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Abstract

Combinatory Categorial Grammars (CCGs) have been used
for plan recognition and planning in various domains such
as robotics and video games. Prior work on CCG planning
and plan recognition used hand-authored CCGs, which re-
quires domain knowledge, and can be both time-consuming
and error prone to construct. This paper focuses on automat-
ically learning CCGs and presents two key contributions to
the literature of CCG learning. First, we extend existing CCG
learning algorithms for domains with predefined type trees
via searching over type trees to find type generalizations.
Second, we present the first comparison of learned CCGs
with CCGs hand-authored by humans, showing tradeoffs of
these algorithms. We apply this extended learning algorithm
to Minecraft and Monroe, and demonstrate its performance
against a hand-authored model for plan recognition tasks.

1 Introduction
Hierarchical approaches to planning are commonly used in
applications (Ghallab, Nau, and Traverso 2016) and have
gained recent traction in the planning community (e.g., (Al-
ford, Bercher, and Aha 2015; Alford et al. 2016)). The
spectrum of representations for hierarchical planning in-
clude Hierarchical Task Networks (Erol, Hendler, and Nau
1994a), Combinatory Categorial Grammars (CCGs) (Geib
and Goldman 2001), Teleoreactive Logic Programs (Lang-
ley and Choi 2006), and Hierarchical Goal Networks (Shiv-
ashankar 2015). CCGs are particularly attractive because
they are based on a natural language grammar (thus allow-
ing for a more natural explanation (Fox, Long, and Mag-
azzeni 2017)), they are more expressive than HTNs (Geib
and Steedman 2007), and they provide a unified representa-
tion for plan synthesis and plan recognition (Geib 2016).

Encoding CCGs can be difficult, which limits their
adoption. While many approaches for learning task net-
work structures exist (e.g., (Hogg, Muñoz-Avila, and Kuter
2016; Gopalakrishnan, Muñoz-Avila, and Kuter 2016)),
only two works (i.e., (Geib and Kantharaju 2018; Kan-
tharaju, Ontañón, and Geib 2019a) have examined how to
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Figure 1: Example of Minecraft Type Tree

automatically learn CCGs. One aspect that is particularly
challenging for CCG learning is generalizing models across
different types in a type taxonomy. Figure 1 shows an exam-
ple of a type tree from the computer game Minecraft. Instead
of learning a general method for growing crops of different
types (e.g. all seeds have the same basic process for growing
a crop), current approaches will learn distinct methods for
each type, which impacts performance for plan recognition.

This paper generalizes CCG learning to work with type
taxonomies. This is a non-trivial extension because it re-
quires adding mechanisms to generalize plan traces. The
contributions of the paper include:

- Extending a CCG learning algorithm, called
LexGreedy (Kantharaju, Ontañón, and Geib 2019a)
to generalize over type trees;

- Developing hand-authored CCG models for two bench-
mark domains, Minecraft and Monroe ; and

- Performing a comparison of the hand authored and
learned models to draw insights about the tradeoffs of
automatically learning CCG models.

Our results indicate LexGreedy outperforms several base-
lines in both Monroe and Minecraft, and provides a perfor-
mance comparison to hand-authored models. Our approach
offers benefits beyond CCGs in that the extension can po-
tentially be applicable to HTN learning.

2 Background
We leverage a restricted form of CCGs, defined
by Geib (2009), to perform plan recognition. We will
introduce CCGs and their recognition with an example
from Minecraft, a first-person sandbox video game with



a research interface from Microsoft Research (Johnson et
al. 2016). The open world nature of Minecraft presents a
challenge for AI planning and plan recognition because the
set of possible plans to generate or recognize is open ended.
Many of the high-level objectives that players typically
pursue are usually made up of smaller objectives such as
gathering resources or crafting items, providing a natural
hierarchical structure for tasks.

Minecraft also has a natural type taxonomy (Guss et al.
2019). Figure 1 provides an example type tree for items,
where Iron Sword, Diamond Sword, Pumpkin Seeds, and
Wheat Seeds are subtypes of Sword and Seeds. These, in
turn, are a subtype of Item. The same actions in Minecraft
can be applied to objects with different types. For example,
we can use objects with types iron sword, diamond sword,
pumpkin seeds and wheat seeds in Minecraft. Without type
trees, we need separate actions and hierarchies for each type.
With type trees, we can specify a single action that uses an
item and reuse it with specifications of item in the tree, mo-
tivating the need for type trees in Minecraft.

CCGs are a hierarchical grammar that is constructed
to synthesize or recognize hierarchical plans. Learning a
CCG is done with respect to a sequence of observed ac-
tions ~σ. Consider a ~σ for a Minecraft agent Player1 to ob-
tain chicken meat, shown in Figure 3 (top). To obtain the
meat, Player1 moves toward a chicken, attacks the chicken,
and gathers the resulting drop. Such actions are instances
of action types, which are templates for constructing exe-
cutable actions. The sequence ~σ contain three action types:
Move(U1), Attack(U1, U2), and Gather(U1, G). An action
can be instantiated by assigning objects in the domain to the
variables of the action type (e.g. to get Move(Player1), we
use Move(U1) and assign the value Player1 to variable U1).

Each action type is associated with a finite set of CCG cat-
egories C that capture functions from states of the world to
other states of the world. CCG categories come in two types:
Atomic and Complex. Atomic categories are a set of indivis-
ible labels A, B, C.. ∈ C that function as the non-terminals
within the grammar; these labels map to action types as the
terminals. Drawing parallels to hierarchical planning, they
can be seen as tasks that will be decomposed into instances
of action types. Complex categories, on the other hand, can
be seen as curried functions (Curry 1977), that capture struc-
ture, abstraction, and ordering constraints within the gram-
mar. Complex categories are built using two operators “/”
and “\” and having the form Z/X or Z\X, where Z is a single
(atomic or complex) category, and X is a set (possibly sin-
gleton) of atomic categories. Each operator defines a func-
tion that takes a set of arguments (the categories on the right
hand side of the slash, X), and produces a result (the cate-
gory on the left hand side of the slash, Z). The slash oper-
ators define ordering constraints for plans, indicating where
other actions and tasks are found relative to an action. Those
categories associated with the forward slash operator are af-
ter the action, and those associated with the backward slash
are before it. We will see an example of this shortly. For con-
venience, we also define the root of category G (atomic or
complex) as the leftmost atomic category in G (e.g C would
be the root of ((C)\{A})\{B}).

Move(U1)

Move(U1)

Gather(U1,G)

Gather(U1,G)

Obtain
ChickenMeat

Move(U1) Attack(U1,U2) Gather(U1,G)

Figure 2: An example CCG (described formally in Figure 3)
in graphical form. Ovals indicate action types and boxes in-
dicate atomic categories

A problem domain is defined by a plan lexicon (referred to
as CCG lexicon or CCG), Λ = 〈Σ, C, f〉, where Σ is a finite
set of action types, C is a finite set of atomic and complex
categories (as defined above), and f is a mapping function
such that ∀a ∈ Σ,

f(a)→ {ci : p(ci|a), ..., cj : p(cj |a)}

where ci . . . cj ∈ C and ∀a
∑j
k=i p(ck|a) = 1. This defi-

nition implies that action type can have multiple but finite
number of categories associated with it in Λ. We refer the
interested reader to Geib (2009) for details on these proba-
bilities and their use in plan recognition.

In CCGs, combinators parse sequences of tokens. The
two most common types of combinators are application and
composition. The application combinator applies an atomic
category to a complex category of arity one while composi-
tion combines two complex categories:

Rightward Application: X/{Y } Y → X

Leftward Application: Y X\{Y } → X

Rightward Composition: X/{Y } Y/{Z} → X/{Z}
Intuitively, we can think of application and composition
combinators as functional application and composition.
Example: Figure 3 (middle) shows one possible
CCG relevant to ~σ. Here, Σ = {Move, Attack,
Gather} and C = {Move, ObtainChickenMeat, Attack,
((ObtainChickenMeat)/{Gather})\{Move}} (stated with-
out parameters for brevity). The action types Move(U1),
Attack(U1, U2), and Gather(U1, G) each have typed
variables representing entities U1 and U2, and dropped item
G. Since each action type has a single category, p(c|a) = 1.

Figure 2 provides a graphical representation of the
CCG in Figure 3 (types are removed for simplicity).
Action types are indicated by ovals and categories are
indicated by rectangles. The atomic categories “Move” and
“Gather” can be viewed as tasks that can be completed
by action types Move and Gather. The complex category
“((ObtainChickenMeat)/{Gather})\{Move}” associated
with the action type Attack, states that task “ObtainChick-
enMeat” can be completed by executing the following
sequence of actions and tasks: 〈Move,Attack,Gather〉. Ac-
tion, category pairs are similar to methods from hierarchical
planning (Erol, Hendler, and Nau 1994b).

The CCG Plan Recognition Problem
We define the CCG plan recognition problem as PR =
(~σ,Λ, s0), where ~σ is a sequence of observed actions, Λ is



~σ = [ Move(Player1),Attack(Player1,Chicken1),Gather(Player1,ChickenMeat) ]

f(Move(U1 − Entity))→ {Move(U1 − Entity) : 1}

f(Attack(U1 − Entity, U2 − Entity))→

{((ObtainChickenMeat)/{Gather(U1 − Entity, G− Drop)})\{Move(U1 − Entity)} : 1}

f(Gather(U1 − Entity, G− Drop))→ {Gather(U1 − Entity, G− Drop) : 1}

1) Move(Player1) Attack(Player1,Chicken1) Gather(Player1,ChickenMeat)

2) Move(U1 = Player1) ((ObtainChickenMeat)/{Gather(U1, G)})\{Move(U1)} Gather(U1 = Player1, G = ChickenMeat)
<

3) (ObtainChickenMeat)/{Gather(U1, G)}
>

4) ObtainChickenMeat

Figure 3: An example plan ~σ (top), CCG (middle), and parse of three observed actions for obtaining chicken meat (bottom)

a CCG lexicon, and s0 is the initial state of the world from
which ~σ was executed. This work assumes each ~σ corre-
sponds to a single task. The solution to the CCG plan recog-
nition problem is a pair (E, T ), where T is a conditional
probability distribution over the set of top-level tasks that
are being pursued, and E is a list of hypotheses that each
define a unique possible plan which are instances of ~σ. T is
computed from E using weighted model counting.
Example: Figure 3 (bottom) shows the recognition of
the observed sequence of actions ~σ (Figure 3 (mid-
dle)), which is a plan for obtaining chicken meat.
First, a category is assigned to each action and its pa-
rameters (U1, G) are bound based on the action (i.e.
U1 = Player1, G = ChickenMeat) . This results in
the categories shown in line 2 of Figure 3. The category
((ObtainChickenMeat)/{Gather(U1, G)})\{Move(U1)}
requires a Move(U1) to its left. Binding U1 to Player1
unifies Move(U1 = Player1) with Move(U1) and
allows leftward application to produce (ObtainChicken-
Meat)/{Gather(U1, G)} shown in line 3. This category
expects a Gather(U1, G) to the right. Rightward application
can be used to produce ObtainChickenMeat. Since there
are no more category arguments or actions, parsing ends,
hypothesizing an instance of the ObtainChickenMeat plan.

3 Supervised CCG Learning
This work focuses on extending the CCG learning algo-
rithm LexGreedy . LexGreedy takes as input a labeled train-
ing dataset D and an initial lexicon Λinit . Λinit provides
minimal prior knowledge about a domain by mapping each
action type to a single atomic category in the lexicon. In-
tuitively, this lexicon indicates that each action is generated
by a single, unique task. The labeled training dataset D is
a set of sequences of observed actions (called plan trace)
~σi = 〈a1, a2, . . . am〉 paired with a single top-level task Ti
(symbolic representation of an activity in a domain (Hogg,
Kuter, and Muñoz-Avila 2010)):D = {~σi : Ti|i = 1 . . . N}.

A CCG lexicon is learned by two, possibly interleaved,
processes: category generation and probability estimation.
Category generation entails hypothesizing complex CCG

categories given the training data. In particular, category
generation learns the set of CCG categories C from Λ =
〈Σ, C, f〉. Probability estimation entails estimating the con-
ditional probabilities p(ci,j |ai) (ai ∈ ΛΣ, ci,j : p(ci,j |ai) ∈
Λf(ai)) in f . We summarize both algorithm’s below and re-
fer interested readers to the original works of Kantharaju,
Ontañón, and Geib (2019a) for more details.
LexGreedy learns a mapping from plan traces to their cor-

responding top-level task, while abstracting common se-
quences of tasks. Prior to learning, preprocessing is applied
on the plan traces in D to convert them into category traces,
where each action is replaced with its action type’s corre-
sponding atomic category in Λinit . LexGreedy works on this
updated dataset DC = {~Ci : Ti|i = 1 . . . N}.

The category generation process first greedily learns a set
of abstractions M , and then constructs complex categories
given M . Each m ∈M contains a sequence of atomic cate-
gories m~C and an abstracted atomic category mC . We note
that atomic categories created by LexGreedy represents a se-
quence of action types, where some instantiation of the se-
quence is found inD. Specifically, category generation starts
by finding the most common sequence of atomic categories
~S in the category traces whose frequency meets an abstrac-
tion threshold γ (percentage of the dataset), where ~S con-
tains at least one category in Λinit,C . Next, for each training
instance, category trace pair ~σi, ~Ci (1 ≤ i ≤ N ) relevant
to ~S, LexGreedy retrieves non-overlapping sequences of ac-
tions from ~σi that is an instantiation of the action types rep-
resented by the atomic categories in ~S.

For each non-overlapping sequence, LexGreedy constructs
m in the following way. First, the algorithm retrieves the ob-
jects from the actions and constructs an ordered set of ob-
jects consistent with the ordering of the actions. Given this,
LexGreedy gets the types for each object, and construct an
ordered set of typed variables where each type is given a
variable name based on its location in the ordered set. Next,
m~C is set as ~S, and an atomic categorymC is constructed by
constructing an identifier for ~S as its name and the ordered
set as its parameters. Finally, mC replaces ~S in ~Ci.



This process is repeated until all abstractions are found or
each category trace has exactly one category from Λinit,C .
LexGreedy then constructs a set of abstractions for ~Ci : Ti ∈
DC , where mC is the top-level task Ti and m~C is ~Ci. Once
all abstractions M are constructed, complex categories are
construct for each m ∈ M by first removing a category c ∈
m~C from m~C where c ∈ Λinit,C . Next, mC is set as the root
and the categories in m~C become arguments. The category
is then assigned to the action type corresponding to c.

Probability (or parameter) estimation entails estimating
the conditional probabilities p(ci,j |ai) (ai ∈ ΛΣ, ci,j :
p(ci,j |ai) ∈ Λf(ai)) in f . These probabilities are estimated
based on the frequency of the category being constructed
during category generation. Categories whose conditional
probabilities are below a pruning threshold are removed.

4 CCG Learning With Type Trees
A limitation of LexGreedy is that it does not leverage a-priori
type tree knowledge. Specifically, it assumed that each type
symbol in the domain model did not have any specializations
or generalizations. This limits application to domains such
as Minecraft or Monroe. This section presents necessary
changes to LexGreedy to leverage knowledge of type trees.
We assume that these type trees capture the type/subtype re-
lations in the domain as inheritance trees.

Our extension is aimed at the category generation process
of CCG learning. Suppose we have two common sequences
of atomic categories that abstract to two atomic categories t1
and t2 with the same name. In this case, we want to construct
a single atomic category for both common sequences. How-
ever, the set of parameters (typed variables) for each cat-
egory can have different types. Thus, we need to compute
generalized types for each variable in t1 and t2. Figure 4
provides such an algorithm for finding an ordered set S of
generalizations of types for variables in t1 and t2 given the
type trees T from the domain. If this algorithm is success-
ful, a single atomic category can be constructed for both se-
quences. However, if unsuccessful, two separate categories
have to be constructed.

In Figure 4, t1,i and t2,i (where 1 ≤ i ≤ n) correspond
to a typed variable in atomic categories t1 and t2, and we
note that the variables of t1,i and t2,i will be the same. First,
several quick checks are made (lines 4-5) to ensure that both
categories can be generalized. Next, the algorithm finds the
least general generalization (LGG) for each type in the cat-
egory. An LGG is defined as the first type in a type tree that
is more general than both t1,i and t2,i. If one is more general
to the other, then the more general type is the LGG.

If the types of t1,i and t2,i are the same, then they are the
LGG of each other and t1,i is added to S. If they are not the
same, then the algorithm gets the trees T1, T2 ∈ T which
contain the types of t1,i and t2,i. Next, the algorithm com-
putes the path from the type of t1,i to the root of T1 (P1) and
the path from the type of t2,i to the root of T2 (P2). Each path
is a sequence of types from the starting type to the root type.
CategoryGeneralization then finds the first common type ω
from P1 and P2 using the FirstCommon(P1, P2) function.
FirstCommon traverses the sequence of types in P1 and

1: procedure CATEGORYGENERALIZATION(t1, t2, T )
2: t1, t2 → Atomic Categories, T → Type Trees
3: S = ∅, n = |args(t1)|
4: if name(t1) 6= name(t2)∧ |args(t1)| 6= |args(t2)| then
5: return Failure
6: for i = 1 . . . n do
7: if type(t1,i) == type(t2,i) then
8: S ← append(S, t1,i)
9: else

10: T1 → Tree containing type(t1,i) from T
11: T2 → Tree containing type(t2,i) from T
12: P1 ← Path from type type(t1,i) to root of T1

13: P2 ← Path from type type(t2,i) to root of T2

14: ω ← FirstCommon(P1, P2)
15: if ω 6= nil then
16: S ← append(S, (var(t1,i)− ω))
17: else
18: return Failure
19: if S = ∅ then
20: return Failure
21: else
22: return S

Figure 4: Generalization of Variables in Atomic Categories

checks to see if any exist in P2. If no common element (i.e.
ω = nil ) is found, this implies that t1,i and t2,i do not have
an LGG, and the algorithm fails.

Given this, the category generation process of LexGreedy

is updated as follows. First, the process constructs a set of
abstractions m ∈ M as per the original LexGreedy algo-
rithm described in Section 3. Next, the abstracted atomic
categorymC and each atomic category inm~C is generalized
via the CategoryGeneralization algorithm from Figure 4. Fi-
nally, the process constructs complex categories using this
updated M as per the original LexGreedy algorithm.

We provide an quick example of CategoryGeneraliza-
tion’s execution based on the type tree in Figure 1 on the
two following categories:

Cat1(W − Iron Sword, X −Wheat Seeds)
Cat1(W − Sword, X − Pumpkin Seeds)

We note that all quick checks are passed (same category
name and number of arguments). Next, CategoryGeneral-
ization checks the types Iron Sword and Sword. Since both
are not the same type, the algorithm checks for its LGG
by computing P1 = 〈Iron Sword, Sword, Item〉 and P2 =
〈Sword, Item〉. Here, the first common type is Sword, and S
is updated to be S = {W − Sword}. Next, CategoryGener-
alization checks the types Wheat Seeds and Pumpkin Seeds.
Similar to the previous pair of types, the algorithm checks
an LGG by computing P1 = 〈Pumpkin Seeds, Seeds, Item〉
and P2 = 〈Wheat Seeds, Seeds, Item〉. Here, the first com-
mon type is Seeds, and S is then updated to be S = {W −
Sword, X−Seeds}. Given this, LexGreedy can now construct
the atomic category Cat1(W − Sword, X − Seeds).

5 Experiments
We aim to answer the question How well does CCG learn-
ing apply domains with type trees? As such, our experi-



ments focus on evaluating the performance of CCG learning
(specifically LexGreedy ) for plan recognition in Minecraft
and Monroe (Blaylock and Allen 2005). We also structurally
compare the CCGs learned by LexGreedy with the hand-
authored model to understand their differences. All exper-
iments were run on a machine with 3.40GHz Intel i7-6700
CPU and 32 GB RAM. We use Monte-Carlo Tree Search
(MCTS) for CCG plan recognition (Kantharaju, Ontañón,
and Geib 2019b) as this approach has demonstrated success
in RTS games from prior work. We first start by describing
the Monroe and Minecraft datasets used in our experiments.
Next, we define all tunable parameters for both LexGreedy

and MCTS. Finally, we describe metrics used in our experi-
ments, experiment setup, and analyze results.

The Monroe domain captures plans for disaster relief in-
cluding, providing medical aid, plowing snow, and clearing
debris from roads. We constructed a corpus of 1000 plans
for various tasks in the domain using the publicly-available
Monroe dataset generator.1 This generator uses a modified
version of SHOP2 (Nau et al. 2003) to generate a set of valid
plans for a task, and randomly chooses a plan from the set to
add to the corpus. We did not use the available dataset Mon-
roe 5000 as it contained plans for multiple tasks. This breaks
the assumption that LexGreedy requires that each plan trace
in its training corpus maps to a single top-level task.

We constructed a Minecraft dataset as follows. We build
an interface over Project Malmö to extract a learning dataset.
In this work, we assume full observability of the Minecraft
environment. At a high-level, we have a single agent exe-
cute predefined tasks, and extract observed actions from the
agent. The five tasks in our dataset are obtain beef, obtain
chicken meat, obtain potato, obtain pumpkin pie and ob-
tain bread. Specifically, the agent uses SHOP2 to generate
symbolic plans. These plans are then fed into the Minecraft
interface, and observable actions are executed in the envi-
ronment. The set of observable actions are gather, select,
move, look at, attack, harvest and use. A dataset for CCG
learning is then constructed by extracting sequences of these
observed actions and their corresponding task. This dataset
assumes that each sequence of observed actions corresponds
to a single task (no interleaving plans). Additionally, this
dataset is noisy as there are various plans in the dataset that
are missing observations. This is most likely due to the in-
terface not registering those actions.

Both the Minecraft and Monroe datasets have an imbal-
ance in the number of instances per tasks. In Minecraft, this
is a result of the agent’s policy for choosing tasks. Almost
42% of the dataset corresponds to the obtain beef task as the
agent preferred this task over others. In Monroe, tasks are
chosen using a random weighted distribution. The majority
task plow road makes up approximately 24% of the total in-
stances. To address this imbalance, we additionally construct
a balanced dataset by oversampling the minority tasks.

For our experiments, we tune the number of iterations
of MCTS to 15000. We believed that this was more than
enough to recognize many of the tasks in the Minecraft do-
main. We also use an ε-greedy tree policy with ε = 0.4, and

1https://www.cs.rochester.edu/research/cisd/resources/monroe-plan/

a random playout policy. For LexGreedy , we set the abstrac-
tion threshold γ to be 50% of the dataset and the pruning
threshold τ to be 0, which indicates no pruning.

We apply two metrics to evaluate performance of CCG
learning. The first metric is task recognition accuracy:

Accuracy = 100 ∗ Number of correctly predicted task
Total Number of Testing Instances

The second metric is the convergence point for successfully
predicted tasks (Blaylock 2005). The convergence point is
computed as the minimum percentage of actions in a plan
trace required before plan recognition correctly predicts the
task as the most likely, and continues to predict that task
until the end of the plan trace. Early recognition in Minecraft
is important as it allows one to act quickly to the needs of
players or agents. Thus, this metric should be low.

Hand-Authored vs. Learned CCG
We evaluate LexGreedy against a hand-authored CCG, ran-
dom recognizer, and biased recognizer. A random plan rec-
ognizer chooses a task uniformly at random from the set of
possible tasks. A biased recognizer chooses the most fre-
quent task in the dataset. For the unbalanced dataset, this
is the majority task (obtain beef for Minecraft and plow
road for Monroe). The biased recognizer is the same as
the random recognizer for the balanced dataset, but we in-
clude it for completeness. For this evaluation, we disabled
the probability estimation in LexGreedy . This resulted in
a CCG where categories associated with each action type
had a uniform probability distribution. We refer to this ver-
sion of LexGreedy as Lex∗Greedy . We also trained and tested
Lex∗Greedy on the entire dataset. Both were done to provide
a fair comparison to the hand-authored CCG.

The hand-authored Minecraft and Monroe model was
constructed and refined over a single day by a single
researcher. The researcher has over 20 years of video
game experience, with approximately 20-30 hours put into
Minecraft. Explicitly, the researcher has done various activ-
ities in the game such as maintaining a farm of animals and
crops, and built a house. The researcher however, has not
played other crafting games. With respect to Monroe, the
researcher has little prior knowledge of the plans in the do-
main. They also have significant knowledge of CCGs, and
has hand-authored CCGs in the past.

The authoring process for both domains was as follows.
For both domains, models were constructed using a text
editor. In particular, the Minecraft domain model was con-
structed by first outlining plans for each executable task in
the Minecraft dataset. Second, relevant CCG categories for
each plan were then constructed. Third, the model was re-
fined and tested against these plans until all tasks could be
recognized. The Monroe model was constructed by adapting
the SHOP2 model used to construct the dataset. As such,
the results for this model will be better than one without
knowledge of the SHOP2 model. However, the researcher
only checked for syntactic errors, and didn’t test recognition.
Thus, we expect reduced performance for plan recognition
due to errors. Over 100 executions of Lex∗Greedy on the un-
balanced datasets, Lex∗Greedy took on average 2.94 seconds



Minecraft Monroe
Measures/Metrics Hand-Authored Lex∗Greedy Hand-Authored Lex∗Greedy

# of complex categories with only right arguments 2 10 5 287
# of complex categories with only left arguments 5 4 43 3

# of complex categories with both right and left args. (i.e. hybrid categories) 11 16 34 146
Total # of categories in CCG 26 40 121 464

Total # of action types in CCG 7 7 28 28
Statistics for # of categories / action type (Avg/Std. Dev/Min/Max) 3.71 / 2.12 / 1 / 6 5.71 / 3.69 / 2 / 14 4.32 / 5.06 / 1 / 25 16.57 / 49.34 / 1 / 247

Table 1: Comparison of CCG Learned by Lex∗Greedy to Hand-Authored CCG

Minecraft Monroe
Hand-authored Lex∗Greedy Random Rec. Biased Rec. Hand-authored Lex∗Greedy Random Rec. Biased Rec.

Balanced 53.22% 64.06% 20.00% 20.00% 64.81% 28.16% 10.00% 10.00%
Unbalanced 53.95% 29.68% 20.00% 42.40% 74.8% 33.2% 10.00% 24.00%

Table 2: Recognition Accuracy for Hand-Authored vs. Learned CCG (higher=better)

Minecraft Monroe
Hand-authored Lex∗Greedy Hand-authored Lex∗Greedy

Balanced 84.91% 70.28% 90.24% 75.77%
Unbalanced 85.00% 62.60% 90.74% 82.02%

Table 3: Convergence Point for Hand-Authored and Learned
CCG (lower=better)

(with standard deviation of 0.07) to learn a CCG for the
Minecraft domain, and 6.91 seconds (with standard devia-
tion of 0.04) for the Monroe domain. Given that both models
each took one day to construct, learning a model is 29388x
faster for Minecraft and 12504x faster for Monroe. Thus, we
see that automatically constructing CCGs from training data
can reduce time needed to construct a CCG.

Table 1 provides several structural metrics for CCGs, their
descriptions, and results on different CCGs. We found three
different types of complex categories in the CCG, left, right,
and hybrid, defined in rows 3-5 of Table 1. For the Minecraft
domain, we see that many of the categories in the CCGs
are hybrids. However, many of the hybrid categories for the
learned CCG have more right arguments than left, especially
categories for obtain bread. The hand-authored model on the
other hand had hybrid categories with more left arguments.
For the Monroe domain, many of the learned complex cate-
gories are right and hybrid. Interestingly, many of these hy-
brid categories contained more right arguments than left.

For both domains, we see that the number of categories
generated during learning is higher than a hand-authored
model, even having more categories per action type. This
makes sense as the hand-authored CCGs were made by a
researcher knowledgeable about CCGs. The number of cat-
egories per action type is the branching factor for CCG plan
recognition search. As such, they strategically placed cate-
gories with specific actions to reduce complexity during plan
recognition. For the Monroe domain, the number of cate-
gories per action type for the learned model is much higher
than the hand-authored model. This is because two action
types had a large number of categories associated with it,
with one having 247 categories. The learned CCGs had more
categories per action type than the hand authored model, but
also took significantly less time to construct.

Next, we compare the performance of the learned CCG
against a hand-authored model for plan recognition. Ta-

ble 2 contains recognition accuracy for Lex∗Greedy and the
hand-authored CCG for both Minecraft and Monroe. For
the Minecraft domain, Lex∗Greedy achieved recognition ac-
curacy of 64.06% on the balanced dataset, outperforming the
hand-authored model with an accuracy of 53.22%. Both ad-
ditionally outperformed the random and recognizer biased
recognizer. The hand-authored model split recognition be-
tween obtain beef and obtain chicken meat almost equally
while Lex∗Greedy favored obtain chicken meat. This is a re-
sult of ambiguity between the tasks; both tasks use the same
sequence of actions, differing only in the parameters of the
actions. We believe the recognition accuracy difference was
due to this discrepancy. We also believe that the failure of the
hand-authored CCG to recognize bread added to this differ-
ence. This failure is due to the constraints placed on MCTS.
Running the CCG on higher number of iterations yielded
successful recognition for obtain bread.

For the Minecraft domain, Lex∗Greedy achieved an ac-
curacy of 29.68% compared to the hand-authored model’s
53.95% on the unbalanced dataset. Both outperformed a ran-
dom recognizer, but only the hand-authored outperformed a
biased recognizer. Lex∗Greedy had poor accuracy compared
to the hand-authored model. This was most likely a result
of recognizing obtain potato as obtain bread. Upon inspec-
tion of the learned CCG, we noticed that Lex∗Greedy learned
a CCG category for obtain bread that could recognize the
sequence of actions for obtain potato. This means that the
Minecraft dataset contained a plan for obtain bread that was
similar to obtain potato. We also expected obtain chicken
meat to be recognized as obtain beef as it is the most fre-
quent task in the dataset. However, our results indicate the
opposite. We noticed that for a majority of the instances for
the two tasks, the two task’s probabilities differed by about
0.005, implying that there was one or two additional hypoth-
esis that yielded obtain chicken meat over obtain beef.

For the Monroe domain, we see that both the hand-
authored model and Lex∗Greedy outperformed the random
and biased baselines. However, the hand-authored model
outperformed Lex∗Greedy . This is expected as Lex∗Greedy
learned an unoptimized CCG model. Recall from Table 1
that Lex∗Greedy learned a CCG model that inadvertently in-
creased the complexity for plan recognition. As such, given
the number of iterations for plan recognition, Lex∗Greedy had



lower accuracy. One interesting thing about results on the
hand-authored model is that it failed to recognize fix power
line. Recall that the hand-authored domain was only tested
for syntactic correctness. The researcher who constructed
the model made an error constructing a category for that
task, thus MCTS could not recognize that task. However,
Lex∗Greedy learned categories for that task that were correct.
Thus, the learned model recognize that task correctly. We
get 74.05% (balanced) and 81.0% (unbalanced) recognition
accuracy using a fixed hand-authored model.

Table 3 provides the convergence points for the hand-
authored model and Lex∗Greedy for Monroe and Minecraft.
Overall, Lex∗Greedy constructed CCGs that recognized accu-
rate plans early for both domains. For Minecraft, Lex∗Greedy
constructed a CCG that recognized tasks such as obtain beef
and obtain pumpkin pie almost halfway through the plans.
For Monroe, the constructed CCGs recognized tasks such as
plow road and quell riot prior to plan completion. On the
other hand, the hand-authored model required almost 100%
to recognize many of the tasks in both domains. For ex-
ample, obtain beef and obtain chicken meat for Minecraft
and provide medical attention and quell riot for Monroe re-
quired 100% of the plan. This makes sense as the hand-
authored models was designed to contain more leftward
complex CCG categories than rightward ones. These results
also align with Table 1. Recall that Lex∗Greedy learned com-
plex categories that had more right arguments than left while
the hand-authored model had the opposite. Thus, the hand-
authored model should need more actions to recognize tasks
as it delays recognition until later in a plan.

6 Related Work
There are two related bodies of work: Hierarchical Task
Network (HTN) and Teleoreactive Logic Program (TLP)
learning. HTNs are a modeling formalism for specifying the
structure of plans in a hierarchical manner. Some approaches
learn search control (i.e. method preconditions) for HTNs.
In particular, Ilghami et al. (2002) and Ilghami et al. (2005)
used candidate elimination (Mitchell 1977) to learn HTN
method preconditions while HTN-Learner (Zhuo et al.
2009) used a MAX-SAT solver (Heras, Larrosa, and Oliv-
eras 2008) to automatically construct method preconditions
from partially-observable states. Our work is more related
to learning task hierarchies, similar to HTN-Maker (Hogg,
Muñoz-Avila, and Kuter 2008), HTN-MakerND (Hogg,
Kuter, and Muñoz-Avila 2009), Q-Maker (Hogg, Kuter, and
Muñoz-Avila 2010), HTN Learning System (Yang, Pan, and
Pan 2007), and Word2HTN (Gopalakrishnan, Muñoz-Avila,
and Kuter 2016).

Our work is closely related to Nguyen et al. (2017), who
applies Word2Vec (Mikolov et al. 2013) to learn HTNs for
Minecraft, and TLP learning. TLPs are a framework for en-
coding knowledge using ideas from logic programming, re-
active control, and HTNs. TLPs can represent type trees us-
ing a concepts, which is a representation that can be used
to encode state information in a hierarchical manner. TLPs
have two types of concepts: primitive and non-primitive.
Here, each type in the type tree would become a concept,

where the leaves of the type tree would be primitive concepts
while the internal nodes are non-primitive concepts. Nejati,
Langley, and Konik (2006) and Li et al. (Li et al. 2009) both
present techniques for learning the HTN methods for TLPs
from data. However, the work was not explicitly applied to
learning from type trees. One main difference between our
work and those in HTN and TLP learning is that our work
is applied to CCGs instead of HTNs or TLPs. Another dif-
ference is that our work is applied to the problem of plan
recognition, while most work has been applied to planning.

7 Conclusion
This paper demonstrated learning CCGs on domains with
type trees. Our first contribution was an extension of
LexGreedy to generalize two tasks given type trees. Our sec-
ond contribution is a comparison of hand-authored CCG
models to ones learned by LexGreedy . Our results indicate
that LexGreedy was able to automatically construct a CCG
successfully to recognize plans in Minecraft and Monroe,
outperforming a random recognizer and biased recognizer.
Our results also indicate that learned CCGs allowed early
recognition of plans compared to a hand-authored model.

As part of our future work, we would like to apply the
learned CCGs generated by LexGreedy to hierarchical plan-
ning in Minecraft. Second, we want to integrate the MCTS
CCG plan recognition algorithm directly into the Minecraft
interface. Both of these would allow us to construct a full
game-playing agent in Minecraft. Finally, we want to look
at other domains with type trees.
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