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ABSTRACT

We describe OpenMIND, a goal-oriented agent that plans to achieve its goals, executes its plans,
and revises its goals and planning models on the fly when novel, unexpected situations arise. This
general idea is not new; our contributions lie in the development of several domain-independent
model-modification and goal-reasoning heuristics that have proven effective in handling novelty,
based on blind evaluations with quantitative metrics. The metric results show that OpenMIND is
reliably able to detect novelties and then take advantage of novel opportunities and avoid or work
around novel hindrances using a small collection of domain-independent techniques. Overall, for
evaluation trials that presented novel challenges and opportunities across two different domains,
OpenMIND adapted to novelties to achieve 80% or more of the performance achieved by a baseline
agent on pre-novelty tasks in that domain.

1. Introduction

Our objective is to develop a discrete-action task-oriented agent that plans to achieve its goals, exe-
cutes its plans in open worlds and monitors their results, and effectively revises its goals and plan-
ning models on the fly when novel, unexpected situations arise. This is an ambition of wide interest
to those building physical and virtual cognitive systems that can survive and succeed in open worlds.
This general idea is not new (e.g., Klenk et al. (2013); Cox (2016); Cox & Dannnenhauer (2017)).
Our contributions lie in the development of several domain-independent model-modification and
goal-reasoning heuristics that have proven effective in handling novelty, based on blind evalua-
tions with quantitative metrics. We have implemented these heuristics and adaptation techniques
in the context of our OpenMIND autonomy architecture and they have been rigorously evaluated in
two independently-developed domains (with a third domain upcoming).

The particular focus of our work is how cognitive systems can be designed and built to detect,
overcome, and even exploit, novelties encountered in open world domains. We define “novelty” as
significant changes to the agent’s world that are not represented in the agent’s initial model of how
the world starts and changes over time, whether that initial model has been learned from previous

© 2021 Cognitive Systems Foundation. All rights reserved.



D. MUSLINER, M. PELICAN, M. MCLURE, S. JOHNSTON, R. FREEDMAN, C. KNUTSON

experience or engineered from specifications or examples. Although this definition encompasses
many types of novelty at different levels of domain models (e.g., object features, action transi-
tions Boult et al. (2021)), we limit ourselves to detectable, sudden, persistent changes to the agent’s
environment (Langley (2020)). These novel changes persist, so the agent may be able to improve
its performance if it adapts its behavior after the novelty occurs.

Although several systems have been developed to address the challenges of novelty, we describe
a unique combination of heuristics organized by a hypothesis-testing framework that has been eval-
uated at a new level of rigor through cross-domain, single-blind evaluation. Funded by the DARPA
SAIL-ON program, this work is part of a multi-team effort to explore ways that autonomous agents
can be robust to a wide variety of types of novelty, in a scientifically sound research approach based
on uniform metrics and single-blind evaluations (Langley (2020)). The research groups developing
domain simulations that include novelty are separate from the research groups developing agents,
and only very limited exchange of novelty examples is allowed. Agents must detect and respond to
novel aspects that arise during their interactions with the domain simulations, and their performance
on both detection and response is measured over many different interactions and different novelties.
Performance evaluations are conducted every six months by the domain developers, using a variety
of “unrevealed” novelty examples that have not been shown to the agent developers. After each eval-
uation, one or more of the novelty examples has sometimes been revealed to help agent developers
make progress; subsequent evaluations include new novelties of related and unrelated types. Now
past its 18th month, the SAIL-ON program has spurred significant advances in domain-independent
methods for robustness in the face of truly novel domain elements.

This research is not concerned with entirely novel domains where the agent must learn how
to perform a task from scratch with no prior knowledge (i.e., this is not a tabula rasa problem).
Here we are concerned with an agent that is already skilled in its intended domain, through training
or hand-crafting, but faces some novelties that arise on the fly and either interfere with its normal
operations or present opportunities for improvement. This scenario matches much more closely
with real-world situations where a well-developed, highly trained/tuned autonomous system might
be deployed, yet still encounter novel situations.

To set the stage for our focus on domain-independent novelty handling, we begin by briefly de-
scribing three domains from the SAIL-ON program, each presenting different challenges to Open-
MIND. We then describe in detail how OpenMIND uses domain-independent hypothesis reasoning
to manipulate its goals and planning models, yielding successful adaptations to novelties previ-
ously unknown to both the agent and its creators. In the Experiments and Results section, we
present quantitative evaluations based on results that the simulator developers obtained when run-
ning our OpenMIND agent in their environment. The metric results show that OpenMIND is re-
liably able to detect novelties and then take advantage of novel opportunities and avoid or work
around novel hindrances. We then briefly review related work, acknowledging that OpenMIND’s
architecture is not unique, but builds on a long history of research on agents, learning, and heuristics
for domain-independent problem solving. We conclude by reiterating that our contributions are in
domain-independent heuristics for handling novelty and a scientifically-sound evaluation, and note
an interesting problem with this type of blind evaluation: the bug-or-novelty conundrum.
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Figure 1: Views of the Polycraft, Sciencebirds, and Vizdoom domains.

2. Domains

To demonstrate how OpenMIND’s novelty-handling reasoning is domain-independent, we are ap-
plying the system to three different domains during the SAIL-ON program. Illustrated in Figure 1,
these domains pose varying challenges and have widely diverse forms of novelty, and we have en-
hanced OpenMIND with both domain-dependent and independent methods for each. During the
third-party evaluations, the basic unit of evaluation is a “trial” of a hundred or more “games” to be
played by OpenMIND. In each trial, the agent is faced with repeated modest variations of a chal-
lenge (game) it must solve in a limited time or number of moves. The initial configuration of each
game is drawn from one of two distributions of variations. In the first distribution, “pre-novelty”
games conform with the expectations of the agent. In the second distribution, “novel” games con-
tain some significant variation from the world for which the agent was designed or trained. The
point at which the trial shifts from the pre-novelty distribution to the novel distribution is randomly
determined. The agent receives a score at the end of each game and may receive other intermediate
score information, depending on the domain. The agent can learn from game to game, but it begins
each trial in its original “pre-novelty” form (in our case, with the hand-crafted knowledge we built
into OpenMIND, but no knowledge learned from playing games in novelty-bearing trials). More
details on the evaluation process are in Section 4.

The following sections give brief descriptions of the domains and some of the (revealed) novel-
ties involved. We develop and test OpenMIND using the games provided by the domain developers,
and, when possible, we also invent our own novelties to test OpenMIND features. The domain de-
velopers evaluate our agent every six months using novelties that have not been previously revealed
to us.

2.1 Polycraft

Developed by a team at University of Texas, Dallas (UTD (2020)), Polycraft is a Minecraft mod that
can itself simulate many open-world domains. This domain, the one we started with, is perhaps best
suited to domain-independent symbolic reasoning about novelty, since the underlying simulation is
so broadly flexible and the action space is highly discretized and implicitly parameterized (roughly
corresponding to a limited set of mouse clicks and keystrokes whose effects vary depending on the
player’s environment). For the SAIL-ON Phase 1 “POGO” challenge, Polycraft simulates a world
in which an agent must chop down trees to obtain wood logs and thence wooden planks, build and
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use a tree-tap to obtain rubber, and assemble those resources into a pogo stick using the Minecraft
“crafting table.” In addition to “non-novelties” such as different locations for objects such as trees
and the crafting table, various revealed novelties have included “fence blocks” that obstruct access
to trees (and must be removed), “axes” that can chop down trees more efficiently but are expensive to
build from scratch, and “jungle” trees that make rubber more efficiently than normal trees. Actions
in Polycraft have individual costs, and also can report failure if they are invoked incorrectly (e.g., if
an agent tries to move to an inaccessible location).

2.2 Sciencebirds

Building on the popular Angry Birds game, Australian National University (ANU) developed Sci-
encebirds to simulate a world where the agent must use a slingshot to shoot birds at pigs resting
in an environment full of other objects such as wood blocks, ice blocks, etc. Renz et al. (2015)
organize an annual AI challenge to develop an agent that can play Sciencebirds. Score points are
accumulated both for killing pigs and breaking some of the other objects. Beyond the “non-novel”
different numbers and types of birds, pigs, and other objects in different configurations, revealed
novelties have included objects with different appearance that are nevertheless to be treated as pigs
or birds, rotations of the screen coordinates, changes in object value, “health,” speed, etc.

2.3 Vizdoom

Our most recent domain is Vizdoom, modified from an original vision-oriented first-person shooter
game Wydmuch et al. (2018), and provided in symbolic-sensing form to the SAIL-ON program by
Washington State University (WSU). Vodnala (2019) explains that Vizdoom will be part of an IQ
test for AI. In this domain, OpenMIND controls an agent that moves about the various rooms, as
shown in Figure 1, shooting enemies repeatedly and navigating to scattered health and ammunition
packs. The symbolic version from WSU provides the wall coordinates, player and enemy coor-
dinates/orientation, and locations of objects, so no vision processing is needed. While Polycraft
includes teleport movement commands that allowed us to avoid route planning, Vizdoom requires
2D route planning and determining suitable locations to shoot from (given limited orientation an-
gles and obstacles that block shots). Accordingly, we have added a fairly simple set of algorithms
for those functions. Novelties in Vizdoom include things like enemies moving faster than normal,
more health packs in the environment than normal, etc. OpenMIND has not yet been independently
evaluated in the Vizdoom domain.

3. Architecture

As illustrated in Figure 2, the OpenMIND architecture has much in common with other planning
and execution agents situated in dynamic worlds (e.g., Kuipers et al. (2017); Musliner et al. (1993);
Bonasso et al. (1996); Albus et al. (2002)). However, it faces the uncommon challenge of encoun-
tering novel obstacle and opportunities in three virtual environments created independently by three
different teams and having its performance objectively evaluated in all three.
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Figure 2: OpenMIND’s Mission Manager reasons about novelties to exploit or overcome
them. The other elements of the OpenMIND architecture closely resemble their
counterparts in other situated agent architectures.

The two major components of the OpenMIND architecture are the OpenMIND Executive and
the OpenMIND Mission Manager (OMMM)1. The Executive manages the reliable execution of
a plan sequence by checking preconditions, evaluating success/failure conditions, and, in a few
cases, combining low-level simulator interactions into a single plan action. OMMM uses symbolic
models of actions, transitions, and world states to build plans to achieve specific goals. OMMM has
the additional, more challenging task of detecting evidence of novelty in its interactions with the
domain, proposing hypotheses that explain the novel observations, adapting its planning models to
compensate, and evaluating the success of its efforts.

For example, when operating in the Polycraft POGO domain, OpenMIND repeatedly achieves
a single main task (creating a pogo stick) while learning to compensate for novelties in the domain,
including novel perceptions, novel items in the world, novel actions it can take, etc. Some novelties
can impede the agent’s original plans for building a pogo stick, while other novelties offer opportu-
nities for improvement. For example, in one novel situation the agent awakens in the domain to find
there is an unknown object, an “axe,” lying on the ground. Having never seen an axe before, and
with no semantic description of what an axe is good for (i.e., it could be a “foobar”), the challenge is
for the agent to discover that an axe makes breaking trees into logs much easier, and thus improves
its score on the task of making a pogo stick.

OMMM solves this learning challenge by forming explicit testable hypotheses about what might
be different in the world, and how it might correspondingly change its action models to compensate
(see Figure 3). In the axe example, OMMM forms several hypotheses that suggest that using the
axe in new ways in its various actions, including breaking trees, is a good idea. These correspond to

1. A domain-dependent Bridge component supports the Executive and OMMM by translating the native representations
of the different simulators into a standard, symbolic representation.
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Figure 3: OpenMIND reasons about novelty hypotheses to adapt its planning models.

planning model changes that the agent will temporarily use for experiments, to see if the hypotheses
are accurate and helpful. As it tries various new actions, OMMM observes the cost and success
or failure of doing those actions, compares those to its baseline expectations about the world, and
recognizes when the break-tree-with-axe action yields a lower cost. This validates the hypothesis,
now representing a quantum of valuable learned information: OMMM will retain that validated
hypothesis and the corresponding planning model changes in its future activities, using the axe any
time it is available.

3.1 The OpenMIND Executive

The OpenMIND Executive robustly executes a sequence of parameterized actions (the plan) sent to
it by OMMM. The Executive ensures reliable execution of the actions by checking preconditions
against the current world state and handling failure conditions returned from the domain simulation.
In most cases, a single planner operator translates to a single action sent to the domain simulation.
In some cases, the Executive manages a sequence of actions sent to the simulation and may dynam-
ically choose simulation commands based on world state. We have implemented the Executive with
the OpenPRS (Open Procedural Reasoning System) (Ingrand et al. (1992)) kernel to use its reliable,
fact-triggered procedure execution.

When the Executive encounters unexpected world states, action failures, or unmet preconditions,
it initiates reasoning about possible novelties. OpenMIND is focused on mission-relevant novelty
and explicitly checks world state related to the preconditions of planned actions. For example,
crafting a pogo stick requires four sticks and OpenMIND will plan an action to produce four sticks
from two planks. If the planned action unexpectedly produces a different number of sticks, the
Executive will notice the violation of anticipated world state when it checks aspects of the state
relevant to action preconditions. Interestingly, if the planned action unexpectedly produces five
sticks (which satisfies the precondition for producing a pogo stick), the Executive will still detect
the deviation from the expected state of the world, and OpenMIND will report novelty and replan,
just as if the action produced too few sticks. This design choice reflects OpenMIND’s bias towards
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Figure 4: OpenMIND’s scores over multiple games within two different trials show how it
learns to use axes that are already available, and also learns not to make an axe from
scratch (because it costs too much). Here, yellow boxes highlight the game in which
novelty is introduced: an axe in inventory or the recipe for making an axe.

novelty detection. In the event there are sufficient sticks to make a pogo stick, OMMM will report
novelty, and a replan will very likely re-derive the rest of the usual pogo stick plan.

Action failures also trigger signals from the Executive to OMMM to initiate the investigation
of potential novelty. Although the Executive checks action preconditions, there are other sources
of action failures in the SAIL-ON domains, including intended novelties. Some domains are suf-
ficiently dynamic that a precondition may be violated by the expected evolution of the simulation
state through environmental processes or the actions of other agents. For example, in some Poly-
craft scenarios, there is a rival “pogoist” who may harvest a tree that OpenMIND plans to use.
In Vizdoom, the targets are actively moving. In some domains, action outcomes are sufficiently
uncertain that actions may fail even when performed under the best conditions. For example, the
control inputs for Sciencebirds are discretized in such a way that the launch angle and velocity of
a projectile cannot be specified precisely enough to reliably hit a static target. And, in rare cases,
there are small bugs or irregularities in the simulation which cause actions to fail. The Executive
does not have the ability to reason about the underlying causes of these failures or distinguish their
root causes. It lumps them together as action failures and sends a message to OMMM indicating
the failure, relaying the new current state of the world, and requesting a new plan.

3.2 OpenMIND Mission Manager (OMMM)

OMMM constructs the action sequences that will achieve OpenMIND’s goals. Under nominal con-
ditions, this is a straightforward task, complicated slightly by the need to handle multiple hetero-
geneous domains and their simulators. When confronted by novelty, presented as action execution
failure or unexpected elements in the sensed world state, OMMM must characterize the novelty,
construct candidate plans that may overcome or exploit the novelty, and assess the quality of the
execution of those candidate plans. To structure these tasks, we have chosen a framework based on
domain independent hypotheses which describe the encountered novelty and algorithmically pro-
duce planning model changes to generate plans that handle the novelty. In this paper, we focus
on five hypothesis types (described in Section 3.2.2) which we believe are surprisingly effective in
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( : a c t i o n c r a f t _ _ _ _ r 4 − p o l y c r a f t _ w o o d e n _ p o g o _ s t i c k − d e f a u l t
:parameters

( ? c r a f t i n g − t a b l e − m c − c r a f t i n g − t a b l e − t y p e ? unk−loc − pcw−loc )
: p r e c o n d i t i o n

( and
( name ? unk−loc ? c r a f t i n g − t a b l e )
( >= ( i n − i n v e n t o r y p o l y c r a f t _ _ s a c k _ p o l y i s o p r e n e _ p e l l e t s ) 1 )
( >= ( i n − i n v e n t o r y m i n e c r a f t _ _ p l a n k s ) 2 )
( >= ( i n − i n v e n t o r y m i n e c r a f t _ _ s t i c k ) 4 ) )

: e f f e c t
( and

( d e c r e a s e ( i n − i n v e n t o r y p o l y c r a f t _ _ s a c k _ p o l y i s o p r e n e _ p e l l e t s ) 1 )
( d e c r e a s e ( i n − i n v e n t o r y m i n e c r a f t _ _ p l a n k s ) 2 )
( d e c r e a s e ( i n − i n v e n t o r y m i n e c r a f t _ _ s t i c k ) 4 )
( i n c r e a s e ( i n − i n v e n t o r y p o l y c r a f t _ _ w o o d e n _ p o g o _ s t i c k ) 1 ) ) )

Figure 5: At runtime, OMMM translates simulator information into scenario-specific domain
models. This is a possible instance of an action to construct a pogo stick derived
from Polycraft output.

combination, and generally useful in problem domains where cognitive systems must handle novel
changes to their environments.

3.2.1 Planning Models

OMMM maintains its knowledge about world state, state transitions, and goals as PDDL problems,
domains, and plans2. In the nominal (no novelty) case, OMMM can generate a fully specified
PDDL domain from its a priori knowledge of the domain, including the expected domain objects,
applicable predicates, and default world transitions (including actions). Domain knowledge can
be provided at agent build time or at run-time. For example, in Polycraft, the recipes for crafting
actions are provided by the simulator at the beginning of a scenario. OMMM translates these recipes
into domain transitions (see Figure 5).

Whenever the Executive is at a loss for its next action, for example when the scenario has just
started, a planned action has failed, or the Executive has successfully executed all of the actions in a
plan, it requests a new plan from OMMM. Each plan request includes a complete, symbolic snapshot
of the world state in the form of domain-fact statements (see Figure 6). First, OMMM analyzes
the incoming list of facts to identify any novel elements in the world state. Then, it constructs a
PDDL problem instance, using the fact list, its current goal, and the effects of any currently active
hypotheses.

Finally, OMMM invokes Metric-FF (or other PDDL-compliant planner) to solve its planning
problem. There are no guarantees a plan will be possible within a reasonable amount of time, so
OMMM must handle several possible outcomes of invoking the planner. The simplest case is when

2. Specifically, OMMM uses PDDL 2.1 with numeric fluents and limited derived predicates (Fox & Long (2003)).
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( ( : t y p e : p l a n − r e q u e s t )
( :p lan−name t0−g1−p12 )
( : r e a s o n " p l a n f i n i s h e d wi th game not ove r " )
( : f a c t l i s t ( . ( d o m a i n − f a c t ( s e l e c t e d − i t e m p o l y c r a f t . wooden_pogo_s t i ck ) )

( d o m a i n − f a c t ( i n − i n v e n t o r y p o l y c r a f t . wooden_pogo_s t i ck 1 ) )
[ . . . ]
( d o m a i n − f a c t ( name "20 , 4 , 2 0 " m i n e c r a f t . c r a f t i n g _ t a b l e ) )
( d o m a i n − f a c t ( i s a c c e s s i b l e "20 , 4 , 2 0 " t r u e ) )
( d o m a i n − f a c t ( n e a r m i n e c r a f t . c r a f t i n g _ t a b l e ) ) . ) ) )

Figure 6: The bridge and Executive translate the domain-dependent representation of the
domain simulators into a list of domain-fact statements, included in the
plan-request.

( d e f i n e ( problem t0−g0−p1−problem )
( :domain pcw−domain )
( : o b j e c t s

loc10_4_10 − pcw−loc
loc18_4_26 − pcw−loc
[ . . . ]

( : i n i t
(= ( i n − i n v e n t o r y p o l y c r a f t _ _ b a g _ p o l y i s o p r e n e _ p e l l e t s ) 0 )
(= ( i n − i n v e n t o r y p o l y c r a f t _ _ s a c k _ p o l y i s o p r e n e _ p e l l e t s ) 0 )
(= ( i n − i n v e n t o r y p o l y c r a f t _ _ w o o d e n _ p o g o _ s t i c k ) 0 )
(= ( i n − i n v e n t o r y m i n e c r a f t _ _ p l a n k s ) 0 )
[ . . . ]
( name loc3_4_17 m i n e c r a f t _ _ l o g )
( v a r i a n t loc3_4_17 oak )
( a x i s loc3_4_17 y )
( i s a c c e s s i b l e loc3_4_17 t r u e )
[ . . . ]
( n e a r m i n e c r a f t _ _ l o g )
( c r a f t i n g − t a b l e − p m i n e c r a f t _ _ c r a f t i n g _ t a b l e ) )

( : g o a l (= ( i n − i n v e n t o r y p o l y c r a f t _ _ w o o d e n _ p o g o _ s t i c k ) 1 ) ) )

Figure 7: OMMM constructs a PDDL problem instance from the world state, its goal, and
active hypotheses.
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(BREAK−BLOCK MINECRAFT__LOG LOC27_5_27 )
(CRAFT____R5−MINECRAFT_PLANKS−DEFAULT)
( CRAFT____R6−MINECRAFT_STICK−DEFAULT )
(BREAK−BLOCK MINECRAFT__LOG LOC23_4_15 )
(CRAFT____R5−MINECRAFT_PLANKS−DEFAULT)
(CRAFT____R3−POLYCRAFT_TREE_TAP−DEFAULT MINECRAFT__CRAFTING_TABLE LOC20_4_20 )
(BREAK−BLOCK MINECRAFT__LOG LOC18_4_26 )
(PLACE−TAP LOC8_4_2 )
(EXTRACT−RUBBER LOC8_4_2 )
(CRAFT____R5−MINECRAFT_PLANKS−DEFAULT)
( CRAFT____R6−MINECRAFT_STICK−DEFAULT )
(CRAFT____R4−POLYCRAFT_WOODEN_POGO_STICK−DEFAULT MINECRAFT__CRAFTING_TABLE LOC20_4_20 )

Figure 8: OMMM uses Metric-FF to solve planning problems it has formulated from domain
knowledge, current world state, and hypothesized novelties. This plan, if executed
successfully, constructs a pogo stick in Polycraft.

(CHECK−ASSERTION (NAME "8 , 4 , 2 " MINECRAFT .LOG) CRITICAL )
(CHECK−ASSERTION (IN−INVENTORY POLYCRAFT . TREE_TAP 1) CRITICAL )
(PLACE−TAP "8 , 4 , 2 " )
(CHECK−ASSERTION (TAP−PLACED−ON−TREE−AT "8 , 4 , 2 " ) CRITICAL )
(EXTRACT−RUBBER "8 , 4 , 2 " )
(CHECK−ASSERTION (IN−INVENTORY MINECRAFT .LOG 1) CRITICAL )
(CRAFT R5−MINECRAFT_PLANKS−DEFAULT)
(CHECK−ASSERTION (IN−INVENTORY MINECRAFT . PLANKS 5) CRITICAL )
(CRAFT R6−MINECRAFT_STICK−DEFAULT)
(CHECK−ASSERTION (IN−INVENTORY MINECRAFT . STICK 7) CRITICAL )
(CHECK−ASSERTION (IN−INVENTORY MINECRAFT . PLANKS 3) CRITICAL )
(CHECK−ASSERTION (IN−INVENTORY POLYCRAFT . SACK_POLYISOPRENE_PELLETS 1) CRITICAL )
(CRAFT R4−POLYCRAFT_WOODEN_POGO_STICK−DEFAULT MINECRAFT . CRAFTING_TABLE "20 , 4 , 2 0 " )

Figure 9: OMMM sends an execution sequence to the Executive that includes checks of criti-
cal world state and actions to be translated into the domain-specific simulator. This
sequence includes the last four actions to construct a pogo stick in Polycraft.
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the planner returns a goal-satisfying plan promptly. In that case, OMMM translates the plan into a
sequence of actions that can be consumed and executed by Executive (see Figure 9). If the planner
deems the problem unsolvable, OMMM begins its hypothesis reasoning cycle to determine whether
there is a novelty causing its failure and search for a way to overcome the difficulty.

3.2.2 Hypothesis Reasoning Cycle

When OMMM detects novelty, it begins its hypothesis reasoning cycle to characterize the nature
of the novelty and effectively respond to it. In many cases, the novelty creates opportunities for
OpenMIND to achieve its goals more quickly or with less expense. In other cases, the novelty poses
a threat to goal achievement that OpenMIND must overcome.

Novelty handling begins with detection, generally in the form of an unexpected observations
(see Figure 3). In this paper, we consider detections in the form of action execution failures, plan-
ner failures, and the observation of previously unknown items or features. Note that each of these
events can be detected in a domain independent fashion. In response to an unexpected observation,
OMMM creates an instance of a hypothesis class. The instance is placed in a queue for considera-
tion. When the hypothesis is active, OMMM uses it to modify its planning model, e.g., by adding
preconditions to an operator. While a hypothesis is in effect, OMMM is actively evaluating its
validity and assigning credit/blame to active hypotheses.

To illustrate hypothesis handling, we describe the life cycle of several domain independent
hypothesis classes which we have found to be very effective in SAIL-ON domains.

• Bad Args – One or more Bad Args hypotheses may be created in response to the detection
of an execution failure, particularly when the failed action is considered to be very reliable.
The notion is that the unexpected failure of an operator may be caused by unobserved or
misunderstood feature of one of the arguments. For example, in Polycraft, OpenMIND may
try to collect a log from a particular tree which for some reason is immune to the “break
block” action. When the Bad Args hypothesis is active, OMMM will dynamically modify the
PDDL operator for break-block to check for blacklisted parameters (Figure 10). If the
OpenMIND’s plan execution succeeds with the model modifications, the hypothesis will be
considered confirmed and remain active.

• Remove Novelty – In scenarios with repeated negative outcomes such as planner failures and
action failures, in the presence of detected novelty, OMMM will consider a Remove Novelty
hypothesis. This hypothesis class represents the theory that the new element in the domain is
interfering with planner or action success and that OpenMIND’s goals would be best served
by removing as much of the novelty as possible before resuming pursuit of the goal. This
domain independent approach to novelty requires some domain dependent knowledge in the
form of “grounding methods” that operationalize novelty removal for that domain. For exam-
ple, in Sciencebirds, the grounding method for novelty removal may shoot powerful birds at
novel scenario elements.

• Do Anything – When more specific hypotheses fail to find a way past negative outcomes,
OMMM can apply a Do Anything hypothesis, based on the observation that in goal achieve-
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( : a c t i o n b r e a k − b l o c k :parameters ( ? i t em − mc−item ? l o c − pcw−loc )
: p r e c o n d i t i o n
( and

( name ? l o c ? i t em )
( i s a c c e s s i b l e ? l o c t r u e )
( not ( c r a f t i n g − t a b l e − p ? i t em ) )
( not ( b r e a k − b l o c k − b a d − a r g s ? i t em ? l o c ) ) )

: e f f e c t
( and

( i n c r e a s e ( i n − i n v e n t o r y ? i t em ) 1 )
( not ( name ? l o c ? i t em ) ) ) )

Figure 10: When a Bad Args hypothesis is in effect, OpenMIND will create a new version of
the subject operator that supports parameter blacklisting.

ment domains doing nothing is almost never the right thing. As with Remove Novelty hy-
potheses, a domain dependent grounding method must be provided to make the Do Anything
hypothesis actionable. For example, in Polycraft the grounding method instructs OMMM to
use the break-block operator on a randomly selected item.

• Preferred Operator – The Preferred Operator hypothesis seeks to find new opportunities pre-
sented by novelties. When a novel element appears in the scenario, OMMM will create
Preferred Operator hypotheses for operators in its domain model. As it tests each of these
hypotheses in turn, it modifies its PDDL models to prefer operators that can make use of the
novelty in some way. For example, as described above, when an “axe” appears in the Poly-
craft domain the agent will form a new operator use the axe to break a tree into logs, and
create a preferred operator hypothesis to encourage the planner to try using that action when-
ever an axe is available. If using the axe yields logs at lower cost than the normal use-hand
operator, the preferred operator hypothesis is validated and will be used in the future. The
left plot in Figure 4 illustrates this case. Preferred Operator hypotheses are confirmed and
retained when they result in better scenario outcomes.

• Useful Prefix Goal – The detection of a novel item or feature will also trigger the creation
of Useful Prefix Goal hypotheses to obtain an example of the novel object. When a Useful
Prefix Goal hypothesis is active, the usual domain goal is replaced in the planning model by
the goal to obtain the novel element. For example, when the agent receives a recipe for how to
make an axe, but no axe is already present, it will create a hypothesis that having a new goal
to create the axe at the start of the game would be a good idea, so that it can be used by the
hypothesized preferred operator (also created, as above) to make logs at lower cost. In some
situations, however, the process of making the axe costs so much that it overwhelms the value
of using the axe to make the pogo stick. In that case, the agent will recognize that its overall
score for the game is lower than expected, and will reject the useful prefix goal hypothesis
and not try making the axe again. The right plot in Figure 4 illustrates this case.
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Figure 11: The format of a trial in a SAIL-ON evaluation.

4. Experiments and Results

In SAIL-ON, OpenMIND is evaluated in multiple domains by the developers of each domain. As
agent developers, we are blind to the details of evaluation process, to better ensure that the agent
design is not influenced by the specific novelties chosen for the evaluation and so that novelties
can be reused across evaluations to assess improvements in the agent over time. Multiple agents
from different SAIL-ON performers may be evaluated in the same domain, and all agents have been
evaluated multiple times, at six-month intervals. The domain developers have published a handful of
novelties for the agent developers, in part to debug the mechanics of the evaluation process. Domain
developers also provide a baseline agent - a domain-specific agent that is intended to perform the
task while being oblivious to novelty.

The evaluation of an agent consists of a battery of trials, typically on the order of one hundred.
The novelties for these trials are chosen to cover multiple categories spanning three difficulties (easy,
medium, and hard) and three types of novelty: classes, properties, and representations3. Many trials
are performed for each novelty, to provide some statistical confidence.

The domain providers use various methods to design and adjust the difficulty levels, including
changing scales of effects (e.g., a few fence blocks surrounding only some trees is easy, while
several layers of fence blocks surrounding every tree is hard). The difficulty may also be based on
how much effort is needed to explore and understand the novelty. For example, in Polycraft, the
easy version of the revealed axe novelty (a new class of object) provides an axe lying around in the
world (which is an opportunity to improve score), while the hard axe novelty only provides the axe
recipe, which is actually a decoy or red herring type of novelty, since making an axe uses so many
actions that it costs more than having the axe saves while breaking logs for the actual pogo stick
task.

To help explain the SAIL-ON evaluation metrics, Figure 11 depicts the elements and structure of
a trial. Each trial consists of a series of games. The agent retains its knowledge from game to game,

3. In future evaluations, SAIL-ON will expand the range of novelty types.
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but is reset to its initial tabula-rasa state between trials. Each trial is optionally preceded by a training
period to allow the agent to reach its asymptotic (non-novel) task performance before trial start, but
this is irrelevant for OpenMIND, which is expected to initialize at its asymptotic (best) level of
performance. At trial start, games are randomly drawn from the non-novel distribution of games for
the domain. At some variable point after the trial starts, games begin to be only drawn from the novel
distribution, marking the end of pre-novelty and the beginning of the post-novelty phase. During
the post-novelty phase, the SAIL-ON agent is intended to adapt to the novelty, eventually reaching
its asymptotic performance given the new conditions, whereas the baseline agent, not designed to
handle novelty, is not expected to adapt.

The metrics fall into two categories: detection metrics and adaptation metrics. Detection metrics
characterize how accurately the agent is able to detect when novelty has been introduced. These
metrics are various functions of false positives (games before the novelty has been introduced in
which the agent falsely reports that novelty has been introduced), and false negatives (games after
novelty has been introduced, in which the agent fails to report that novelty has been introduced).
True positives are games after novelty has been introduced in which the the agent correctly reports
that novelty has been introduced. A correctly detected trial is a trial which contains no false positive
games and at least one true positive game. The three central SAIL-ON detection metrics are (1)
the average number false positives in correctly detected trials (FN_CDT; smaller is better), (2)
the percentage of trials that are correctly detected trials (CDT_%; larger is better), and (3) the
percentage of trials that contain at least one false positive (smaller is better; FP_%). These metrics
trade off. An agent that is highly sensitive is more likely to report novelty in general, resulting in
some “false” or “artificial” reporting. If this false reporting first occurs in a trial after the introduction
of novelty that would otherwise go undetected, then it will result in some artificial true positives
in a trial which contains no false positives, potentially artificially driving up CDT. However, this
potentially also increases FN_CDT, depending on the gap between the true introduction of novelty
and the artificial report. Such a sensitive agent is also more likely to incur false positives, since the
false report may come before the true introduction of novelty.

Adaptation metrics characterize how well the agent performs its task in the face of novelty;
i.e., how well it adapts to the novelty. The primary adaptation metric in the SAIL-ON program is
Novelty Reaction Performance (NRP). NRP is the ratio of the agent’s asymptotic post-novelty score
on the task to the baseline agent’s mean pre-novelty score on the task. It captures the degree to
which an agent is able to recover to normal performance levels by trial end (although compared to
the baseline agent, not itself).

NRP =
scoreagent,post,asymptote

scorebaseline,pre,mean

Note that the baseline agent, tuned to the non-novel domain, may well initially outperform the
adaptive agent, but the adaptive agent is expected to outperform the baseline, non-adaptive agent
after some period of novelty. This may be because the non-adaptive agent fails to take advantage
of opportunities or loses score by failing to adapt to interfering novelties that prevent pre-novelty
normal behaviors from succeeding. For example, a non-adaptive agent using the Polycraft teleport
commands cannot succeed in the hard fence domains, when all trees are blocked.
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Two additional adaptation metrics compare the agent’s post-novelty performance to baseline
agent’s post-novelty performance (as opposed to comparing to the baseline’s pre-novelty perfor-
mance, like NRP). The Overall Task Performance Improvement (OTPI) measures the ratio between
the area under the agent’s post-novelty performance curve and the total (summed) area under the
post-novelty performance curves of both agent and baseline. The Asymptotic Task Performance
Improvement (ATPI) measures a similar ratio, between the agent’s asymptotic post-novelty perfor-
mance and the sum of the asymptotic performances of both agent and baseline. For both of these
metrics, a value greater than 50% reflects that the agent is outperforming the baseline agent in the
face of novelty. The primary difference is that OTPI is more sensitive to the speed with which the
agent adapts.

4.1 Two Evaluations

For the last two rounds of evaluation— month 12 (M12) and month 18 (M18) of the SAIL-ON
program— our OpenMIND agent has been evaluated in two domains, Polycraft POGO and Sci-
encebirds. Since we started building OpenMIND for just the Polycraft domain and then started
extending it for Sciencebirds at month 6, our agent was more advanced in some ways in Polycraft
than Sciencebirds.

By M12, we had developed the entire hypothesis reasoning cycle described above, as well as
versions of each of the novelty-handling hypotheses, with grounding methods as needed for the
Polycraft domain. For example, the remove-novelty hypothesis is grounded in Polycraft by the
knowledge that BREAK-BLOCK can make a novel block disappear from the environment. Simi-
larly, in Sciencebirds, shooting a bird at an object (pig or not) can make it disappear, so that novelty
hypothesis applied easily to Sciencebirds and was working at M12.

Some of the novelty-hypotheses do not need domain-dependent grounding methods. For ex-
ample, the Bad Args hypotheses do not require any domain-dependent elements, they apply to any
PDDL operator that has arguments (as most typically do). So, for Polycraft at M12 the Bad Args
hypothesis could determine that a “ghost axe” that we injected into the sensor data (but was not
really present in the simulation) could not actually be picked up, and the agent should stop trying.
Similarly, in Sciencebirds, at M12 the Bad Args hypothesis could determine that an invulnerable
pig could not be eliminated, and the agent should target a different pig.

Both M12 evaluations were impacted by several bugs in both the domain simulations and Open-
MIND’s behaviors and interface. For example, in Polycraft it was found that some blocks, when
being broken near a tree-tap, would disappear from the agent’s sensor data because the broken block
landed on top of the tree-tap, removing it from the single 2D level sensed by the agent. UTD re-
moved runs where that behavior was detected by our agent (and reported as novelty— disappearing
blocks!), so that bug did not affect the results data shown below. In OpenMIND’s, an M12 bug
in our agent made it randomly report novelty on non-novel objects occasionally, so that the agent
surprised us by detecting novelties for which we had built no detection mechanisms. ANU was able
to derive methods to detect this pattern in our data and also eliminated those runs from revised M12
results.

Differences in our agent from M12 to M18 included numerous OpenMIND bug fixes and
workarounds for domain simulation bugs, as well as improvements in both domain-dependent and
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Table 1: Results on adaptation metrics
NRP OTPI ATPI

M12 M18 M12 M18 M12 M18
Polycraft 81.7% 81.0% 50.5% 68.8% 56.1% 76.3%
Sciencebirds 84.0% 182.8% 50.9% 54.6% 50.7% 54.5%

Table 2: Results on detection metrics
FN_CDT CDT_% FP_%

M12 M18 M12 M18 M12 M18
Polycraft 2.4% 0.6% 82.0% 88.5% 4.6% 0.0%
Sciencebirds 27.8% 23.0% 68.3% 27.2% 12.6% 0.6%

domain-independent functions. For example, we extended the Bad Args hypotheses to handle situa-
tions where not just one argument is responsible for a bad outcome, but some subset of the PDDL’s
operator’s bound arguments are to blame and should be avoided. So far we only have homegrown
tests that illustrate this working in Polycraft, but it should apply in Sciencebirds (and may have
during the blind evaluations, we still don’t know). In Sciencebirds, we also improved the colormap
classifier, aiming algorithms, and perception-translation detection.

For M18, we also developed a new Do Anything fallback behavior when no novelty is perceived
(so Remove Novelty and several other hypotheses cannot apply) and yet all plans seem to mysteri-
ously fail to execute correctly, or the agent thinks it has achieved all the goals and yet the simulation
doesn’t agree the game should be over (e.g., if a normal-looking Sciencebirds block is actually being
treated as a pig that needs to be shot). In this situation, since the domains include no other source
of change (so far), the agent must try something to handle the imperceptible obstruction. This new
hypothesis is readily grounded in Sciencebirds (shoot at any object), since the action space is more
limited. In Polycraft at M18 it was roughly equivalent to the remove-novelty grounding (break-
block on any accessible object), but has since been expanded to support the broader action-space.

4.2 Results

In Table 1, we report our mean (across all trials) NRP, OTPI, and ATPI scores for M12 and M18
in these two domains. OpenMIND clearly performed very well on both domains across all three
metrics. The NRP scores show that OpenMIND could overcome novelty and recover to more than
80% of baseline agent pre-novelty performance on average in all four conditions. Similarly, the
OTPI and ATPI scores show that OpenMIND outperformed the baseline agent in the face of novelty
on average under all conditions and sometimes outperformed by a wide margin, such as on the
month 18 Polycraft trials.

In Polycraft, our results showed a marginal drop (<1%) in NRP from month 12 to month 18, but
it coincided with a much more significant jump in OTPI and ATPI (>18% and >20%, respectively).
These results indicate that in this domain, our agent’s post-novelty performance remained consistent
with respect to the baseline’s pre-novelty performance while building a significant advantage over
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the baseline agent’s post-novelty performance. This suggests that the set of novelties for this domain
in the month-18 evaluation was more challenging with respect to adaptation than was month-12,
which sheds a more positive light on our relatively consistent NRP from month 12 to month 18.

In Sciencebirds, we saw significant gains in NRP from month 12 to month 18, with our agent
in month 18 exceeding by 82.8% the pre-novelty performance level of the baseline by trial end,
on average. The significance of this achievement is tied to the nature of novelties; if they were all
purely obstacles, this would represent full recovery (with respect to baseline, at least), but some
novelties may be opportunities, for which this level of NRP would not be impressive. Our agent’s
OTPI and ATPI only rose by roughly 4% and 3% respectively from month 12 to month 18 in this
domain, implying that while OpenMIND ’s ability to adapt improved in this domain, it was a more
modest improvement than the jump in our NRP would suggest; we likely owe some of this jump
to an easier batch of novelties in the month-18 evaluation than in month 12 for the Sciencebirds
domain.

Table 2 shows our results in the Sciencebirds and Polycraft domains on the three detection
metrics listed above. All metrics moved in the preferred direction in the Polycraft domain between
month 12 and month 18. In Sciencebirds, our agent was sensitive to false detection of novelties per
the discussion of trade-offs above. We eliminated those false detections almost entirely by month
18, resulting in a reduced CDT (not preferred) alongside a reduced FP_% (preferred) and minor
reduction in FN_CDT (preferred). A subsequent analysis by our Sciencebirds evaluators revealed
that, when ignoring detections that showed signs of being artificial, our adjusted CDT actually
remained virtually constant between month 12 and month 18, indicating that our ability to truly
detect novelties did not suffer in the same period in which we almost eradicated false reports.

5. Related Work

As noted earlier, experienced readers will recognize many common themes in our OpenMIND agent
architecture and its functions. Here we touch on only a few related works, highlighting key inherited
ideas and differences in our approach. Our technical contributions lie primarily in the domain-
independent computational methods we have developed for modifying agent goals and planning
models, leveraging the information available from detected novelty aspects, while remaining flexible
and applicable in a wide variety of situations. In a sense, we’re researching ways to implement
general novelty-handling strategies that are closely related to the extensive literature on creative
problem solving strategies (for both humans and machines, e.g. Fobes (1993)).

5.1 Multi-Layered Agent Architectures

One distinguishing aspect of our work on OpenMIND has been the focus on remaining open to
novelty at all levels of the world representation. For example, the OpenMIND Executive can handle
novel features of the world (e.g., trees are now perceived with a bark-type). In the real world, this
would correspond to the agent acquiring a new sensing modality, such as a Mars Rover cannibalizing
an older, disabled rover to acquire a new infrared sensor. In contrast, many other plan executives
need to have the complete set of perceived features declared at compile or load-time (usually to
efficiently index their responses). Similarly, OMMM can reason about and manipulate its goals
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explicitly, including creating new goals based on never-before-seen objects and features (e.g., chop
all trees with (bark-type rough)).

5.2 Adapting Planning Models

Arora et al. (2018) present a useful overview of a wide variety of learning methods applied to
planning models, both online and offline. Their section on Surprise Based Learning relates most
closely to the SAIL-ON challenges and our approach, which generalizes prior work on detecting
violated expectations and modifying planning models accordingly. Perhaps the largest distinction
between those efforts to learn planning models and ours is that our work has been assessed in blind
evaluations against novel domain elements the system creators never knew about, lending credence
to the claim that they were truly novel and unexpected.

6. Conclusions

We have developed the OpenMIND agent architecture to remain as open as possible to novelty in
its environment: the system can handle new, never-before-seen perceptions (features of the world,
objects), new actions, new goals, and new world dynamics. In single-blind evaluations of Open-
MIND’s ability to detect and respond effectively to novelty, initial performance results are encour-
aging. The SAIL-ON program has spurred significant advances in domain-independent methods
for robustness in the face of truly novel domain elements, and the work is ongoing. We will be
enhancing OpenMIND to handle more types of novelty in each of the three domains it has been
applied to so far, and the domain developers will conduct several more evaluations. Future chal-
lenges including generalizing some of the system’s more recent domain-dependent capabilities that
were required to perform in new domains, such as route-planning and targeting, to create more
domain-independent functions for future applications.

6.1 Lessons Learned?

Readers may wish for a series of ablation studies or other experiments to determine which of Open-
MIND’s capabilities are responsible for its performance improvements, but therein lies the rub of
the scientifically-valid evaluation process. We have not yet been given the full set of M12/M18
evaluation novelties, and so we cannot perform those ablation studies or know conclusively which
knowledge/behavior improvements led to which performance improvements. Furthermore, it is
not clear what such studies would really show: would they illustrate that our domain-independent
novelty-handling methods correctly anticipated the precise set of novelties the domain-developers
created, or that they have a more-general validity?

6.2 Bug or Novelty?

While we have touted the scientific soundness of blind evaluation on novelties, in practice these
evaluations have revealed an unexpected conundrum: on unrevealed novelties, there’s no perfectly
clear way to distinguish between bugs in our agent, bugs in the domain simulations, and intended
novelties. For example, the simulation creators may think that their simulation is producing a novel
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world state, but there may be a bug so that it is not; then in the evaluation, the assessors expect our
agent to report novelty but it does not. They can tell us that it had a “false negative,” but not give
us the domain to try to reproduce the problem and diagnose the flaw. In more than one case on
revealed novelties, the simulator has actually been broken so that the novelty was not being created
at all.

Conversely, the simulator creators might be surprised that our agent is reporting novelty in
a supposedly non-novel domain. For example, UTD reported that for some non-novel Polycraft
scenarios our agent didn’t make the pogo stick. After some debugging, we realized that our agent
was doing the best it could, but there were simply not enough resources (trees) in the starting
situations of those scenarios to make the goal possible. UTD agreed, found the problem in their
game creation code, and the issue was resolved with no change to our agent.

The bugs can be on either side, or both sides, and that’s part of the conundrum! In yet another
bug-vs-novelty situation, our agent performed unexpectedly well at detecting novelty in Science-
birds in our first blind evaluation. The evaluation showed that the agent reported novelty on many
types of novelty for which it had no detection mechanisms at all, so we were quite surprised. How-
ever, on deeper inspection of long-duration logs for non-novel trials, we found that the perception
system was rarely and semi-randomly detecting spurious false novelty. These random “fake” detec-
tions would apparently also trigger during the blind evaluation of novel trials, giving us an improved
score despite the fact that the novelty detection was really an artifact of an OpenMIND flaw.
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