
Employing AI Techniques in Probabilistic Model Checking
Position Paper

Robert P. Goldman and Michael W. Boldt and David J. Musliner
SIFT, LLC

319 First Avenue North, Suite 400
Minneapolis, MN 55401

rpgoldman@sift.net

Abstract

Probabilistic model-checking (PMC) is a new frontier in
model checking verification, useful for checking randomized
algorithms, communications protocols with random compo-
nents, etc. AI techniques have been incorporated into conven-
tional model-checking, with great success. We wish to see if
corresponding successes can be found by applying AI tech-
niques to PMC. In this position paper, we introduce PMC. We
present the probabilistic automata and probabilistic bounded
LTL used in modeling for PMC. We also introduce some ex-
isting tools for PMC. With this background in place, we dis-
cuss challenges and opportunities for incorporating AI tech-
niques in PMC, and our current work in the area.

Introduction
Model-checking has been very successful in identifying
and removing faults in conventional hardware and software.
Heuristic search and AI planning are very closely related to
model-checking verification, and such AI techniques have
been successfully incorporated, under the rubric of directed
model-checking (Edelkamp et al. 2008).

One new frontier in model-checking is model-checking
stochastic systems, in the form of probabilistic automata.
Probabilistic automata feature both conventional non-
determinism and stochastic non-determinism. Consider, for
example, a communications protocol involving a random el-
ement (for example, a random back-off used to resolve col-
lisions). In order to assess the correctness of this algorithm
we must consider both the random element, and the non-
deterministic choice of, say, the bits in the message. Claims
here are necessarily stochastic, e.g., “the probability that a
message will fail to be delivered is less than 0.0001.” As-
sessing these claims requires resolving non-stochastic non-
determinism in a worst-case way, i.e., by means of an op-
timal adversary. The previous claim is actually, “no mat-
ter what the message content, the probability that a mes-
sage will fail to be delivered is less than 0.0001.” Finally,
claims almost universally must be time bounded, since a
system that runs forever, and has any non-transient chance
of failure, will have probability 1 of reaching a failure state,
by the law of large numbers. To summarize, probabilistic

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model-checking claims will be of the form “No matter how
non-determinism is resolved, the probability of reaching a
failure state, within x time units is less than p.”

Note: We will use the term “probabilistic model check-
ing (PMC)” to denote model-checking of systems modeled
as probabilistic automata. We distinguish this from “statisti-
cal model checking (SMC)” which we will reserve for “sta-
tistical methods for model checking.” SMC methods, based
on statistical sampling, may be applied to both conventional
and stochastic models.

Given the success in applying AI ideas in general,
and planning ideas in particular, to conventional model-
checking, we hope to achieve corresponding advances by
incorporating AI planning ideas into probabilistic model
checking. In this position paper we discuss challenges, op-
portunities, and our current work.

Probabilistic Automata
The models that interest us are probabilistic automata (PAs).
PAs are a generalization of non-deterministic finite au-
tomata, in which some transitions, rather than leading to a
single destination state, may have a discrete probability dis-
tribution over a set of possible successor states. More for-
mally, we have the following:

Definition 1 Probabilistic Automaton (PA):1 A PA, A =
〈SA, S0, AA,∆A〉 where SA is a set of states, S0 ∈ SA
is the initial state, AA = EA ∪ IA is the action set of A,
partitioned into the set of external actions, EA and internal
actions, IA, where EA ∩ IA = ∅.2 The transition relation is
∆A ⊆ SA × AA × Distr(SA), where Distr(SA) is the set
of discrete distributions over SA.

For the purposes of verification, we wish to assess claims
in probabilistic bounded time linear temporal logic.

Definition 2 Bounded Time LTL: Syntax:

φ := λ|¬φ|φ ∨ φ|F≤nφ|G≤nφ|φU≤nφ

where λ is the set of propositions, F is the eventually modal
operator, G is the always modal operator, and U is the until
modal operator. The superscripts on the modal operators

1Definition follows (Stoelinga 2002).
2External actions are used to define the composition of PAs,

useful for compositional modeling.

indicate time bounds. For more details on LTL, see, e.g.,
(Emerson 1990).

Probabilistic Bounded LTL (PBLTL) adds a probability
modality, P , permitting assertions of the form, P (φ) ≤ ψ,
such as P (F≤12fail ∨ deadlock) ≤ 0.1: “there is less than
a 10% chance of reaching a failure or deadlock state within
12 time steps.” In most cases, the verification challenge is
to prove that the system will never reach an unsafe state –
within a given time, and with no greater than a certain prob-
ability.

Since ∆A is a relation, we have pure nondeterminism,
as well as stochasticity. Any probabilistic automaton, then,
corresponds to a Markov Decision Process, in which making
the action choices resolves the non-determinism. When the
nondeterminism is resolved, we have a Markov chain.

It follows from the above that the problem of model-
checking PBLTL assertions reduces to finding an optimal
policy for the corresponding MDP, where the value of the
policy is the probability of φ (recall that φ is a time-bounded
assertion). While general assertions about PAs may require
stochastic policies,3 to model-check PBLTL assertions, de-
terministic policies suffice (De Alfaro 1998).4 Note: how-
ever, that these policies typically require memory (i.e., are
history-dependent).

The PRISM model-checking tool5 provides analytic and
statistical model-checking of probabilistic automata (as well
as other forms of finite state machines) (Kwiatkowska,
Norman, and Parker 2011). For analytic model-checking,
PRISM uses either value iteration or, when it needs a
stochastic policy,6 a linear programming formulation of
MDPs.7

Statistical Model Checking (SMC) is an alternative to
analytic methods. SMC methods gather samples (i.e., se-
quences of steps through the model) to provide statistical
evidence for (or against) the model satisfying a property. To
the best of our knowledge, statistical model checking meth-
ods were first used by Younes and Musliner, in work on
the CIRCA planning system (Younes and Musliner 2002;
Younes, Musliner, and Simmons 2003). Their work had
two particularly interesting features: because their mod-
els were so expressive— their models featured concurrency
and arbitrary temporal distributions, so were Generalized
Semi-Markov Processes, for which no analytic methods
are available— they were forced to use sampling. They
also adopted adaptive sampling techniques, because the pre-
computed sampling plans were so inefficient. Younes gen-
eralized the statistical safety-verification methods developed
for CIRCA into more expressive statistical model checking
in his prize-winning thesis (Younes 2005).

More recently, Henriques et al. (2012) have developed
SMC methods for model-checking PAs. Since model check-

3These may be necessary to achieve conjunctions of probability
bounds.

4Cited in (Stoelinga 2002).
5Available at prismmodelchecker.org
6PRISM can model-check more expressive assertions than

PBLTL.
7David Parker, personal communication.

ing PAs involves solving a Markov Decision Problem, they
refer to their technique as SMC for MDPs or simply SM-
CMDP. Theirs is a two phase approach: first, they use re-
inforcement learning techniques, based on Q-learning, to
choose the adversary’s policy. Second, they determinize
the policy, and use it to resolve the nondeterminism in
the PA. Then they use sampling techniques (like those of
Younes and Musliner), to determine whether the property
will be violated, under the control of the adversary’s policy.
These techniques have been built into an extended version
of the PRISM tool by researchers at SIFT, CMU, Oxford,
and Newcastle (Uckun et al. 2011; Musliner, Woods, and
Maraist 2012).

Unfortunately, as used to date, the technique only learns
a deterministic, stationary policy for the adversary, which is
not necessarily optimal (although they suggest that if time
was inserted into the state space, their technique could pro-
vide a non-stationary policy). In general, a history-sensitive
(non-stationary) policy may be needed for optimality. That
means that the SMCMDP technique could produce a subop-
timal policy, and mistakenly conclude that a system is safe
when it is not. Additionally, while the learning technique is
known to converge on the optimal policy, no bounds on its
distance from optimality are given. Again, this means that
a system could be mistakenly certified as safe (by stopping
the process too soon).

Challenges
Given past successes in applying AI techniques (es-
pecially planning techniques) to conventional model-
checking (Edelkamp et al. 2008; Edelkamp, Leue, and
Lluch-Lafuente 2004; Albarghouthi, Baier, and McIlraith
2009), we wish to see if similar progress can be made in
probabilistic model-checking. Unfortunately, achieving the
same kind of carry-over is more difficult here, for at least
two reasons. First, the specific MDP models used in the AI
community do not align perfectly with those used in proba-
bilistic model checking. Second, the techniques developed
do not always provide the kind of performance guarantees
and metrics needed for model-checking. We mention some
particular areas where further work would be useful, and in
the following section, discuss our work in the area.

Much existing work on MDPs assumes infinite horizon
problems with time-discounted, expected reward used as the
criterion for optimality (Puterman 1994). These models are
mathematically convenient, and perform well with value and
policy iteration, but are ill-suited for probabilistic model
checking. Part of the convenience of this model is that there
is always an optimal policy that is stationary and determin-
istic. As we discuss above, for time-bounded MDPs, on the
other hand, there may be no optimal policy that is station-
ary. For PMC infinite-horizon solving and time-discounting
is inappropriate.

Inspired by the probabilistic planning part of the In-
ternational Planning Competition (IPC), some researchers
are exploring alternative models. For example, Kolobov,
et al. (2011), formalize MAXPROB MDPs, where the ob-
jective is not to minimize cost or maximize reward, but sim-
ply to maximize the probability of reaching the goal. This

True Threshold Learning Correct Correct
Model States Probability Probability Samples w/o UCT w/ UCT

CSMA 2 2 1038 0.861 0.85 2000 12% 77%
CSMA 2 4 7958 0.768 0.76 2000 18% 70%
CSMA 2 6 66718 0.616 0.61 2000 25% 54%
CSMA 2 6 66718 0.616 0.61 4000 22% 74%

Figure 1: Initial results of UCT-guided SMCMDP on
different-sized models of the probabilistic CSMA protocol.
For each model, we asked SMCMDP and SMCMDP with
UCT-guided sampling: using the given number of samples,
is the threshold probability is less than the true probability.
The percentage correct is out of 100 runs.

appears to be a better fit, but it assumes an indefinite hori-
zon, where there is no time limit within which the goal must
be reached. Since in many cases of probabilistic model-
checking, the probability of reaching a property-violating
state eventually is 1, this model is also unsuitable.

At the moment (see following section), we are investigat-
ing MDP solution techniques for PMC based on find-and-
revise search (Bonet and Geffner 2003), and on Monte Carlo
Tree Search (MCTS) (Browne et al. 2012). Challenges with
MCTS have to do with the approximate nature of the search.
While these algorithms are known to converge to the opti-
mal policy, they don’t give good bounds on their error vis à
vis the optimal, and those bounds are typically formulated
in terms of regret, from which it’s not obvious that we can
compute error bounds on the probability of properties. Re-
call that, in verification, we may be claiming that a system is
safe based upon failure to find a policy that violates a prop-
erty. Search algorithms, on the other hand, may be able to
give such bounds. It remains to be seen if they will converge
adequately quickly, whether we can find informative heuris-
tics for PA verification, and if we can control the size of the
resulting policies.

Current Work
Guided Sampling with Monte Carlo Tree Search
The Monte Carlo sampling process in SMCMDP can take
a long time to converge. This problem can manifest itself
either in the first phase when learning the adversary’s policy
(resolving non-determinism in the model), or in the second
phase when, after the non-determinism has been resolved,
we sample from resulting the Markov Chain to evaluate the
PBLTL property’s worst case probability.

To improve performance in the first phase of SMCMDP,
we have been experimenting with Monte Carlo Tree Search
(MCTS) methods (Browne et al. 2012). MCTS meth-
ods incrementally build a tree of the search space, and use
data in the tree to resolve non-determinism when sampling.
These methods have been very successful in difficult search
applications, including Computer Go, and planning under
uncertainty. We have developed a new policy search for
SMCMDP, using the Upper Confidence bounds applied to
Trees (UCT) MCTS method (Kocsis and Szepesvári 2006)
to guide the sampling.

Our initial experiments with UCT-guided sampling look
promising. As seen in Figure 1, UCT yields the correct an-
swer much more often than Q-learning-based SMCMDP,

s0

long 1L

short 1

S

long 20.1 long 3
0.1

fail

0.1

short 2
0.001

0.001

Figure 2: A simple example where the optimal adversary
requires a time-dependent policy.

learning from the same number of samples, for difficult
problems where the threshold probability is very close to the
true probability. This indicates that UCT helps SMCMDP
learn a better policy with the same number of samples. We
plan to extend these experiments to better analyze the costs
and benefits of UCT-guided SMCMDP, including running
them on different types of models.

Time-Dependent Policies
Current SMCMDP methods produce only stationary, memo-
ryless policies (adversaries). But when performing bounded
time model-checking, in general the optimal adversary pol-
icy is time-dependent. That means that a model-checker us-
ing a stationary policy may incorrectly label some systems
as safe. The challenge of finding time-dependent policies
is twofold: (1) keeping track of time in the model causes
state space explosion, and (2) in general, a separate policy is
required for every time unit, making the policy very large.

We have developed several test problems for experiment-
ing with time-dependent vs. stationary adversaries. For the
simple example in Figure 2, each transition takes one time
tick, and the adversary wins by driving the model into fail.
He starts at s0 and must choose action L or S; after that
the transitions are determined by the indicated probabilities.
With 4 or more time ticks left, L has the highest probability
of failure. However, with 3 time ticks left, fail is unreach-
able through L, so the adversary should choose action S.

We have begun exploring methods for efficiently develop-
ing time-dependent adversaries. With our adoption of UCT,
we have developed a method which uses the greedy MCTS
tree value to resolve non-determinism. Since the tree has no
cycles, it is inherently time-dependent. It is likely that the
MCTS tree does not include all reachable states, so we must
include a way to resolve non-determinism outside of the tree.
For this, we “warp” to a node in the tree with the same state
and use that node to resolve the non-determinism. If no node
in the tree shares the same state, we choose a random action.

Another possibility suggested by our adoption of UCT, is
to compute the adversary’s “moves” on-line, avoiding the
need to store full policies. Other techniques we are consid-
ering include exploiting structured state models, and com-
pressing large policies.

Conclusions
In this paper we have introduced the problem of Probabilis-
tic Model Checking. We have discussed both analytic and
statistical based approaches to PMC. We are interested in us-
ing more informed, AI-based approaches to PMC, hoping to
replicate earlier successes in conventional, non-probabilistic

model checking. We present some challenges to transferring
AI techniques for solving MDPs to PMC: these should pro-
vide interesting opportunities for researchers. We ourselves
are exploring the use of MCTS and find-and-revise search
techniques for PMC.

Acknowledgments
This material is based upon work supported by the AFRL
under Contract No. PO 284227 under CMU prime con-
tract FA9550-12-1-0146. Any opinions, findings and con-
clusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the AFRL.

References
Albarghouthi, A.; Baier, J. A.; and McIlraith, S. A. 2009.
On the use of planning technology for verification. In Pro-
ceedings of the workshop on verification and validation of
planning systems (VVPS).
Bonet, B., and Geffner, H. 2003. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Gottlob, G., and Walsh, T., eds., Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1233–
1238. Morgan Kaufmann.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
De Alfaro, L. 1998. Formal Verification of Probabilistic
Systems. Ph.D. Dissertation, Stanford University, Stanford,
CA, USA.
Edelkamp, S.; Schuppan, V.; Bosnacki, D.; Wijs, A.;
Fehnker, A.; and Aljazzar, H. 2008. Survey on directed
model checking. In MoChArt.
Edelkamp, S.; Leue, S.; and Lluch-Lafuente, A. 2004.
Directed explicit-state model checking in the validation of
communication protocols. STTT 5(2-3):247–267.
Emerson, E. A. 1990. Temporal and modal logic. In van-
Leeuwen, J., ed., Handbook of Theoretical Computer Sci-
ence, volume B: Formal Models. MIT Press. chapter 16,
995–1072.
Henriques, D.; Martins, J. G.; Zuliani, P.; Platzer, A.; and
Clarke, E. M. 2012. Statistical model checking for markov
decision processes. In Ninth Int’l Conf. on Quantitative
Evaluation of Systems, 84–93.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic search for generalized stochastic shortest path
MDPs. In Bacchus, F.; Domshlak, C.; Edelkamp, S.; and
Helmert, M., eds., ICAPS. AAAI.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011.
PRISM 4.0: Verification of probabilistic real-time systems.
In Gopalakrishnan, G., and Qadeer, S., eds., Proc. 23rd

International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, 585–591. Springer.
Musliner, D. J.; Woods, T.; and Maraist, J. 2012. Identifying
culprits when probabilistic verification fails. In Proc. ASME
Computers and Information in Engineering Conference.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York, NY:
John Wiley & Sons, Inc.
Stoelinga, M. 2002. An introduction to probabilistic au-
tomata. Bulletin of the European Association for Theoretical
Computer Science 78:176–198.
Uckun, S.; Kurtoglu, T.; Bunus, P.; Tumer, I.; Hoyle, C.; and
Musliner, D. J. 2011. Model-based systems engineering for
the design and development of complex aerospace systems.
In SAE Aerotech Congress and Exposition.
Younes, H. L., and Musliner, D. J. 2002. Probabilistic plan
verification through acceptance sampling. In Proc. AIPS-02
Workshop on Planning via Model Checking, 81–88.
Younes, H. L. S.; Musliner, D. J.; and Simmons, R. G. 2003.
A framework for planning in continuous-time stochastic do-
mains. In International Conference on Automated Planning
and Scheduling, 195–204.
Younes, H. L. S. 2005. Verification and Planning for
Stochastic Processes with Asynchronous Events. Ph.D. Dis-
sertation, Carnegie Mellon University.

