
Heuristic Search for Bounded Model Checking of Probabilistic Automata

Robert P. Goldman and David J. Musliner and Michael W. Boldt
SIFT, LLC

Minneapolis, MN USA
{rpgoldman,musliner,mboldt}@sift.net

1 Abstract
We describe a new method for bounded model-checking
of probabilistic automata (PAs), based on heuristic search
and integrated into the PRISM model-checker. PA models
include both probabilistic transitions and nondeterministic
choice transitions. Our search-based approach aims to ad-
dress weaknesses in statistical and dynamic-programming
approaches to checking bounded PCTL properties of proba-
bilistic automata. To model-check properties of PA models,
we must demonstrate that the property will be satisfied even
in the face of an adversary that optimally resolves nondeter-
ministic choices. We use heuristically guided AO* search
to find the optimal adversary policy and estimate the prob-
ability of properties. We adapt techniques from Artificial
Intelligence Planning to develop a heuristic that is based
on a relaxation of the underlying probability model. This
heuristic provides critical guidance to the search algorithm:
without it, even very small models are unsolvable. We have
implemented our algorithm in the PRISM model-checker,
and show cases where it outperforms PRISM’s dynamic pro-
gramming methods. We also describe promising directions
for future work in search-based PA model-checking, notably
introducing further abstraction into the heuristic to address
memory issues.

2 Introduction
Probabilistic automata (PAs) are automata that com-
bine probabilistic and nondeterministic models of uncer-
tainty (Sokolova and De Vink 2004). They are useful for
modeling phenomena such as randomized algorithms, com-
munications protocols, adversarial games, etc. For example,
a communications protocol might combine stochastic ele-
ments (e.g., a probabilistically chosen back-off delay) with
nondeterministic choice (e.g., a node can choose when to
send a message). Claims about PAs are typically probabilis-
tic. For example, the probability of a collision in 100 mes-
sage interchanges is less than 0.001. Many safety claims
like this one are made in terms of a time bound. In some
cases, safety claims must be made with respect to a time
bound, or they will be trivially true or false by the law of
large numbers. For example, we don’t require an aircraft to
never crash, we only require that the probability of a crash
is very low over a reasonable lifetime of the aircraft. For

this reason, we are particularly interested in bounded model-
checking for PAs.

Definition 1 (Probabilistic Automaton) A probabilistic
automaton is a four-tuple, 〈s, S,A, α〉, where S is a set of
states, s ∈ S is the initial state, A is a set of actions, and
α : S × A → D(S) is the transition relation, mapping a
state and an action to a distribution over successor states.1

The properties we check are expressed in the temporal
logic PCTL:

Definition 2 (PCTL) Assuming a set of atomic proposi-
tions, a1, a2...an ∈ A, the set of state formulas are as fol-
lows: every atomic proposition is a state formula. If f1 and
f2 are state formulas, so are ¬f1, f1 ∧ f2, f1 ∨ f2, and
f1 → f2. If f1 and f2 are state formulas, then f1W≤tf2
(weak bounded until) and f1U

≤tf2 (strong bounded un-
til) are path formulas. Finally, if φ is a path formula,
P(≤,<,≥,>)pφ are probabilistic formulas.2

Note that we follow PRISM, and diverge from Hansson and
Jonsson, by distinguishing between probabilistic and state
formulas.

In order to evaluate a probabilistic claim about a PA, with
bounded or unbounded time, we must have some way to re-
solve the nondeterminism in the model. The PA model does
not define a single probability distribution (Markov Chain),
but rather a family of distributions, depending on how the
nondeterministic choices are made. In order to perform ver-
ification, we should resolve this nondeterminism in a worst-
case manner: i.e., we should resolve them as the optimal
adversary would. Finding this optimal adversary reduces to
the problem of finding the optimal policy for a Markov De-
cision Process (Parker 2011, e.g.). We seek to prove that the
system description forces a win against a (nondeterministic)
adversary who is trying to make φ occur with a probabil-
ity of at least P . These model-checking problems are ex-
tremely computationally demanding, both in terms of time
and space.

Note that the relationship between bounded and un-
bounded model checking in PAs is fundamentally differ-
ent from the relationship that holds in conventional model
checking. In conventional model checking, the ideal is to

1This definition is adapted from Sokolova and de Vink (2004).
2This definition adapted from Hansson and Jonsson (1994).

check properties over unbounded time, but for many systems
this check cannot be effectively performed, and bounded
model checking provides a feasible approximation. We have
already pointed out that bounded model checking can pro-
vide qualitatively different answers in the probabilistic con-
text, because of the law of large numbers. In addition, the
nature of the adversary/counterexample is qualitatively dif-
ferent. Under appropriate assumptions, for unbounded time,
there is an optimal policy that is deterministic and station-
ary (Puterman 1994), and many algorithms for MDPs ex-
ploit this fact. However, for bounded horizon MDPs, the
optimal policy will generally be non-stationary: i.e., the op-
timal action choice for a given state will differ, depending on
the time. For the intuition behind this, consider a problem
where there is a long path to the goal that has a high prob-
ability of success, and a low probability short path. As the
agent nears the time horizon, it should shift its choice from
the long path to the short path, since it won’t have time to
complete the long path before the deadline.

The leading tool for probabilistic model check-
ing is PRISM (www.prismmodelchecker.
org) (Kwiatkowska, Norman, and Parker 2011). PRISM
provides model checking methods (and additional analysis
tools, such as simulation) for a number of classes of models,
including PAs. PRISM is an open source system, readily
extended by researchers outside the core team. We have
implemented our heuristic search solver as an extension to
PRISM.

For bounded model checking of PAs/MDPs, PRISM
provides a solution based on Bellman backup (dy-
namic programming), using Algebraic Decision Diagrams
(ADDs) (Bahar et al. 1993)3 to efficiently represent tran-
sition matrices, etc. One weakness of dynamic program-
ming approaches is that they can be forced to explore irrel-
evant (unreachable or suboptimal) parts of the state space,
which may present challenges in some models, since typi-
cally the state space is exponential in the size of the input.
Well-directed search methods can avoid this problem, lim-
iting their attention to relevant portions of the search space
(sampling methods provide a different means of attack on
this same challenge of dimensionality; see Section 6).

In this paper, we describe preliminary results from our
work applying heuristically-guided AND/OR tree search to
bounded model checking of PAs. The strengths (and weak-
nesses) of heuristic search nicely complement those of sam-
pling methods and dynamic programming. Unlike dynamic
programming methods, when the heuristic performs well,
we can avoid enumerating the full state space. Like dy-
namic programming, but unlike statistical methods, sys-
tematic search guarantees the correctness of the probability
bounds it computes. This is particularly important when we
fail to find a counterexample for a claim: if we report that
a system is safe because it cannot reach a safety-violating
state, s, with greater than a probability P , we can make this
claim with confidence. Since sampling methods do not cur-
rently provide bounds on the quality of the policy (coun-
terexample) they compute, they cannot currently make such

3ADDs are also referred to as Multi-terminal BDDs.

safety claims with confidence.
Our heuristic search method combines AO* search with a

heuristic function that is based on a relaxation of the un-
derlying model. It has been implemented in the PRISM
probabilistic model checking tool (Kwiatkowska, Norman,
and Parker 2011), and we present early results on a num-
ber of probabilistic model-checking problems. The heuris-
tic is of interest even outside of the context of systematic
search, as in our AO* search. Heuristics like the one we pro-
pose can also be used in Monte Carlo Tree Search (MCTS),
and we would like to use the current heuristic to guide our
MCTS-based approach to PA verification (Boldt, Goldman,
and Musliner 2015a; 2015b).

In the following sections we describe the search method,
and then the heuristic we use to guide the search. We then
present some test cases that illustrate strengths and weak-
nesses of the technique. We then review related work, and
conclude with some promising directions for enhancement
of the tool we have built.

3 AO* search for model-checking
Finding an optimal policy for an MDP is an AND/OR tree
search problem. The OR nodes involve the adversary choos-
ing an action for 〈s, t〉, a particular state at a particular time
index. AO* search is the AND/OR analog of A* search, and
provides the same guarantee: when guided by an admissible
heuristic function, it is guaranteed to return the minimum
cost solution (in our case, the policy providing the maximum
probability of reaching a target state) as the first solution it
finds (Bagchi and Mahanti 1983). Our implementation was
based on the text by Edelkamp and Schrödl (2012).

In A* search, the best solution so far corresponds to a sin-
gle node in the search tree and, implicitly, a path to that node.
In AO* search, on the other hand, the current best solution
is a subtree of the search tree: for the OR nodes, the single
child that looks best at present, and at AND nodes, all of the
child OR nodes. For this reason, when AO* search expands
a node, it must update the value estimates, potentially all the
way to the root of the tree, before proceeding. From this
subtree, we collect the non-terminal tip nodes, and that acts
as our openlist.

We have implemented AO* search as an extension to the
Java-based PRISM probabilistic model checker. The AO*
search explores the AND/OR tree of PA states, so we can
use it to find the probability of reachability for a property in
PRISM’s Probabilistic LTL. By finding the maximum prob-
ability of reachability, we can check bounded-until PCTL
properties. The PRISM infrastructure also translates re-
lated properties (bounded eventually, bounded always) for
our solver. In addition, we made substantial modifications
to the algorithm in order to make it (1) interface with the
methods and data structures of the PRISM model checker,
(2) exploit special features of the MDP search problems,
and (3) handle problems posed by the large search spaces.
We also developed a heuristic for the verification problems,
which we discuss in the following section.

We present pseudocode for our implementation as Ap-
pendix A. At the top we list a number of data structures
used in the algorithm. As with any search algorithm, it’s

essential that we manage memory efficiently, and these ta-
bles are critical to that. One area where we deviate from the
simple, textbook algorithm is in performing AND/OR graph
search, rather than tree search. With the help of the dup ta-
ble, we detect repeated states rather than regenerating them.
In our early development work, this was found to be criti-
cal to a usable implementation: without the duplicate table,
the algorithm choked on repeated states. However, because
the textbook algorithm presentations did not clearly present
assumptions, invariants, pre-conditions, or post-conditions,
building a correct graph-based variant caused us consider-
able effort.

The search algorithm falls into three major blocks. The
first, between lines 15 and 29, reconstructs the best partial
solution, π, and builds a set of non-terminal tip (NTT) nodes,
ntt . The latter serves as our open list. In the hopes of solv-
ing, and thus garbage-collecting, search nodes more quickly,
we choose NTT nodes deepest-first. Right now, we maintain
a set of NTT nodes, but we could easily save only a single
“next node.” It’s not clear that the savings would be signifi-
cant.

The second block covers the actual expansion of the cho-
sen NTT node, u, between lines 30 and 44. The expand op-
eration finds the children of the node u and computes their
heuristic function values using the heuristic, h.

Finally, probability information from the children of u
must be propagated up the tree. Starting at u, we update
the cost-to-go values based on information at the children.
At each OR node, we must also check to see if the best child
choice for that node has changed, based on the new informa-
tion. This loop appears between lines 45 and 54.

One issue that we found in our development was that
we were inadvertently bridging two largely disjoint com-
ponents of PRISM. The first component performs dynamic
programming using ADDs. In this component, states are
not really first-class objects: instead, reasoning is done in
terms of sets of states, implicitly represented using decision
diagrams. The second component is the codebase to sup-
port performing simulation, where the first class entities are
states and traces through states, rather than sets of states. We
bridged these two components because our forward search
explored individual states, like the PRISM simulator, but we
represented our heuristic function using ADDs (see below).
There were some minor awkwardnesses when we tried to
use capabilities from both of these components together. For
example, we had to add some methods to support looking up
the entry for an individual state in an ADD. We hope our ex-
tensions will prove useful to other PRISM programmers.

4 The Heuristic
In order to get acceptable performance from AO*, we must
have an informed and admissible heuristic. The heuristic
must be admissible – that is, for reachability, it must pro-
vide an upper bound on the probability of reaching the goal.
Without this property we cannot ensure that we will find the
optimal adversary. The heuristic must be informed, or the
search will be inefficient We have used heuristics inspired
by methods that have been found effective in AI planning,
in particular heuristics that are based on relaxations of the

reachability problem that we are trying to solve. Our “metric
disjunctive reachability heuristic” provides good guidance
for several domains. We present it below, discuss its perfor-
mance in the following section, and then discuss potential
improvements in our conclusions.

Before experimenting with informed heuristics, we tested
our AO* search algorithm with an uninformed admissible
heuristic. This heuristic assigned a value to 1 to any state
that was not a failure state (i.e., a non-goal state at the time
bound). All but the most trivial problems were practically
unsolvable with the uninformed heuristic.

Our next step was to experiment with the use of simple
reachability as a heuristic. For each state × time pair, we
computed whether the goal state was reachable from that
state (in the time bound), and used this zero-one heuristic to
guide our search. We implemented this by computing back-
wards reachability from the goal state using BDDs, taking
the probabilistic transition relation and abstracting it into a
zero/one transition relation. To compute a labeling for each
state, however, we must resolve nondeterministic choices.
The way we do this is to choose the maximum reachability
value over all of the action variables (in this simple reach-
ability context, “maximum” is equivalent to “disjunction”).
More formally, the operations for computing the heuristic
value for t from t+ 1 is as follows:

Definition 3 (Disjunctive heuristic function)

ht = G ∨ (∃(~a)TD−1 · ht+1)

where ~a are the action variables, TD is the determinized
transition matrix, ht+1 is the (previously-computed) heuris-
tic DD for time t + 1, and G is the BDD for the goal state.
For a time bound k, hk = G.

The operations above are all provided by the CUDD
ADD/BDD library (Somenzi 2001),4 accessed through a
Java interface provided by PRISM.

The disjunctive heuristic could be efficiently computed,
but was not sufficiently informative. We have replaced it
with a metric disjunctive heuristic that computes a more re-
fined (over)estimate of the probability of reaching the goal
from each state. This heuristic is a relatively straightforward
variant of the disjunctive heuristic, except that we use the
original transition relation, T , instead of the determinized
version, TD . Now we cannot use existential quantification
to remove the action variables, but must use maximization
as the quantification method (thus preserving the admissible
nature of the heuristic):

Definition 4 (Metric disjunctive heuristic function)

ht = max(G, (max(~a)T−1 · ht+1))

where ~a are the action variables, T is the transition matrix,
ht+1 is the (previously-computed) heuristic DD for time t+
1, and G is the BDD for the goal state. For a time bound k,
hk = G.

All of the operations needed to build these heuristic func-
tions in ADDs can conveniently be performed using CUDD,

4http://vlsi.colorado.edu/˜fabio/CUDD/

Name Backoff States Transitions
wlan0 0 6,063 1,0619
wlan1 1 10,978 2,0475
wlan2 2 28,598 57,332
wlan3 3 96,420 204,744
wlan4 4 345,118 762,420
wlan5 5 1,295,336 2,930,128
wlan6 6 5,007,666 11,475,916

Figure 1: Size of Wireless LAN models.

bundled with PRISM, through the Java API PRISM pro-
vides. The preimage operations are performed by conjunc-
tion (for the deterministic version), or matrix multiplication
for the metric variant. Max and existential quantification
are also provided by CUDD, as are the maximum and dis-
junction operators. In our initial implementation, we build a
time-indexed vector of ADDs, each of which represents the
heuristic function of a state and time index, h(s, t), by loop-
ing backwards through time from terminal goal states, using
the recursive definitions provided above.

As we show in the following section, this heuristic esti-
mate provides a good compromise between information con-
tent and efficient computability. However, for larger prob-
lems, our current representation is too naive, and further en-
hancements will be required. We discuss this further in our
concluding notes about future work.

5 Experiments
We have implemented our approach and evaluated it on
several domains. Our preliminary experiments illustrate
both the promise of our technique and its limitations,
and will guide our future work (see Section 7). Mod-
els and property files describe in this section are avail-
able at http://rpgoldman.goldman-tribe.org/
difts15-data/index.html

Wireless LAN The wireless LAN example shows the po-
tential of our search based approach. This domain is from a
PRISM case study of the IEEE 802.11 Wireless LAN proto-
col (Kwiatkowska, Norman, and Sproston 2002). The pro-
tocol involves a randomized exponential backoff for retrans-
mission of collided packets, to avoid repeated collisions. To
scale up the size of the domain, we increase the maximum
backoff value from 0 to 6. See Figure 1 for the size of the
models in this domain.

The property we analyze is the probability of having two
collisions within 100 time steps. The underlying probabil-
ity of this property is the same across the varying maximum
backoff parameter. Figure 2 gives runtime comparisons for
our AO* approach versus PRISM’s dynamic programming
approach. This shows that an informed heuristic enables a
search-based approach to exploit its potential to avoid irrel-
evant parts of the search space. To get a sense of the im-
portance of the heuristic, we ran wlan0 with an uninfor-
mative heuristic (all non-goal/non-failure states have admis-
sible heuristic value of 1.0). Instead of approximately 0.7

Name Probes States Transitions
zeroconf1 1 31,954 73,318
zeroconf2 2 89,586 207,825
zeroconf4 4 307,768 712,132
zeroconf6 6 798,471 1,833,673
zeroconf8 8 1,870,338 4,245,554

Figure 3: Size of IPv4 Zeroconf Protocol models.

second to solve the problem, with the uninformative heuris-
tic, AO* took 6012 seconds. As this was the simplest of the
problems, we did not run additional tests.

IPv4 Zeroconf Protocol The IPv4 Zeroconf Protocol, an-
other PRISM case study example, dynamically configures IP
addresses in an ad-hoc network, to avoid setting up static IP
addresses for each device or a DHCP server (Kwiatkowska
et al. 2006). The state size is scaled up by the number of
probes it sends out before claiming an IP address. The size
of the models are in Figure 3.

AO* can handle these domains, but it is much slower than
PRISM on them. See Figure 4: the runtime of PRISM on
these problems is so fast by comparison that the plot of its
runtime cannot easily be distinguished from the X axis. The
overhead of building the heuristic in the current implemen-
tation overwhelms any time savings. Also, as the problems
get larger, it’s not clear that the heuristic is provided useful
guidance. We need further investigation to understand the
distinction between these two models.

Robot problems Finally, we considered a parameterized
set of robot navigation problems, developed by the CMU re-
searchers as part of their work on sampling approaches to
PA model checking (see Section 6). These domains are de-
signed to be difficult for systems that use ADDs, because
the transition function was intentionally made to foil the
kind of abstraction that ADDs perform. Unsurprisingly, both
PRISM’s dynamic programming and our AO* search fail
on these problems, running out of memory as they compute
preimages. It will be interesting to see if AO* search, cou-
pled with a heuristic that uses abstraction (see Section 7) can
do better on these problems.

6 Related Work
Henriques, et al. (2012) have addressed the challenges
of verifying PAs using a sampling method. Their Sta-
tistical Model Checking for Markov Decision Processes
(SMCMDP) algorithm operates in two phases. The first
phase resolves the PA’s nondeterminism with an initial prob-
ability distribution, and then uses multiple rounds of Monte
Carlo sampling and Reinforcement Learning to improve the
policy for nondeterministic choices with respect to satisfy-
ing a Bounded Linear Temporal Logic (BLTL) property. The
second phase uses the best learned policy to reduce an MDP
to a fully probabilistic Markov chain, on which known sta-
tistical model checking methods may be applied to give an

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6

ru
n
ti

m
e
 (

se
cs

).

wlan problem

PRISM/AO* Comparison for wlan reachability

PRISM
Time to build AO* heuristic

Total AO* runtime

Figure 2: Comparison between AO* algorithm and PRISM’s dynamic programming on scaled WLAN problems.

approximate solution to the problem of checking the prob-
abilistic BLTL property. Unfortunately, there are a number
of challenges to this approach: The Monte Carlo sampling
process in SMCMDP can take a long time to converge. This
problem can manifest itself either in the first phase where
reinforcement learning is used to find an adversary policy,
or in the second phase when, after the non-determinism has
been resolved, we sample from the resulting Markov Chain
to evaluate the property’s worst case probability. Another
problem is that much of the performance improvements of
the SMCMDP technique come from the fact that it computes
a stationary policy, instead of a non-stationary one, provid-
ing a substantial time and space saving. Unfortunately, we
know of no way to estimate how far from optimal a station-
ary policy may be for a bounded reachability problem, so
it’s not clear how useful the output of the current SMCMDP
algorithm is. Finally, it’s not clear that the reinforcement
learning algorithm is guaranteed to converge in this case.
The proofs of convergence for such algorithms rely upon
learning being applied to a Stochastic Shortest Path (SSP)
problem (Bertsekas and Tsitsiklis 1996), and this reachabil-
ity problem is not an SSP.

Our interest in the issues raised by SMCMDP led us
to investigate other algorithms that addressed convergence
issues for non-SSPs (Kolobov, Mausam, and Weld 2012;
Kolobov et al. 2011). These algorithms addressed non-SSPs
in the context of probabilistic AI planning. They did not
directly address our bounded model-checking problem, be-
cause they addressed indefinite horizon problems. These
are problems that would terminate when a goal state was
reached, but otherwise did not terminate. They also had cost
models that did not fit our reachability problems.

Our work was inspired by the paradigm of guided
model-checking, which has aimed to bring together model-
checking and heuristic search, particularly heuristic search
techniques from AI planning (Edelkamp et al. 2008). How-
ever, we are not aware of other work applying guided model-
checking to probabilistic automata checking. There is a
rich vein of related work on probabilistic planning, however.
Bonet and Geffner have identified a very abstract paradigm
for solving such problems, which they call “find and revise,”
which unifies dynamic programming and search-based al-
gorithms for problems such as MDPs (Bonet and Geffner
2003). Brázdil, et al.have used such techniques for un-
bounded model checking of MDPs (Brázdil et al. 2014).

7 Conclusions
Our paper provides a preliminary report on the use of heuris-
tic search to model check bounded reachability problems for
probabilistic automata. Early results show that the technique
is promising. However, we must make improvements to the
implementation in order to realize this promise for a wider
class of problems.

We are considering a number of improvements to the im-
plementation of the heuristic function, and some variations
of the search method. The current implementation of the
heuristic function is too naive for many difficult problems.
In the worst case (where the decision diagram does not ef-
ficiently represent the problem structure), computing our
heuristic function can be as bad as solving the original prob-
lem with dynamic programming. Part of this is a problem of
our current implementation, which does not efficiently rep-
resent the heuristic functions across the time indices. How-
ever, for very difficult problems, more drastic improvements

��

����

�����

�����

�����

�����

�����

�����

�����

�� ���� �� ���� �� ���� �� ���� ��

��
��
��
��
��
��
��
�

����������������

��

�����
���������������������������

�����������������

Figure 4: Comparison between AO* algorithm and PRISM’s dynamic programming on scaled Zeroconf problems.

will be needed.
We believe further abstraction may provide a solution.

We have a partial implementation of an abstraction-based
approach adapted from the MDP planner APRICODD (St-
Aubin, Hoey, and Boutilier 2000). APRICODD collapses
together ADD entries for similar values. Unfortunately,
while the abstraction itself is effective, the algorithm pro-
vided by APRICODD does not efficiently detect the entries
for merging. We are working to improve this. An alterna-
tive abstraction method is to abstract the feature space of the
problem, by eliminating some of the state variables, and us-
ing the resulting, simplified and small transition relation, in
the heuristic (Edelkamp 2002). An extension to this form
of abstraction is to have multiple abstract heuristic functions
and then admissibly fusing the individual h() values into an
admissible best bound (Katz and Domshlak 2010).

Note that the value of our heuristic function (and variants)
is not limited to our own heuristic search system. It could
also be used with some sampling methods, including our
MCTS-based approach, or with find-and-revise based meth-
ods.

We are also considering whether to experiment with AO*
branch-and-bound search (Marinescu and Dechter 2009;
Otten 2013) as an alternative to AO* search. The guarantee
to provide the optimal solution first, provided by A* search,
and its AO* variant, frequently comes at the space cost of
having to actively maintain a large portion of the search
space, and the time cost of constantly switching attention
from one portion of the search space to another. In practice
A* search is often too inefficient to be practical, and AO*
is likely to share this problem. A branch-and-bound search
variant, quickly finding a (generally suboptimal) solution,

and then using that solution to prune substantial parts of
the search space, may provide a better technique for solving
these problems. Branch and bound search might also com-
bine well with an unsystematic approach such as our MCTS
solver: an initial result from MCTS would drive extensive
pruning, and then could either be validated as optimal, or
improved by systematic search.

Acknowledgments Thanks to Jordan Thayer and Dan
Bryce for many helpful discussions about search and the
use of decision diagrams. Thanks to Dave Parker for assis-
tance navigating the internals of PRISM. This research was
sponsored by the Air Force Office of Scientific Research and
AFRL via PO 284227 under CMU prime contract FA9550-
12-1-0146.The views expressed are those of the authors and
do not reflect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

References
Bagchi, A., and Mahanti, A. 1983. Admissible heuristic
search in AND/OR graphs. Theoretical Computer Science
24(2):207–219.
Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii, E.;
Pardo, A.; and Somenzi, F. 1993. Algebraic decision di-
agrams and their applications. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD-93), 188–
191.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-dynamic
Programming. Belmont, MA: Athena Scientific.
Boldt, M. W.; Goldman, R. P.; and Musliner, D. J. 2015a.
Offline Monte Carlo tree search for statistical model check-
ing of Markov decision processes. Submitted.

Boldt, M. W.; Goldman, R. P.; and Musliner, D. J. 2015b.
Online Monte Carlo tree search for sampling large Markov
decision processes. Submitted.
Bonet, B., and Geffner, H. 2003. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Gottlob, G., and Walsh, T., eds., Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1233–
1238. Morgan Kaufmann.
Brázdil, T.; Chatterjee, K.; Chmelik, M.; Forejt, V.;
Kretı́nský, J.; Kwiatkowska, M. Z.; Parker, D.; and Ujma,
M. 2014. Verification of markov decision processes using
learning algorithms. In Cassez, F., and Raskin, J., eds., Auto-
mated Technology for Verification and Analysis - 12th Inter-
national Symposium, ATVA 2014, Sydney, NSW, Australia,
November 3-7, 2014, Proceedings, volume 8837 of Lecture
Notes in Computer Science, 98–114. Springer.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search -
Theory and Applications. Academic Press.
Edelkamp, S.; Schuppan, V.; Bosnacki, D.; Wijs, A.;
Fehnker, A.; and Aljazzar, H. 2008. Survey on directed
model checking. In MoChArt.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In Ghallab, M.; Hertzberg, J.; and Traverso,
P., eds., Proceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems, April 23-27,
2002, Toulouse, France, 274–283. AAAI.
Hansson, H., and Jonsson, B. 1994. A logic for reason-
ing about time and reliability. Formal aspects of computing
6(5):512–535.
Henriques, D.; Martins, J.; Zuliani, P.; Platzer, A.; and
Clarke, E. 2012. Statistical model checking for markov
decision processes. 9th International Conference on Quan-
titative Evaluation of SysTems (QEST).
Katz, M., and Domshlak, C. 2010. Optimal admissible
composition of abstraction heuristics. Artificial Intelligence
174(12-13):767–798.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In Bacchus, F.; Domshlak, C.; Edelkamp, S.; and
Helmert, M., eds., ICAPS. AAAI.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of
goal-oriented MDPs with dead ends. In de Freitas, N., and
Murphy, K. P., eds., UAI, 438–447. AUAI Press.
Kwiatkowska, M.; Norman, G.; Parker, D.; and Sproston,
J. 2006. Performance analysis of probabilistic timed au-
tomata using digital clocks. Formal Methods in System De-
sign 29:33–78.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011.
PRISM 4.0: Verification of probabilistic real-time systems.
In Gopalakrishnan, G., and Qadeer, S., eds., Proc. 23rd
International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, 585–591. Springer.
Kwiatkowska, M.; Norman, G.; and Sproston, J. 2002.
Probabilistic model checking of the IEEE 802.11 wireless
local area network protocol. In Hermanns, H., and Segala,

R., eds., Proc. 2nd Joint International Workshop on Pro-
cess Algebra and Probabilistic Methods, Performance Mod-
eling and Verification (PAPM/PROBMIV’02), volume 2399
of LNCS, 169–187. Springer.
Marinescu, R., and Dechter, R. 2009. AND/OR branch-
and-bound search for combinatorial optimization in graphi-
cal models. Artificial Intelligence 173(16–17):1457–1491.
Otten, L. 2013. Extending the Reach of AND/OR Search
for Optimization in Graphical Models. Ph.D. Dissertation,
UCLA.
Parker, D. 2011. Probabilistic model checking. Lectures
notes available through PRISM website: http://www.
prismmodelchecker.org/lectures/pmc/.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York, NY:
John Wiley & Sons, Inc.
Sokolova, A., and De Vink, E. P. 2004. Probabilistic au-
tomata: system types, parallel composition and comparison.
In Validation of Stochastic Systems. Springer. 1–43.
Somenzi, F. 2001. Efficient manipulation of decision dia-
grams. STTT 3(2):171–181.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRICODD:
Approximate policy construction using decision diagrams.
In NIPS-2000, 1089–1095.

A AO* algorithm
backpropagate(s) subroutine

1: o← solved(s) ; . Old values of f and solved
2: f ← f(s) ;
3: if AND(s) then
4: f(s)←

∑
c∈successors(x) f(c) · p(c|s);

5: for all c ∈ successors(s) do
6: markedChildren(s) ← markedChildren(s) ∪
c;

7: solved(s)←
∧

c∈successors(s) solved(s);
8: end for
9: else . s is an OR node

10: b← argmaxc∈successors(s) f(c); . b is best child
11: solved(s)← solved(b);
12: markedChildren(s) = {b};
13: end if
14: return ¬o ∧ solved(s) ∨ f 6= f(s); . parent needs

update

AO∗ Search
1: . Data structures:
2: PriorityQueue ntt ← newPQ(); . the openlist (nonterminal tip nodes)
3: Set dup ← ∅; . duplicates table: persistent
4: Set of states markedChildren(s); . children of s in best partial solution
5: . the following are repeatedly cleared and repopulated
6: Priority Queue Z
7: Dequeue π . best partial solution
8: OrState s← new OrState(model initial state);
9: boolean done ← ⊥;

10: repeat
11: done ← >;
12: ntt ← ∅;
13: clear(π);
14: push(π, s); . Initial state is always in the solution
15: . Refill the NTT (non-terminal leaf states) queue with the NTT states from the partial solution, π:
16: Set v ← ∅; . Visited set
17: while π 6= ∅ do
18: SearchState c← pop(π);
19: if c ∈ v or solved(c) then
20: continue;
21: else
22: v ← v ∪ c;
23: end if
24: if isNTT(c) then
25: ntt ← ntt ∪ c
26: else
27: π ← π ∪markedChildren(c);
28: end if
29: end while
30: . Expand the next search state:
31: SearchState u← pop(ntt);
32: successors(u)← expand(h, dup);
33: for all SearchState v ∈ successors(u) do
34: done ← ⊥;
35: if solved(v) then
36: continue;
37: else if isGoal(v) then
38: h(v)← 1;
39: solved(v)← >;
40: else if isTimeout(v) then
41: h(v)← 0:
42: solved(v)← >;
43: end if
44: end for
45: . Propagate updates from expanded state
46: clear(Z); . Z is the set of states that need to be updated.
47: Z ← Z ∪ u;
48: while Z 6= ∅ do
49: SearchState x← pop(Z); . select from Z an element with no descendant in Z
50: boolean updateParent ← backpropagate(x);
51: if updateParent then
52: Z ← Z ∪ ancestors(x);
53: end if
54: end while
55: until solved(s) ∨ done;
56: return s;

