
Solving POMDPs online through HTN Planning and Monte Carlo Tree Search

Robert P. Goldman
SIFT, LLC

319 1st Ave N., Suite 400,
Minneapolis, MN 55401, USA

rpgoldman@sift.net

Abstract
This paper describes our SHOPPINGSPREE HTN algorithm
for online planning in Partially Observable Markov Decision
Processes (POMDPs). SHOPPINGSPREE combines the HTN
planning algorithm from SHOP3, extensions to SHOP3’s rep-
resentation to handle partial observability, and Monte Carlo
Tree Search for efficient sampling in the problem space. This
paper presents only the algorithm and initial notes on the im-
plementation: this is work in progress.

1 Introduction
In this paper we describe SHOPPINGSPREE (named after a
US TV game show and SHOP3), a technique for solving Par-
tially Observable Markov Decision Processes (POMDPs) in
an online fashion – that is, interleaving planning and execu-
tion – based on Monte Carlo Tree Search (MCTS), currently
under development, building on the Hierarchical Task Net-
work (HTN) planner, SHOP3. We describe a complete algo-
rithm, but the implementation is still in very early stages: its
implementation is still messy, made up primarily of patches
to the existing version of SHOP3.However, the algorithm is
promising because it enables us to combine HTN planning
with sequential decision problems.

The key tenets of our approach are as follows: 1. We ap-
proach POMDPs as games against nature, where the sys-
tem’s objective is to execute an (approximately) optimal
strategy against its environment. 2. The planning agent’s
“turns” in this game are the set of actions taken between
observations. 3. The planning agent plans turn-by-turn (“on-
line”), allowing us to avoid computing full policies, which
can be exponentially large. 4. If myopic, turn-by-turn plan-
ning can be severely suboptimal. We use MCTS to provide
lookahead and avoid myopic decision making. 5. To apply
MCTS to POMDP planning, we combine planning in belief
space with sampling in the base state space.

In this paper we briefly introduce POMDPs and the text-
book “oil wildcatter” sequential decision problem. Again
briefly, we summarize MCTS. Then we explain the exten-
sions to SHOP3’s Knowledge Representation (KR), and how
to use it to represent a POMDP. Finally, we present our
method for integrating HTN planning and MCTS, and con-
clude with notes on some limitations, mention of related
work, and future directions.

A quick definition before we begin:

Definition 1 (POMDP) A POMDP, P =
〈S, s,A, T ,R,Ω,O〉 where 1. S is a finite set of states,
s ∈ S is the initial state;A is a finite set of actions;
2. T : S × A → Π(S) is the state-transition function,
assigning a probability distribution over successor states
when an action, a is executed in state s; 3. R is the reward
function, which may be defined over S × A, and defines the
reward, a real number reward received when a is executed
in s. The reward of a finite trace is the sum of the rewards at
each step in the trace. Equivalently, we use a cost function,
in the work described here. 4. Ω is a set of observations that
the agent may make; 5. O : S × A × S → Π(Ω) is the
observation function, which gives a probability distribution
over the set of observations that may be received when the
agent takes action a in state s0 and the successor state
(dictated by T) is s1 (Kaelbling, Littman, and Cassandra
1998, adapted).

There are important subtypes of POMDP varying by time
horizon. We address only finite horizon POMDPs.

A POMDP’s solution is a policy: a mapping from belief
states to action choices. We define an optimal policy as a pol-
icy that provides maximum expected utility. Note that the
policy need not be explicitly computed. One way to think
about POMDPs is as games against “nature,” a stochas-
tic opponent. That is the perspective we take here. Rather
than computing a policy off-line and executing it, SHOP-
PINGSPREE computes its policy implicitly and on-line.

As a running example, we use the textbook “oil-
wildcatter” decision problem (Raiffa 1968): The oil wild-
catter needs to decide whether to drill or not. They don’t
know if their hole is dry, wet, or soaking. Their payoffs
are given in Table 1. All payoffs are net: profit less $70,000
for drilling, if the wildcatter chooses to. For $10,000, the
wildcatter can test the site’s geological structure: no struc-
ture (NS), open (OS), or closed structure (CS). The struc-
ture is correlated with the likelihood that oil is present (Ta-
ble 2). This problem may be formulated as a POMDP where
S = {Dry,Wet,Soaking}; Ω = {NS,OS,CS}, and A =
{test, drill}, and T andR are from Tables 1 and 2. Expected
rewards for some policies are given in Table 3.

2 Monte Carlo Tree Search (MCTS)
MCTS is a high-performance search method originally de-
veloped for game playing for games with extremely large

Act
State a1 a2

Dry (θ1) - $70,000 0
Wet (θ2) $50,000 0
Soaking (θ3) $200,000 0

Table 1: Monetary Payoffs for Oil Wildcatter prob-
lem (Raiffa 1968, pp. 35).

Seismic Outcome Marginal Probability
State NS OS CS of state

Dry (θ1) .300 .150 .050 .500
Wet (θ2) .090 .120 .090 .300
Soaking (θ3) .020 .080 .100 .200
Marginal

probability
of seismic
outcome

.410 .350 .240 1.000

Table 2: Joint and marginal probabilities for Oil Wildcatter
problem (Raiffa 1968, pp. 35).

state spaces, such as Go. Our discussion here is heavily
indebted to the excellent survey by Browne et al.(2012).
Briefly, the job of MCTS is to estimate the value of each
node in the top of the search tree, so that an agent can choose
its actions by greedily taking the highest value choice. To do
this, the algorithm must search the tree so that it can ac-
curately estimate the value of early decisions on the even-
tual outcome (e.g., estimate the value of an opening move in
terms of its effect on the eventual outcome of a game). To
search the tree, the algorithm must have a way of choosing
a child at every node of the tree. MCTS splits its search into
two phases: first by tree policy, then by default policy.

In large search spaces, states near the root of the search
tree will be explored according to the tree policy, but
since the search space prohibits complete exploration, when
search reaches some depth threshold, the system will switch
to the default policy. The tree policy is generally a choice
that weights known estimates of child nodes – causing the
system to exploit its knowledge of where value is to be found
– against a term that weights parts of the tree that have not
been visited often – causing the system to explore new parts
of the search space. We use the popular UCT (Upper Confi-
dence Bounds for Trees) (Kocsis and Szepesvári 2006) rule:

arg min
a∈A

V (a)

N(a)
+ k

√
2 lnN

N(a)
(1)

where V (a) is the mean value of node a, N(a) is the visit
count, and N is the visit count of the parent of a, and k is a
constant. Currently, we use the original k ≡ 1/

√
(2) (Koc-

sis and Szepesvári 2006). Depending on problem, other pol-
icy rules may be better than UCT and, in UCT, different val-
ues of k may be better. We leave this for future work.

The default policy will be some extremely cheap, largely
random choice rule. At present, since we are working with
small problems, SHOPPINGSPREE has no default policy.

Algorithm 1 General MCTS approach, reproduced
from (Browne et al. 2012)
1: function MCTSSEARCH(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: vl ← TREEPOLICY(v0)
5: ∆← DEFAULTPOLICY(s(vl))
6: BACKUP(vl,∆)
7: end while
8: return a(BESTCHILD(v0))
9: end function

When a “rollout” has been completed by reaching a leaf
node of the search tree, the value encountered at the leaf
will be backpropagated to update the estimates of the value
of nodes nearer the root of the tree, and their visit counts.

Finally, when some resource threshold is reached, the sys-
tem will choose an action (or set of actions) to take, based
on the highest expected value. In a game – including a game
against nature like our oil wildcatter problem – thee the
MCTS system will wait to receive the opponent’s move (e.g.,
the results of the seismic test), and then repeat the process.
The process is summarized in Algorithm 1.

3 Knowledge Representation (KR)
The current version of SHOPPINGSPREE makesonly mini-
mal extensions to the SHOP3 KR for domains and problems:
hidden propositions, and uncontrollable actions and meth-
ods. Other than this, we use standard SHOP3 (Goldman and
Kuter 2019) notation, which we review below.

SHOP3 primitive operators have a head, comprising an
operator name and parameters. They also have precon-
ditions, add-list, delete-list, and cost function. The add-
list and delete-list are lists of literals, potentially containing
parameter variables. The preconditions are more expressive
than STRIPS or PDDL: supporting logical operators, finite
quantification, and the invocation of arbitrary functions. We
will make use of this expressive power below. The cost func-
tion can be an arbitrary function of the parameters and any
variables bound in its preconditions. An example operator
from the oil-wildcatter domain:

(:op (!do-drill)
:precond (not (drilled))
:add ((drilled))
:delete ()
:cost 70)

SHOP3 method definitions have a head, and precondi-
tions as above and a task network. Note: variables in the
head and in the preconditions are scoped over the task net-
work. Task networks are made up of tasks and :ordered
and :unordered networks. For example:

(:method (make-decisions)
() ; empty preconditions
(:ordered (decide-test)

(decide-drill)
(profit)))

Policy Details Expected Value Rescaled EV
Don’t test, don’t drill 1× 0 0 0.286
Don’t test, drill 0.5×−70 + 0.3× 50 + 0.2 ∗ 200 20 0.357
Test, drill iff CS −10 + (.09× 50) + (.1× 200) 14.5 0.338
Test, drill if OS or CS −10 + (.09× 50) + (.1× 200) + (.12× 50) + (.08× 200) 36.5 0.416

Table 3: Rewards for some policies, in thousands of dollars, and rescaled to between 0 and 1.

The above definition states that the (make-decisions)
task can be rewritten into the task network, unconditionally,
since its preconditions are empty.

SHOP3 domains may also have axioms, Prolog-style
Horn clauses that are used when checking preconditions.
The following axiom is used to compute the profit (?p) from
drilling when the oil condition is ?o:
(:- (drill-profit ?o ?p)

((= ?o dry) (= ?p 0))
((= ?o wet) (= ?p 120))
((= ?o soaking) (= ?p 270)))

SHOP3 permits a compressed representation allow-
ing multiple Horn clauses with the same head (here
(drill-profit ?o ?p)) to be combined.

Problems contain an initial state and task network:
(defproblem wildcatter ; problem name
wildcatter ; planning domain name
() ; initial state (empty)
(oil-wildcatter)) ; initial task network

A SHOP3 planning problem is solved when its task net-
work has been fully rewritten into a sequence of primitive
actions that is executable (each action’s preconditions are
satisfied when it is executed). We will see, though, that gen-
erating plans is only a subproblem for SHOPPINGSPREE.

We have made minimal extensions to SHOP3’s KR to
model finite-duration POMDPs: 1. We allow propositions
to be marked as hidden 2. We mark some methods as
stochastic: these methods are allowed to read hidden
propositions and invoke random in their preconditions.
3. We mark some operators as uncontrolled; these may read
hidden propositions in their preconditions, and do not ap-
pear in the agent’s history (see Section 4).

Here is an example of how these extensions are used in
the oil wildcatter problem:
(:stochastic-method (init-oil˜)
(and (assign ?r (random 1.0d0))

(oil-outcome ?r ?o))
(:ordered (!init-oil˜ ?o)))

(:op (!init-oil˜ ?o)
:add ((hidden (oil ?o)))
:cost 0)

(:- (oil-outcome ?r ?o)
((< ?r 0.5) (= ?o dry))
((> ?r 0.5) (< ?r 0.8) (= ?o wet))
((> ?r 0.8) (= ?o soaking)))

init-oil˜ randomly samples from a categorical to find
what the oil conditions then uses the uncontrolled operator
!init-oil˜ to record the hidden literal. All uncontrolled
tasks have the ˜ character as suffix.

We represent the oil wildcatter problem as follows (full
domain: https://pastebin.com/pUqLt2H6):

The top-level task is oil-wildcatter, which decom-
poses to prepare-problem and make-decisions.
prepare-problem decomposes to init-oil˜ fol-

lowed by init-test˜. init-oil˜, is as described
above.init-test˜ samples from a categorical (condi-
tioned on the oil) and adds (test-result s), for s =
ns, os, or cs. These are only revealed to the agent if it tests.
make-decisions expands to test-decision fol-

lowed by drill-decision. Each of these expands to a
decision to either perform or not perform the correspond-
ing action. !test incurs the testing cost and reveals the
value of o in (hidden (test-result o)) by adding
(test-outcome o). drill incurs the cost and accrues
some income depending on o in (hidden (oil o)).

The way SHOPPINGSPREE handles partial observability
is, in a way, the inverse of the one in Definition 1: state com-
ponents default to being visible, and must be explicitly hid-
den, rather than needing to be explicitly observed.

4 Planning Algorithm
In this section, we describe how we have fused MCTS with
SHOP3’s HTN planning algorithm. As with a conventional
planning problem, the input to SHOPPINGSPREE is a plan-
ning domain and problem (Section 3), but the notion of so-
lution is quite different. The “solution” is a sequence of ac-
tions generated in an attempt to maximize the agent’s utility
(as defined in the domain and problem): see Alg. 1. At the
moment, we have a very simple simulator, also based on the
planning domain and state. In a real application one would
connect the planning agent to effectors, and incorporate sen-
sory inputs from the environment.

A simplified version of SHOP3’s planning algorithm is
given in Algorithms 2, and 3. At the top level, the “Find
plans” procedure of Algorithm 2 is invoked with the initial
state, the top-level task from the planning problem, and the
empty set of bindings. For reasons of space, we do not dis-
cuass the basic SHOP3 algorithm in detail here. However,
these pseudocode procedures were taken from our previous
paper on SHOP3 (Goldman and Kuter 2019), interested read-
ers can consult that paper for further details.

The first modification to the planning algorithm is to use
the MCTS method for choosing options at nondeterminis-
tic choice points. These choice points occur at lines (5 in
Alg. 2), (2 in Alg. 3), and (8 in Alg. 3). In each case, it is
straightforward to adapt the MCTS bandit method to choose
one of the alternatives from the finite set.

There is a complication, however: the scores for the
MCTS algorithm must be tabulated at states that are equiv-

Algorithm 2 Simplified planning search algorithm.
1: procedure FIND PLANS(S, T,B) . state, tasklist, bindings
2: if T = ∅ then
3: return () . No tasks: return empty action sequence.
4: end if
5: choose t ∈ T with no predecessors
6: if t is primitive then
7: o← operator for t
8: if o is applicable in S then
9: S′ ← result(o, S)

10: T ′ ← T − t
11: P ← FIND PLANS(S′, T ′, B)
12: return cons(o, P)
13: else
14: return FAIL
15: end if
16: else . t is a complex task
17: < b,R′ >= reduction(t, S)
18: if b is FAIL then
19: return FAIL
20: else
21: B′ = apply(b,B)
22: if B′ is FAIL then
23: . Merge new bindings with incoming.
24: return FAIL
25: end if . Replace t with its expansion R′ in T
26: T ′ ← replace(t, R′, T)
27: return FIND PLANS(S, T ′, B′)
28: end if
29: end if
30: end procedure

alent with respect to knowledge, rather than at complete
states. See line 3 of Alg. 4. This is necessary because the
agent can only choose actions based on the state it observes,
rather than based on complete knowledge. The oil wildcatter
can only choose to drill or not based on the results of the test
(if they have done it), not based on the full state of the world,
including the oil predicate. On the other hand, when doing
a rollout, the planner must take into account the full state in
order to project the outcome and its value. Put differently,
the agent can choose only based on the visible part of the
state, and the value estimates it collects through MCTS. But
the MCTS sampling algorithm must sample (project) based
on the full state, whose evolution it simulates.

In SHOPPINGSPREE, “equivalent with respect to knowl-
edge” is implemented by projecting SHOP3’s state onto the
set of visible propositions. The set of visible propositions
are those propositions that are not hidden (see Section 3).
In addition to this, the state index (b in Alg. 4) includes the
visible history of the state. The visible history of the state is
the path of actions from the initial state leading to this state,
omitting the uncontrolled actions.

The visible history is an essential part of the table index-
ing because the POMDP policy that we are computing is not
memoryless; MDPs have optimal policies that are memory-
less (Puterman 1994), but POMDPs do not unless the state is
taken to include the agent’s belief state, as well as the world
state. The tables that MCTS computes are approximations
of the value function, not the agent’s belief state.

Algorithm 3 Task reduction procedure
1: procedure REDUCTION(t, S) . task, State
2: choose m a method for name(t)
3: . List of bindings from precondition query.
4: b∗ = query(pre(m), S)
5: if b∗ = ∅ then
6: return FAIL
7: else
8: choose b ∈ b∗ . bindings from preconditions
9: R← task-net(m)

10: R′ ← apply(b,R)
11: return b, R’
12: end if
13: end procedure

Where Algs. 2 or 3 require a choice, the choice is made
according to Alg. 4, which either initializes the choice table
for the current choice and chooses an arbitrary alternative, or
chooses the best decision, based on the current statistics, ac-
cording to the MCTS rule chosen. For this reason, an MCTS
rollout corresponds to the generation of a full plan, fitted
to a particular outcome of the chance variables: in the case
of the oil wildcatter problem, the oil-state and the out-
come of a test (if the planner chooses to make one), given the
oil-state. Because the plan is completed in a specific
context in terms of the chance variables, it can be scored.

The score of each plan/rollout is backpropagated through
the tree nodes of the search tree, and onto the correspond-
ing statistics tables constructed as part of Algorithm 4. Per
Equation 1, we increment the count of the action chosen at
each table entry, and increment the cost entry with the cost
of the full plan. If the search reaches a dead end – the current
partial plan cannot be completed– we back-propagate +∞.

The rollouts and backpropagation are the way that MCTS
avoids the problems of myopic decision making we men-
tioned in the introduction. In the oil wildcatter problem, the
planner can “see” that testing will provide information that
will later be of use, rather than rejecting it because of the
up-front cost. This kind of lookahead is more expensive and
difficult under uncertainty than in classical planning.

The second modification is that this “planning algorithm”
is not used as a conventional planner. Instead, it is essentially
used as a way to populate the MCTS decision tables through
planning and sampling. When it is time for plan execution,
the system repeats the planning process, but this time, in-
stead of using the tables to randomly generate a chosen ac-
tion, the system takes the action dictated by the table: the one
with the highest expected value (breaking ties randomly).
Execution continues in this way until the system makes an
observation, at which time the entire process repeats.

5 Conclusions
In this paper we have described an algorithm for HTN-based
POMDP planning that combines the HTN planner, SHOP3,
with Monte Carlo Tree Search. POMDP planning requires
a combination of expressive power and sequential decision
making in which observations and actions are interleaved,
but where myopic planning and deterministic relaxations are

Algorithm 4 Choice method (Browne et al. 2012, Alg. 2,
adapted)
1: C ← MCTSTable()
2: function CHOOSE(S, T,A) . state, choice type, alternatives
3: b← belief state forS
4: if 〈b, T 〉¬ ∈ C then . new choice table entry
5: C [〈b, T 〉]← new table for〈b, T 〉
6: return random member of A
7: end if
8: if ∃c ∈ alternatives | c¬ ∈ C [〈b, T 〉] then
9: return c . try untried option

10: else
11: return best element of C [〈b, T 〉]
12: end if
13: end function

insufficient to provide acceptable behaviors. Our work is still
at an extremely early stage where we have developed the al-
gorithm, but are still working to identify the best modeling
techniques and to refine our method to achieve the best per-
formance in the classes of problem that interest us.
Related work There is a great deal of work on applying
MCTS to various sorts of planning. An obvious parallel to
our work is the the application of MCTS to HTN by Wich-
lacz et al. (2020). The key difference here is that their work
applies to classical HTN planning, not POMDPs.

SHOPPINGSPREE will not be competitive with other plan-
ning systems based on MCTS that aim to handle large
POMDPs of standard structure (Silver and Veness 2010,
e.g.,). Where we hope that SHOPPINGSPREE will shine is
in problems with complex structures to the action space
that will take advantage of HTN capabilities, where the se-
quential decision making is relatively simple, but bushy, and
where we can profit from SHOP3’s expressive power, allow-
ing us to handle real-world complexities including object
creation, numerical attributes, etc..
Limitations A prominent limitation of this work is that it
cannot handle situations where the HTN planner can get “off
track” in the course of execution and not be able to com-
plete a plan. Consider a case where the planner has chosen
a method M = T → T1, T2, T3, to expand task T . Now
imagine something goes wrong in the course of executing
the subtasks of T1. Since the planner has committed to M ,
it can no longer back up and consider alternatives, either al-
ternatives to M , or alternatives to the current expansion of
T1. There are two ways to address this. The first is to ensure
that the planning domain does not feature such dead ends.
In our oil wildcatter example, as long as the discretization of
the test results is complete, there are no dead ends.

An alternative to the no dead ends property is to support
plan repair: the search space of the planner is expanded to
consider repair operations when the execution of the current
plan fails. We have developed an approach to plan repair for
SHOP3 (Robert P. Goldman, Ugur Kuter, and Richard G.
Freedman 2020) that we will incorporate in future work.

Acknowledgments This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency

(DARPA) and the Air Force Research Laboratory under
Contract No. FA8750-17-C-0184. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not reflect the views of
DARPA, the Dept. of Defense, or the U.S. Government.

References
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of
Monte Carlo Tree Search Methods. IEEE Transactions
on Computational Intelligence and AI in Games 4(1): 1–
43. ISSN 1943-068X, 1943-0698. doi:10.1109/TCIAIG.
2012.2186810. URL http://ieeexplore.ieee.org/document/
6145622/.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: The Case of SHOP3. In
Proceedings of the 12th European Lisp Symposium. Genova,
Italy.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and Acting in Partially Observable
Stochastic Domains. Artificial Intelligence 101(1-2): 99–
134. ISSN 00043702. doi:10.1016/S0004-3702(98)
00023-X. URL https://linkinghub.elsevier.com/retrieve/pii/
S000437029800023X.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based
Monte-Carlo Planning. In Hutchison, D.; Kanade, T.;
Kittler, J.; Kleinberg, J. M.; Mattern, F.; Mitchell, J. C.;
Naor, M.; Nierstrasz, O.; Pandu Rangan, C.; Steffen, B.;
Sudan, M.; Terzopoulos, D.; Tygar, D.; Vardi, M. Y.;
Weikum, G.; Fürnkranz, J.; Scheffer, T.; and Spiliopoulou,
M., eds., Machine Learning: ECML 2006, volume 4212,
282–293. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-540-45375-8 978-3-540-46056-5. doi:10.
1007/11871842 29. URL http://link.springer.com/10.1007/
11871842 29.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York, NY:
John Wiley & Sons, Inc.
Raiffa, H. 1968. Decision Analysis: Introductory Lectures
on Choices under Uncertainty. Behavioral Science: Quanti-
tative Methods. New York: Random House.
Robert P. Goldman; Ugur Kuter; and Richard G. Freedman.
2020. Stable Plan Repair for State-Space HTN Planning.
In Hierarchical Planning Workshop. Nancy, France. URL
https://hierarchical-task.net/HPlan/HPlan2020-paper4.pdf.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Lafferty, J.; Williams, C.; Shawe-Taylor,
J.; Zemel, R.; and Culotta, A., eds., Advances in Neural
Information Processing Systems, volume 23. Curran Asso-
ciates, Inc. URL https://proceedings.neurips.cc/paper/2010/
file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf.
Wichlacz, J.; Höller, D.; Torralba, A.; and Hoffmann, J.
2020. Applying Monte-Carlo Tree Search in HTN Planning.
In Proceedings SoCS.

