
To Appear in Proceedings of the 2009 International Lisp Conference

SHOPPER: Interpreter for a High-level Web Services Language

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

John Maraist
SIFT, LLC

jmaraist@sift.info

Categories and Subject Descriptors D [3]: 4

Keywords web service composition, interpreters, OWL,
LTML, Lisp

1. Introduction
We have been working on the POIROT project1 as part of
DARPA’s Integrated Learning program. POIROT is a large
research program that aims to integrate multiple systems for
learning workflows whose building blocks are semantic web
services. These semantic web services are marked up in the
Learnable Task Modeling Language (LTML). LTML (Mc-
Dermott et al. 2008) is a radically composable web ser-
vice markup and planning language with an s-expression
syntax that extends both OWL-S (Martin et al. 2004), the
W3C language for semantic web service markup, and the
standard planning language PDDL (PDDL Resources). We
have developed SHOPPER, a Common Lisp-based inter-
preter for the LTML language that is able to interpret uni-
fied LTML workflows, building and maintaining a complex
state model based on information gathered from execution
of semantic web services through the OWL Virtual Machine
(OVM) (Paolucci et al. 2003).

2. POIROT Agent
SHOPPER is a part of the POIROT agent, whose structure
is shown in Figure 1.2 All POIROT components commu-
nicate through the system’s blackboard, implemented on
top of an RDF database. The learning components cooper-
ate to develop parts of LTML workflows, based on train-
ing examples.Workflows are assembled out of these pieces
by two additional POIROT components, the “Stitcher” and
the SHOP2 (Nau et al. 2003) planner. When requested by

1 Led by BBN Technologies, bbn.com.
2 Although SHOPPER can run in isolation.

[Copyright notice will appear here once ’preprint’ option is removed.]

!"#$%&'#()*

OWL 

Virtual 

Machine!

!*POIROT Agent!

"#$!%#&'()#*!

LTML Executor 

"#$%%&'!

%+,-!

HTN Planner!

'("#$%)

*"#$%+,!

-(./0(/1*

2(3.!/(.140(/1*

"5367(/)

Figure 1. Simplified architecture of the POIROT agent.

the meta-control components of the architecture, these two
POIROT components will assemble a workflow (which in-
cludes inlining all method invocations), and then dispatch it
to SHOPPER for execution. SHOPPER will assemble an ex-
ecution trace of its run and place it into the blackboard, al-
lowing POIROT to further learn from experience. If SHOP-
PER encounters an error, it will write a description of the
error into the blackboard in addition to the trace. It will also
store its final state to permit restarting; it is intended that
later work in POIROT feature replanning of workflows in
response to errors and failures.

3. LTML
The purpose of the LTML language is to be able to capture
workflows whose components are semantic web services.3

LTML extends the expressive power of OWL (van Harmelen
and McGuinness 2004), allowing it to capture ontological
information about classes and entities. LTML’s primitive
operations cover both conventional planning operators (as
in PDDL), and semantic web services (as in OWL-S), with
additional features to overcome shortcomings of OWL-S.

3 Note that, as an extension of PDDL, LTML is also able to capture conven-
tional AI planning problems.

Goldman & Maraist ILC, 2009 1 2009/2/13



(AtomicProcess reserveSeat

(inputs missionId - trans@ID

patientID - med@PatientID

specialNeeds - med@SpecialNeedsCode)

(outputs outcomeFlag - res@ResultCode

reservationID - med@ReservationID)

(precondition

(exists (m - trans@Mission

capacity - xsd@integer

num-passengers - xsd@integer)

(and (trans@missionID m missionId)

(trans@PAX m num-passengers)

(trans@maxPAX m capacity)

(islessthan num-passengers capacity))))

(result

(when (type outcomeFlag res@Success)

(ThereIs ((p (referent med@Patient patientID))

(m (referent trans@Mission missionID)))

(trans@hasReservedSeat p m reservationID)

(when (hasValue specialNeeds)

(trans@supportsSpecialNeeds m specialNeeds))

(increment-fluent (trans@PAX m) 1)))))

Figure 2. Sample web service markup in LTML.

Finally, LTML adds higher-level control flow constructs to
compose these atomic actions into workflows.

A key feature of LTML models is their radical decompos-
ability. For example, one program might compose a loop that
would process a collection, and a different program would
dictate the order in which elements of the collection were
processed. To support this, and provide for compatibility
with the semantic web, LTML is defined as a superset of
OWL and OWL-S, and the specification dictates how LTML
constructs are to be represented as RDF triples.

LTML has a Lisp-like syntax, or rather two syntaxes.
LTML has a surface form intended for human readability
and writeability. LTML also may be written in striped nota-
tion. Striped notation is another Lisp-like notation for RDF
triples, similar to N3 (Berners-Lee 2005). All examples in
this paper will be given in the surface notation.

LTML allows us to describe entity sorts and properties.
For example:4

(Class trans@Airport

(subClassOf loc@Location)

(subClassOf top@Entity)

(restrict loc@airportLocationID

(cardinality 1) - loc@AirportLocationID))

(Property exp@boundVar

(domain exp@QuantFormula)

(range ltml@Variable))

Note that the “@” here is a namespace separator. LTML
namespace abbreviations map to XML namespaces.

LTML also supports semantic web service markup; see
Figure 2. This defines what an invoking agent should pro-
vide to the web service (inputs), what the agent can expect
back (outputs), the conditions under which the invocation

4 Examples taken from the LTML manual.

(Method Exp@Method0

(inputs Exp@Method0.input0 - time@Date)

(body

(seq seq0

(links Exp@Method0.link0 - med@SetOfPatientReqRecord)

(acts

(perform step0

(luRqts@lookupRequirements

(luRqts@ReqDate <= Exp@Method0.input0))

(put (luRqts@lookupRequirementsOut

=> Exp@Method0.link0))

(occurence core@TraceElement1))

(loop step2

(links (looplink1 - med@PatientReqRecord))

(body

(perform step3

(Exp@Method1

(Exp@Method1.mInput0 <= looplink1)))))))))

Figure 3. Sample method definition

should succeed (precondition). The markup also tells the
agent what it can infer about the state of the world after in-
vocation of the web service (results). In this case, that
knowledge is limited to what happens if the service is in-
voked successfully; if it’s unsuccessful, the agent can infer
nothing. The results provide a superset of OWL-S markup.
Note particularly the use of the Thereis and referent con-
struct. This gives an “exists uniquely” kind of quantifica-
tion — if the agent knows the patient that is the referent of
patientID, it should bind p to that patient; otherwise, the
agent can infer the existence of such a patient.

Finally, LTML permits us to compose the atomic pro-
cesses into complex procedures (Methods) with conven-
tional control structures like conditionals and loops. LTML
is purely functional: its variables (referred to as “links”)
are write-once entities. LTML is unusual in featuring, in
addition to conventional expressions (e.g., (islessthan
Number Number )), logic-programming style queries. Any
simple predication in program text, for example (trans-
@scheduled patient flight), is treated as a boolean
query against the agent’s beliefs. Queries can be extended
to variable-binding operations using LTML constructs like
test. A sample method definition is given as Figure 3. Note
that all of the components are given names (e.g., the se-
quence construct is named seq0). This supports compos-
ability and translation into RDF triples (e.g., “the value of
the acts property of seq0 is...”).

LTML has a state-based execution model like that as-
sumed by AI planning systems (Ghallab et al. 2004). Calls
to web services return not only results in the usual sense of
subroutine invocation, but also a service result of facts to be
incorporated into the knowledge state. Subsequent queries
are then based against the new facts, and built-in functions
can also operate on this state.

Figure 4 shows a small example of interaction with this
knowledge state. In this example noter is a simulated web
service whose sole effect is to add one fact (noterCall

Goldman & Maraist ILC, 2009 2 2009/2/13



(perform p1 (noter (arg <= 5)))

(perform p2

(links x - xsd@anyType)

(when (exp@and (noterCall 1 ?x) (< ?x 6)))

(noter (arg <= 50)))))))

Figure 4. Querying the knowledge state.

!"#!$%&'()'$
(*+%%)'$

",--$./01-,$

(*+%%)'$

)23,-44567$

)8/09/:6,$

+;#$

+;#$.,/33-,$

(-,85<-$

%,685=-,$

(:/:-$#/7/>-,$

?(*+%@A$

"B-6,-C$

%,68-,$

?(*+%@A$

.-D$(-,85<-$

(5C90/:6,$

.-D$(-,85<-4$

+'$

Figure 5. Architecture of the SHOPPER system.

n z) to the knowledge state, where z is its argument arg,
and n is an integer which is 1 at the first invocation of
noter, 2 at the second invocation, and so on. Of the two
statements shown in the example, the first (p1) adds the
fact (noterCall 1 5).5 Statement p2 includes the guard
that we must know of some x such that (noterCall 1
?x) and (< ?x 6) hold. This precondition succeeds, and
SHOPPER proceeds to invoke (noter 50). In the final state,
the system will know the two facts (noterCall 1 5) and
(noterCall 2 50).

4. SHOPPER Design
Figure 5 shows the SHOPPER architecture. SHOPPER re-
ceives its input by way of the LTML parser, based on CL-
Yacc (Chroboczek 2005), which delivers to SHOPPER the
abstract syntax tree (AST) of the LTML program, imple-
mented as a network of CL structures.6 The SHOPPER tree
walker traverses the AST recursively, updating its execu-
tion state. SHOPPER’s execution state has two components:
a stack that contains link bindings, and a set of formulas that
reflects the agent’s beliefs about the world state.

We were able to build SHOPPER very quickly and effi-
ciently by reusing components of the open source AI plan-
ning system SHOP2 (Nau et al. 2003).7 SHOP2 contains

5 Assuming that these statements are the first uses of the service.
6 In Section 5 we explain why we use a conventional parser in SHOPPER.
7 SHOP2 was originally developed at the University of Maryland, and is
now jointly maintained by UMd and SIFT.

a state manager component which maintains a trajectory
of world states, supporting update and backtracking oper-
ations. SHOP2 also contains a theorem prover which allows
Prolog-style querying of the world state (including the use
of backward-chaining rules). We modified SHOP2 to make
these free-standing ASDF systems.

When SHOPPER reaches a point in a program where it
must invoke a semantic web service, it invokes the Service
Provider. This is a shim layer that provides interfaces ei-
ther to a web service simulator, written in Common Lisp,
or to invocation of actual web services through the OVM.
CL macros and CLOS were very helpful in building this in-
termediate layer, which is critical for SHOPPER development
and testing. Use of the actual web services is undesirable for
such purposes both because it is so heavyweight (invocation
of a complex web service can take minutes, because of the
layers of serializing, deserializing, and other overhead) and
because the web services are backed by relational databases,
which cannot be easily reconfigured for testing.

Invocation of web services can cause updates to SHOP-
PER’s beliefs about the world, which are transmitted by the
Service Provider to the State Manager. Evaluation of expres-
sions is done by querying the world state through SHOP-
PER’s expression evaluator. The built-in functions of LTML
are encoded as special-purpose functions, which may be
backed by inference rules in the theorem-prover.

5. Aspects of SHOPPER

The environment into which we deployed SHOPPER brought
requirements for which Lisp’s unique features were par-
ticularly useful. The LTML definition continued to evolve
through the interpreter’s development; developers not ac-
tively involved in the interpreter internals required low-level
access to the implementation of built-in functions for exper-
imentation and debugging; the interpreter was required in
several contexts, including both online and offline execution
of code referencing web services. Lisp’s macros, sophisti-
cated error handling, and CLOS each gave clear advantages.

We used macros in three distinct major roles in SHOPPER.
Interestingly, we did not use macros in parsing: the syntax
of LTML was not sufficiently stable in the parser develop-
ment cycle. Since LTML syntax was s-expression based, we
originally intended to simply use macros to analyze the lan-
guage. However, the language syntax changed so frequently
during development, and we found those syntactic changes
so damaging to the stability of the code that we replaced
our macros with a LL grammar of LTML, and used CL-
Yacc (Chroboczek 2005) to parse LTML into an AST.

Macros provide linguistic support for ensuring complete
case coverage in generic functions dispatching on AST ob-
jects. Rather than using a sequence of defmethods, all of the
generic’s primary methods are defined in a single macro in-
vocation which also checks that no cases are inadvertently

Goldman & Maraist ILC, 2009 3 2009/2/13



omitted.8 This check, familiar to users of algebraic data
types in languages such as ML or Haskell, gave us compile-
time error reporting for case omissions arising from changes
as the language definition evolved. Our existing macro’s ap-
plicability relies on two factors: a flat class hierarchy, and
functions which are essentially single dispatch, or at least,
multiply dispatched uniformly for each method. Where a flat
class hierarchy is not possible, a macro for each level of de-
composition of class into subclasses is a possibility.

Our second major use of macros in the interpreter is for
defining offline versions or small test cases of web services.
Web services differ from function libraries in ways which
make their definitions rather tedious. They may be discov-
ered only at runtime, so their names, parameter names, and
properties cannot be processed at compile-time, but rather
must be stored in runtime data structures. Although we do
use eql-dispatch to hide many of these details, we nonethe-
less must still provide a number of different methods for
each service definition. A service-defining macro encapsu-
lates these coordinated definitions, eliminating confusing er-
rors from omitting one of a family of related defmethods.

Finally, we use a macro to enumerate the built-in func-
tions of LTML. LTML built-ins differ from the core func-
tions of most languages because LTML expressions, by de-
fault, are queries to a belief state — the built-in functions
are exceptions to this default. In SHOPPER we implement
this behavior by associating each built-in with a number of
methods, not only for executing a call to the built-in but also
for determining that the name does refer to a provided func-
tion, and should not be handled by belief state query. As with
web services, these multiple coordinated definitions are best
generated from a single macro call.

Because the overall system studies workflow learning,
failure is a phenomenon of interest: the failure of a work-
flow must trigger additional learning effort, and hopefully
the generation of a updated workflow to repair damage aris-
ing from the failure, and then achieve the original goal. To
provide information about workflow failure, and to allow an
updated workflow to resume from the same dynamic envi-
ronment where its predecessor failed, we rely on Lisp’s ro-
bust error handlers. Each (recursive) invocation of the main
tree-walking interpreter introduces a handler-bind wrap-
per which enriches errors objects with their context. Option-
ally, the innermost wrapper may allow a break, when the
interactive user needs a more detailed look at the state of the
interpreter itself. But in the normal phase of execution, the
outermost error handler places this structured pointer into
the LTML program, plus the lexical bindings at the time of
failure, on the blackboard for examination by the learners.

Finally, we take advantage of multiple inheritance for
defining aspects of system behavior. Many of SHOPPER’s
operations receive a parameter used for dispatch based on
the overall system configuration — whether we seek to make

8 Exceptions are permitted, but must be explicitly flagged.

external web service calls or rely on offline coded versions,
which set of web service we address. This dispatch object
allows behavior to be cleanly customized via key generic
functions of the interpreter: the functions can be wrapped,
given a :before or :after method, or simply overridden.

A. Implementation Notes
SHOPPER is written in CL, but currently runs only under
Allegro CL. LTML is case-sensitive and the current LTML
libraries only run under Allegro’s “modern,” case-sensitive
CL dialect. Furthermore, for compatibility with POIROT,
SHOPPER relies on Allegro’s proprietary Java interface.

Acknowledgments
This work was supported by DARPA IPTO under contract
FA8650-06-C-7606. Approved for Public Release, Distribu-
tion Unlimited.

References
Tim Berners-Lee. Primer: Getting into RDF & semantic web using

N3. web page, August 2005. URL http://www.w3.org/

2000/10/swap/Primer.html.

Juliusz Chroboczek. CL-Yacc homepage. web page, 2005.
URL http://www.pps.jussieu.fr/∼jch/software/

cl-yacc/.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann Publishers, Inc.,
2004.

David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew Mc-
Dermott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci,
Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan, and
Katia Sycara. OWL-S: Semantic markup for web services. W3C
Member Submission, November 2004. URL http://www.w3.

org/Submission/2004/SUBM-OWL-S-20041122/.

Drew V. McDermott, Mark Burstein, Michael Cox, Robert P. Gold-
man, and David McDonald. The LTML manual pages. Unpub-
lished manual, July 2008.

Dana Nau, T. C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman. SHOP2: An HTN planning system. Journal of
Artificial Intelligence Research, 20:379–404, 2003. ISSN 1076-
9757.

Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and
Katia P. Sycara. The DAML-S virtual machine. In Dieter Fensel,
Katia P. Sycara, and John Mylopoulos, editors, International
Semantic Web Conference, volume 2870 of Lecture Notes in
Computer Science, pages 290–305. Springer, 2003. ISBN 3-
540-20362-1.

PDDL Resources. PDDL resources. web page, April
2008. URL http://ipc.informatik.uni-freiburg.de/

PddlResources.

Frank van Harmelen and Deborah L. McGuinness. OWL web
ontology language overview. W3C recommendation, W3C,
February 2004. http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

Goldman & Maraist ILC, 2009 4 2009/2/13


