation— that all aircraft must takeahd
then fly to a specified location. In the eventtttiere are
further specifications the user can or must supghly,MAC

I‘

|
L Wedpatit
L

T
wiéapdi:
b

TR

R

[Finish Plani | Final Bouts | Print Sehedule. | Show Schedule | Abort [uit |

Figure 6. lllustration of resource and target selection.

will generate them in context-sensitive pop-up wind
(e.g., specifying the airfield to take off from.)

UCAV Tactical Planner
mission

airfield_denial
ingress

formation_ingress

takeofl| [to_loce
t

| do_takeoff
dispersed_ingress|e

|- Plan This Task

Choose formation_ingress

Choose airfield

|

Figure 8. Stipulating subtasks under “Ingress”.

The user can continue to specify and instantiatiestdown
to the “primitive” level where the subtasks are dgbrs the
control algorithms (see Figure 2) in our simulatan be re-
lied upon to execute in flight. Alternatively, atyapoint af-
ter the initial selection of mission task and isjuired pa-
rameters, the tasker can hand the partly develplaedover
to the MAC for completion and/or review by meanstod
“Finish Plan” button. In extreme cases, a vid#gfield
Denial” plan could be created with as few as fitmices
(select aircraft, target, homebase, staging andemmus
points). If the MAC is incapable of developing mhie
plan within the constraints imposed, (e.g., if theer has
stipulated distant targets that exceed aircraft $ueplies)
MAC will inform the user of these difficulties vipop-up
windows.

Figure 9 shows the completed plan provided by th&CM

after the stipulation of the Ingress task as dbsdriabove.

The user has asked for a Final Route generatelebsoute

planner on the basis of the MAC's inputs. This otitjs
Apresented in the Terrain Map window.

ACCOMPLISHMENTS AND CONCLUSIONS

Our prototype interface builds plans for 3 typesmafiti-
UCAV missions (corresponding to 3 top-level taski)e
prototype was implemented with SICStus Prolog, Ticl/
and the daVinci graph visualization tool [4]. We piex
mented our own HTN planner in Prolog and used the
SICStus Constraint Logic Programming for Finite Cxons
module to maintain the constraint store. We bubié #llus-
trated version of the Playbook GUI using SICStesthed-
ded Tcl/Tk interpreter and daVinci.

UCAV Tactical Planner Hitreywell

> >

u7-213 U7-154

> >

u7-143 u7-214

> P

u7-045 U7-067

> P

u7-117 u7-076

Tail: U7-154
Weapon: ECM Pod
Mission: ad_primary_strike

3

4

Tail: U7-143
Weapon: JDAMs
Mission: ad_primary_strike

4

Finish Plan _ Print Schedule = Show Schedule

Tail: U7 -067
Weapon: HARM
Mission: ad_suppress_defenses

g (

Abort Quit

Figure 9. Finished plan returned by the MAC after User specification of the Ingress task.

Other types of interfaces are entirely possible (4] for a
more ambitious, though unimplemented example st
ing more sophisticated interactions with the MACdan
shared task model) and we hope to explore theieldpv
ment as we carry the tasking interface conceptaiternate
domains and gain more experience with user intierst
with this type of automation.

Our approach to tasking interfaces builds a bridigiexi-
bility between ‘pure’ direct manipulation interfacevhere
the user is always in charge but must incur thecasd
workload, and ‘pure’ intelligent agent automatiohese the
user is free from undue workload but at the coswfen-
dering control and predictability to a system thaty not
do what s/he wants. While operators of complexesgst
are rarely comfortable giving over authority to auation
at all times, they are quite willing to use it whielpful.
Tasking interfaces are a method of allowing theratoe to
remain fully in charge, yet of enabling almost falitonomy
for an aiding agent. Perhaps by requiring (and kemgb
automation to behave more like an intelligent sdbte,
operators will be more tolerant of its weaknesses more
willing to let it show its capabilities in some tegs.
Through use, then, users may become more familidr w
their automation’s strengths and weaknesses arté, ul
mately, better at using it when it is needed.

ACKNOWLEDGEMENTS
This work was funded by a Honeywell Initiatives Gta
The authors would like to that Dan Bugajski, Dorafér

and John Allen for their help in the developmend &m-
plementation of the ideas presented.

REFERENCES

1. Billings, C. Aviation Automation: The search for a hu-
man-centered approachLawrence Erlbaum: Mahwabh,
NJ, 1997.

. Boy, G. Cognitive Function Analysis ABLEX; Stam-
ford, CT, in press.

. Erol, K., Hendler, J. and Nau, D. UMCP: A sound and
complete procedure for hierarchical task networnpl
ning. In Hammond, K. (Ed.Artificial Intelligence
Planning Systems: Proceedings of the Second Interna
tional Conferencg(Los Altos, CA, 1994), 249-254.

. Frohlich, M. and Werner, M. The daVinci graph visu-
alization tool, 1997. Available at
http://www.informatick. unibremen.de/~davinci

Hentenryck, P.Constraint Satisfaction in Logic Pro-
gramming Cambridge, MA: MIT Press, 1989.

. Jaffar, J. and Michaylov, S. Methodology and imple
mentation of a CLP systerRroceedings of the Fourth
International Conference on Logic Programming
(Cambridge, MA: MIT Press), 1987.

Keller, K. and Stanley, K. Domain specific softe/ate-
sign for decision aiding. Proceedings of the AAAI
Workshop on Automating Software DesigrfNASA
Ames Research Center, July, 1992), 86-92.

8. Layton, C., Smith, P, and McCoy, E. Design of a0 ence. In A. Seth (Ed.Rroceedings of the NSF Work-

erative problem solving system for enroute fligharp shop on Workflow and Process Automation in
ning: An empirical evaluationHuman Factors, 3@), Information Systems: State of the Art and Futune®i
1994, 94-119. tions, (Athens, GA, 8-10 May 1996). 18-23.

9. Maes, P. Agents that Reduce Work and Information 15.Sewell, D. and Geddes, N. A plan and goal based
Overload. Communications of the ACM, 37(7)994. method for computer-human system design. In D- Dia
31-40. per (Ed.) Human-Computer Interaction—INTERACT

10.Miller, C. & Funk, H. Task-based Interface Manage- '90. Elsevier Science, North-Holland, 1990. 283-288.
ment: A Rotorcraft Pilot's Associate ExampRroceed- 16.Shattuck, L.Communication of Intent in Distributed
ings of the AHS Crew Sytems Technical Specialists Supervisory Control System&Jnpublished dissertation.
Meeting (Philadelphia PA, September 1997). The Ohio State University, Columbus, OH. 1995.

11.Miller, C. and Goldman, R. ‘Tasking’ Interfaces: shs 17.Sheridan, T. Supervisory Control. In G. Salvendy
ciates that know who's the bog2roceedings of the™ (Ed.), Handbook of Human Factars John Wiley &
USAF/RAF/GAF Conference on Human/Electronic Sons, New York, 1987. 1244-1268.
CrewmembersKreuth, Germany, September 1997). 18.Shneiderman, B., Direct manipulation for comprehens

12.Musliner, D., Durfee, E., & Shin, K. CIRCA: A coop- ble, predicatable, and controllable user interfabes-
erative intelligent real-time control architectul&EE ceedings of the ACM International Workshop on Intel
Transactions on Systems, Man and Cybernetics, 23 gent User Interfaces '9{f\ew York, NY, 1997) 33-39.
(1993), 1561-1574. 19.Vicente, K. J. Improving dynamic decision making in

13.Riley, V. Operator reliance on automation: Theanyl complex systems through ecological interface design

data. In R. Parasuraman and M. Mouloua (Eds.), research overviewSystem Dynamics Review, 1896,

Automation and Human Performance: Current Theory 251-279.

and Applications. Lawrence Erlbaum: Hillsdale, NJ, 5q vicente, K. J.Cognitive work analysis: Towards safe,

1996, 19-36. productive, and healthy computer-based wakbaum:
14.Scacchi, W. Modeling, Integrating and enacting com- Mahwah, NJ, in press.

plex organizational processes: Approach and experi-

