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ABSTRACT

Novelty detection in open worlds is a valuable endeavor
for improving the robustness of autonomous systems. Open
worlds are characterized by a lack of constraints on the
types of novelties that might occur. Here we describe re-
cent progress on detecting novelties in open-world numerical
properties in our OpenMIND agent, a domain-independent
planning-based AI architecture. Our approach has three ele-
ments: (1) Feature construction by crossing a tractable num-
ber of domain-dependent sensors with some basic domain-
independent statistical derivations, (2) online, univariate
changepoint detection on each signal, and (3) negative fea-
ture selection by screening for false positives in non-novel
scenarios. We report on the effectiveness of this approach
in a single-blind evaluation in which OpenMIND plays a
game and encounters novelties never observed by it or its
developers.

Index Terms— novelty detection, changepoint detection,
open world, Mann-Whitney, negative selection

1. INTRODUCTION

Modern AI has demonstrated powerful learning capabilities
in controlled settings, but operating in the real world presents
novel circumstances that can derail normal operation and
learning, if not actively addressed. This is true of remote
sensing systems, for which weather, geographical diversity,
shifts in perspective, and adversarial agents might introduce
radical, unfamiliar changes. Autonomous systems could ben-
efit from an ability to detect diverse novelties in open-world
settings, so their operations and learning algorithms may be
prepared or modified to better adapt.

OpenMIND is a planning-based architecture that de-
tects novelties in diverse, open-world domains, and responds
by modifying its goals and planning models on the fly [1].
Here we describe our recent work on a domain-independent
method for monitoring numerical data streams for change-
points that indicate domain novelty. We refer to the resulting
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software module as the Romulan Novelty Detector (RND), in-
spired by the notion of a modular, bolt-on Romulan cloaking
device from Star Trek1. The RND takes as input a tractable
set of domain-dependent, univariate sensor data streams. The
RND approach has three elements:

Feature construction: Expand the set of numeric sig-
nals by applying domain-independent operators such as
min/max/mean.
Changepoint detection: Hypothesize recent changepoints
across all signals and apply a hybrid changepoint detection
technique, from which a confidence or probability estimate
can be extracted for each changepoint hypothesis. Apply a
high confidence threshold for novelty detection.
Negative feature selection: Trim the set of signals by
screening for false positive detections in non-novel scenar-
ios.

2. BACKGROUND

Funded by the DARPA SAIL-ON program, this work is part
of a multi-team effort to explore ways that autonomous agents
can be robust to a wide variety of types of novelty, in a sci-
entifically sound research approach based on uniform metrics
and single-blind evaluations [2]. The research groups devel-
oping domain simulations that include novelty are separate
from the research groups developing agents, and only very
limited exchange of novelty examples is allowed. Agents
must detect and respond to novel aspects that arise during
their interactions with the domain simulations; their perfor-
mance on both detection and response is measured over many
different interactions and different novelties. Evaluations
consist of a set of “trials,” each of which is a series of games;
at the beginning of each trial the agent restarts with its base-
line knowledge (trained or hand-coded), and throughout the
trial the agent can learn new information. Evaluations are
conducted every six months by the domain developers, using
a variety of “unrevealed” novelty examples that have not been
shown to the agent developers.

2.1. OpenMIND

OpenMIND is a planning-based agent that creates and chooses
goals, makes plans to achieve its goals, executes those plans,

1https://en.wikipedia.org/wiki/The Enterprise Incident



monitors their results and other features of the open world,
and when unexpected situations occur, modifies its goals
and planning models on the fly. OpenMIND has contributed
several domain-independent model-modification and goal-
reasoning heuristics for novelty handling in open worlds,
which have proven effective in past rounds of SAIL-ON
evaluation [1].

Novelty detection in OpenMIND occurs at conceptually
distinct stages of processing: (1) “Cognitive proprioception”
of novelty when a plan cannot be created (e.g., initial domain
conditions are novel and will not support the usual plan), (2)
Failure of executed planning operators: novelty is detected
when OpenMIND perceives a total action failure or mismatch
between expected and actual operator post-conditions (for op-
erators that are expected to be reliable). (3) Object recogni-
tion: novelty is detected when an individual object’s proper-
ties are perceived to be substantially outside the learned dis-
tributions of all known classes. (4) Perception of numerical
properties: novelty is detected when there is an observed shift
in a numerical property of a known class, or of relationships
between known classes. Our focus in this paper is the last of
these aspects of novelty detection.

2.2. Vizdoom

Vizdoom is a modified form of the vision-oriented first-person
shooter game [3], provided in top-down 2D symbolic-sensing
form to the SAIL-ON program by Washington State Univer-
sity (WSU) [4]. In this domain, the player moves through a
map dotted with enemies who shoot at it, health packs, ammo
packs, and obstacles. The agent has limited ammo to shoot
at enemies, and the game is over when all enemies are dead
(a win!) or the agent dies or runs out of moves (a loss). The
agent receives a feature vector of sensor information on every
turn, including the locations of other objects/agents, health,
etc. We were given the simulator to run locally, so we could
run many non-novel games, varied by a random seed. We also
were given the ability to run five sample novelties:

1. Change in number of health packs.
2. Enemies have increased speed.
3. Enemies move toward player.
4. Enemy damage increases when closer to player.
5. Enemies spread out.

3. APPROACH

Our goal was to develop a domain-independent technique for
detecting the introduction of novelties, as quickly as possi-
ble, while limiting false positive detections, across any data
streams that could represent a property of a class of objects
(or set of classes or relationships). For a given stream of nu-
meric values, we assigned a probability estimate to a hypoth-
esized changepoint (i.e. introduction of novelty) by treating
the values before the changepoint as one sample and those

after the change point as another, and feeding these samples
to the Mann-Whitney U test. To bootstrap detection in early
games, we stored sensor data from 200 non-novel games and
prepended this data to the pre-changepoint sample.

Just before the end of each game in a trial, the RND hy-
pothesizes 15 change points— one at the beginning of each
of the last 15 games. For each changepoint, a novelty assess-
ment is performed on each of 22 sensors, described below. A
probability threshold of 99.9% was required before the RND
accepted a changepoint hypothesis and declared that novelty
was detected. Additionally, the RND only accepted a change-
point hypothesis if two other necessary conditions were met:
The absolute value of the difference between the mean of
the post-changepoint sample and the pre-changepoint sample
must be both

i) greater than twice the standard deviation of the pre-
changepoint sample, and

ii) greater than 5% of the pre-changepoint mean.
Note we faced a common challenge when trying to detect

novelties in open worlds: the number of sample novelties that
we had to test on was small (five), while our ability to test
on randomly generated non-novel games was virtually unlim-
ited. Thus our ability to test for false positives was much
greater than our ability to test for false negatives. We there-
fore initially cast a wide net with the signals we monitored—
leveraging domain-independent modifiers like min/max/mean
to have a multiplicative effect on a modest set of domain-
specific sensors (quantitative domain aspects)— and then we
disabled individual sensors that were observed to cause false
positives over many hundreds of non-novel test games.

3.1. Sensors

The development of sensors was partially guided by the five
novelties revealed by the makers of the Vizdoom domain. The
list below enumerates families of domain-dependent sensors
that were implemented in the Vizdoom domain.

• Item counts (ammo packs, health packs, and obstacles)
and enemy counts.

• Player’s health change, ammo change.
• Player’s distance moved, orientation changed.
• Average health change in enemies.
• Average distance moved by enemies.
• Average change in distance between player and each en-

emy, and average change in distance between enemies
(pairwise).

• Distance moved by items.

For each sensor, our domain-independent novelty detec-
tor optionally tracks all the values, the first value in a game,
the maximum value per game, the minimum value per game,
and/or the mean value per game. Given those five modifiers
applied to each of the families of domain-specific quantities
listed above, 65 or more individual sensor were created. After



eliminating redundant sensors or those that empirically cre-
ated false positives, we were left with 22 monitored sensors
in this domain.

4. EVALUATION

Here we describe two experiments that were conducted. The
first was the first formal SAIL-ON single-blind evaluation
of the OpenMIND agent in the Vizdoom domain, conducted
by WSU. The second was a small ablation study conducted
by the OpenMIND team to assess the effects of the two ad-
ditional necessary conditions layered on top of the Mann-
Whitney U test (conditions i) and ii) in section 3).

For both experiments, we report results for the three pri-
mary SAIL-ON novelty detection metrics. These metrics are
functions of false positives – games before the novelty has
been introduced and after the agent has (erroneously) detected
novelty – and false negatives – games after the novelty has
been introduced, in which the agent fails to report that novelty
has been introduced. True positives are games after novelty
has been introduced and the agent has correctly detected nov-
elty. A correctly detected trial (CDT) is a trial which contains
no false positive games and at least one true positive game.
The three primary SAIL-ON detection metrics are:

FN CDT The average number of false negatives in CDTs
(less is better).
CDT% The percentage of trials that are CDTs (more is
better).
FP% The percentage of trials that contain at least one false
positive (less is better).

4.1. Blind evaluation

The SAIL-ON evaluation run by WSU consisted of multiple
trials for each of four unrevealed novelties and each of 3 dif-
ficulty levels. Each trial consisted of 200 games, some non-
novel followed by some novel. The nature of the novelties is
unknown to the authors. The number of non-novel games is
also unknown, and likely variable.

The OpenMIND agent correctly detected novelty in
84.2% of the trials (CDT%), while only detecting novelty
erroneously early in 1.1% of the trials (FP%). In the trials
where OpenMIND correctly detected novelty, that detection,
on average, came 33.3 games after the novelty was intro-
duced (FN CDT). The median was 16, indicating that there
were some outlier, very late detections. When separated by
novelty, the medians for this metric were 3, 4, 21, and 33.5,
but the means were much more similar, ranging from 29 to
36.

4.2. Ablation study

We ran 75 trials, five trials for each of the five revealed nov-
elties described above, configured to medium difficulty, using

each of three versions of our novelty detection: (1) As de-
scribed, (2) without the required mean-difference of two stan-
dard deviations, and (3) without the required mean-difference
of 5%. We used the same five random seeds across conditions
to produce a paired comparison. In each of the two ablated
conditions, we expected to see an increase in false positives,
potentially in addition to a more modest decrease in false neg-
atives.

In the case of ablating the required two-standard-deviation
change in mean, CDT% plummeted from 96% to 4%, due to
the expected increase in false positives. FP% increased from
0% to 96%. The FN CDT also decreased as expected (5.11
to 1), but due to the explosion in false positives, in the ablated
condition this was only able to be measured in a single cor-
rectly detected trial (the only one), where the false negatives
dropped from three to one. In the case of ablating the required
5% change in mean, CDT% and FP% were unchanged, and
the FN CDT decreased marginally (5.11 to 5.07), only drop-
ping from three false negatives to two in a single trial.

5. DISCUSSION

The results were relatively strong for the first and only blind
evaluation in the Vizdoom domain, the only domain in which
the RND has been deployed thus far. The high percentage
of trials containing correct detections and the extremely low
percentage of trials containing false positives, alongside the
high number of games required on average to detect novelty,
indicate that our approach has a stark yet unsurprising con-
servative bias toward waiting for a very strong novelty signal
to avoid false positives. It was particularly promising that a
small collection of domain-specific sensors inspired by the re-
vealed novelties generalized to (eventually) detect such a high
proportion of unrevealed novelties, and it suggests that some
signals have unforeseen sensitivity to indirectly related novel-
ties. For example, a deeper look at detections of revealed nov-
elty four (”Enemy damage increases when closer to player.”),
which OpenMIND’s RND was slow and inconsistent to de-
tect in our own testing, showed that sometimes it was detected
based on the minimum ammo-change signal. This happened
when an enemy happened to spawn immediately next to the
agent, and due to the novelty, was able to kill the agent be-
fore the agent was able to fire a shot, resulting in a minimum
ammo change of zero as opposed to the usual -1.

It was evident from the ablation study that parametric re-
quirement i), a required mean change of 2 standard devia-
tions, played a crucial role in preventing false positives from
the Mann-Whitney U test. The catastrophic explosion in false
positives caused by dropping that requirement was not worth
the small decrease in false negatives, for which the evidence
was weak anyway. On the other hand, parametric requirement
ii) of a 5% change in mean did not demonstrate any value in
preventing false positives, and may be worth removing, con-
tingent on further testing.



The RND’s general approach - to put out a tractable
number of domain-dependent univariate numerical feelers,
multiply them using domain-independent operations, moni-
tor those data streams with a statistical test that can output
a probability estimate, threshold it at a conservatively high
level (here, 99.9%), then to weed out the overly sensitive
signals through negative selection process on non-novel data
- seems an empirically promising one to novelty detection in
open worlds, especially where immediate novelty detection
(minimizing false negatives) is less of a priority than eventu-
ally detecting as many novelties as possible while avoiding
false positives.

6. RELATED WORK

Our combination of feature construction and feature downs-
election is remarkably analogous to the negative selection
approach to novelty detection [5, 6]. Like in our approach,
the invention of negative selection was explicitly driven by
the imbalance between the abundance of non-novel data and
scarcity of novel examples, but their sensors (“detectors”)
were string-based and randomly generated. Here the anal-
ogous sensors are a matrix of signals derived from a set of
domain-dependent input signals, then subjected to a statisti-
cal changepoint test. The core of our changepoint detection
step is the Mann-Whitney U test, a.k.a Wilcoxon rank-sum
test. Therefore a closely related approach is [7], who use
this test with control charts for changepoint detection. As
pointed out in [8], Mann-Whitney is insensitive to changes in
a distribution that do not change the mean. Their proposed
Klyushin—Petunin test may be a promising alternative for
its sensitivity to variance and its fast detection properties.
The Kolmogorov-Smirnov statistical test, recently used for
changepoint detection in [9], is another test that is sensitive
to scale. It may be worth experimenting with these tests as
alternatives or as additions to our hybrid approach. Sensitiv-
ity to scale could also be achieved by simply adding variance
to our set of domain-independent modifiers used for feature
construction.

7. FUTURE WORK

The highest-priority future work is to apply the RND to Open-
MIND’s other SAIL-ON domains, an effort that is underway.

It seems that our use of the Mann-Whitney U test is in-
herently limited at fast detection, even given extreme values.
We plan to experiment with a “bypass” condition — an al-
ternative sufficient condition under which to declare novelty
— to trigger fast detection in extreme cases and reduce false
negatives. We also plan to go beyond detecting changes in
distribution mean by incorporating detection for changes in
variance, as discussed in the previous section.

In addition to the existing trailing window of changepoint
hypotheses, we plan to experiment with monitoring the over-
all leading (highest probability) hypothesis, in order to con-
tinue to evaluate it in light of the latest data. We also plan to
fully automate the negative selection training process.
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