
!

A Human-System Interface with Contingency Planning for
Collaborative Operations of Unmanned Aerial Vehicles

Joseph B. Mueller†, Christopher A. Miller‡, Ugur Kuter§, Jeffrey Rye§, Josh Hamell§

SIFT, 319 1st Ave N, Suite 400, Minneapolis, MN 55316

The U.S. military is researching capabilities for collaborative and highly autonomous
unmanned aircraft systems to conduct missions in denied or contested airspace, where
multiple teams of aircraft would work together under the supervision of a single
operator. One of the key challenges in this paradigm is the need for an effective
human-system interface (HSI): one that could provide sufficiently detailed command
and control authority and monitoring of plan execution for the entire system without
overwhelming the operator. Another interesting challenge is the need to proactively
find and approve multiple contingency plans, effectively granting the highly
autonomous agents more freedom to operate when communication to the human
supervisor is denied. This paper describes our recent efforts to design and develop a
combined human-system interface and contingency planning tool that addresses these
challenges. We present the design of our SuperC3DE system, provide examples of how
certain interface components and contingency planning methods would be used in a
notional scenario, and discuss key takeaways from formative evaluations by subject
matter experts.

Nomenclature
HSI = Human-System Interface
SCOPE = Supervisory Contingency Plan Evaluator
CPA = Counter Plan Analysis
HPR = Hierarchical Plan Repair
CSI = Contingency Status Inferencing
FIT = Fusion/IMPACT Testbed
TAP = Team Autonomy Planner
UAV = Unmanned Aerial Vehicle
XINT = Mobile Interdiction
IPOE = Intelligence Preparation of the Operational Environment
AMASE = AVTAS Multi-Agent Simulation Environment
AVTAS = Aerospace Vehicles Technology Assessment and Simulation

I. Introduction
n 2014, the Defense Advanced Research Projects Agency (DARPA) launched the Collaborative Operations in
Denied Environment (CODE) program. CODE’s main objective is to develop and demonstrate the use of

collaborative autonomy for systems of unmanned vehicles. Various CODE participants from industry are providing
the technology components necessary for vehicles to perform autonomous planning and control, and to leverage
each other’s resources opportunistically during mission execution. The expectation is that this collaborative
autonomy will enable teams of unmanned vehicles to overcome the challenges of denied communications and more
capable adversarial systems.

In support of this vision, Smart Information Flow Technologies (SIFT, LLC) has designed and prototyped
Supervisory Control for Collaboration and Contingency Delegation (SuperC3DE). SuperC3DE provides an
integrated and holistic suite of human-computer interaction and intelligent decision-support tools. The system is
designed to enable a single human operator to effectively command, monitor, and supervise a system of many
!!!
† Senior Researcher, SIFT, AIAA Senior Member!
‡ Chief Scientist, SIFT ‡ Chief Scientist, SIFT
§ Senior Researcher, SIFT

I

!

unmanned aerial vehicles (UAVs) at once. The CODE operational environment also poses a unique set of challenges
from a human-system interaction perspective: 1) maintain situational awareness (SA) of a complex, multi-
actor, largely autonomous force with much less than full attentional capacity under conditions of high
workload; 2) interact with and maintain supervisory control over highly autonomous vehicles even when they are
out of communications; 3) make informed use of highly autonomous capabilities without surrendering all human
oversight and control; and 4) achieve this level of SA with potentially reduced screen size and resolution, and in
potentially harsh operational environments (vibration, noise, operators wearing gloves, etc.).

Our approach to addressing the above challenges builds on more than a decade of research into a
human-automation interaction approach we call Playbook®1. Plays are not scripted behaviors, but rather
constrained templates for action that offer a constrained range of actions for subordinates. Thus, playbooks are
a convenient, human-familiar, and efficient way of delegating or transferring bounded authority, responsibility,
and resources to a subordinate by codifying a supervisor’s intent. In Playbook implementations, this play-based
delegation has improved overall performance in unpredictable contexts2 and reduced human workload
relative to both static and autonomously adaptive systems3.

Our research has culminated in the adoption of a Playbook-like delegation approach by portions of the
Supervisory Control and Cognition Branch of the 711th Human Performance Wing at the Air Force Research
Laboratory (AFRL). Our approach was employed in a three-year exploratory development and demonstration
effort known as FLEX-IT4 and, currently, is being expanded by the multi-force Autonomy Research Project
Initiative (ARPI) known as IMPACT5. Both efforts have constructed play-based delegation HSIs that are
similar, in many respects, to those needed for CODE. We have participated in both efforts and drew on the
results, prior designs and some existing software implementations as the starting point for our CODE HSI.

Building on the Playbook paradigm, SuperC3DE provides a comprehensive, multi-view HSI that integrates
play-calling and play-status visualization directly into the map display. To complement the core HSI,
SuperC3DE also provides a computational evaluation and advisory component, the Supervisory Contingency
Plan Evaluator (SCOPE). SCOPE emulates the process of planning deliberation between a supervisor and
subordinate, serving to enhance understanding, both for machine and human operator, of their shared plan.
SCOPE uses counter-planning techniques to: 1) examine plans for contingency upset conditions or
breakdowns, 2) identify plan “patches” or repairs that remove those breakdowns or reduce their likelihood, and
3) projects vehicle behavior (even in conditions of comms denial) from a complex suite of initial contingent
plans. SCOPE also evaluates and compares alternate plans, providing a structured framework for the human
operator to quickly examine tradeoffs.

This paper discusses some of the key design concepts of the SuperC3DE system. We first provide a
brief overview the HSI and SCOPE designs, along with an overview of our testbed environment. We then
walk through the lifecycle of using the HSI to call, execute, and monitor a play, focusing our attention on a
select subset of HSI components. Next, we provide a summary of evaluation results from subject matter
experts that reviewed our design. Finally, we conclude with a summary of lessons learned through these
evaluation sessions and offer suggestions for future research efforts that may benefit other programs with
similar HSI challenges.

II. Overview of the SuperC3DE Design
Figure 1 below illustrates our proposed architecture for both the CODE system overall and for the portions

of it we emphasized in our Phase 1 effort (depicted in yellow or gold). The two novel components
developed for our SuperC3DE effort include a Playbook-based HSI and SCOPE. The blocks in red and
green represent other CODE software components that our system either interacts with directly or that
must be modeled in some way to close the loop and drive the simulation. SuperC3DE components interface
directly with the Team Autonomy Planner (TAP), which is the component responsible for collaboration and
plan generation for the team of UAVs. Plans generated from the TAP are then executed by the autonomy and
execution modules in the individual vehicles. To support demonstrations and evaluations of our designs, we
needed a simulation environment to emulate vehicle and world telemetry data. This was provided by
additional work performed at AFRL in the form of the Fusion/IMPACT Testbed (FIT)5,6,7. Fusion7 is a
framework for the development and experimentation of user-interfaces that enable various types of human
interaction with autonomous, intelligent agents. Designed and developed by AFRL Wright Patterson AFB,
Fusion uses an instrumented, play-oriented user interface (UI) and connects to an extensible Java-based
simulation framework that provides a configurable simulation of multiple air and ground vehicles, as well
as access to various automation services to govern the behavior of those vehicles. IMPACT5,6 uses the

!

Fusion environment and adds a number of unique computational and display components. FIT builds upon some of
the Playbook-related HSI elements that are part of IMPACT, including the Play Creator, Playble, and Play Status
tiles. SIFT had participated in earlier development efforts for both Fusion and IMPACT and we were granted
permission to use both in our development of the SuperC3DE design. Together, the capabilities of FIT enable
development and closed-loop demonstration by providing both an extensible platform for implementing new
HSI designs, as well as a configurable simulation environment for UAV flight dynamics and control software.

Figure 1: High-Level SuperC3DE Architecture

A. HSI: Human-System Interface
Our primary goal with the HSI design was to provide a comprehensive, integrated approach to human interaction

with and supervisory control over the CODE system. The focus was not to develop specific HSI components or
widgets, but rather to arrive at an overarching design that integrates all CODE functionality for user awareness,
control, and trust. We used a play-centered design to both command and maintain SA of multiple UAVs (up to
30+ in our designs). The final design was configured for a single touchscreen of variable size with mouse-based
control and touch interactions, and allowed for voice input and output. The integrated HSI consisted of the
following primary components:

1. Navigation Menu Bar/Button
2. Map Display**
3. Timeline Display**
4. Notification Pane
5. Imagery Review Pane
6. Play Calling/Review Panes

(Play Creator) **
7. Play Quality Pane
8. SCOPE Breakdown/

Repair Table**
9. Active Play Pane (Playble) **

Figure 2 shows a preliminary layout

of the above-listed HSI components.
The layout evolved over the project as

!!!
** These components evaluated as part of a Formative Review, summarized in Section V. Boldface components also presented in
Section IV.

Plan/UV/
World info
(incl
imagery)
when avail.

Plan
revisions for
tweaking and
approval
when avail.

Playbook
HSI

Team Autonomy
Planner

Play
Library

FIT

Testbed

Vehicle
Autonomy
Planner

UV
&

W
or

ld

St
at

e
In

fo

U
V

 &

W
orld

State Info

Execution Mgr

UV Cmds

UV & World
State Info

Higher level, integrated mission
planning requests and plans

Comms
intermitent

Comms always
available

HSI+
SCOPE

Contingency monitoring
and reporting

HSI shows likely
vehicle/plan behavior
based on contingency
plans

Aux. world state info
from non-vehicle sources

SCOPE

CPA HPR CSI

!!!!With!
warning!/
cau.ons!
indicator!
&!pull5out!
capability!

2.!!Map!Display!

3.!!Timeline!
4.!!No.fica.ons!

6.!!Play!Calling!

9.!!Playble!

5/8.!!Imagery!Review!
or!SCOPE!Table!

MENU

1.!Screen!
Naviga.on!Menu!

7.!!Play!!
Quality!

0.!!mIRC!
chat!

With!
numerous!
features,!
controls!
and!
overlays!

Includes!support!for!calling!
XINT!and!IPOE!plays!

Mouseover!popups!and!
context5based!“pie!menu”!

Figure 2: Preliminary Layout of the Primary HSI Components

!

new components were developed, and as we gained a better understanding (through formative reviews and
evaluations) of how the operator would prefer to use screen real estate during different modes of operation. The HSI
is designed to support both pre-mission planning, as well as monitoring and supervision during mission execution.

In this paper, we present only a selected subset of the above-listed HSI components. Features of each component
are presented in the context of how they might be used in a notional scenario (see Section III).

B. Supervisory Contingency Planning Executive (SCOPE)
SCOPE is an auxiliary advisory component which incorporates unique counter-planning and hierarchical

plan repair capabilities in order to analyze plans, identify possible breakdown cases, and generate alternative
courses of actions to avoid those breakdowns and preserve the original plans as much as possible. As
illustrated in Figure 3, SCOPE consists of four primary components: Contingency Plan Analysis (CPA),
Hierarchical Plan Repair (HPR), Contingency Status Inferencing (CSI), and Alternate Plan Evaluation (APE).
CPA uses counter-planning techniques on plans produced by any automated planning system to identify how
disturbances could cause failure. The HPR
component performs additional planning and/or re-
planning to identify the relaxation or substitution of
constraints in the initial plan to make it robust to
disturbances identified by CPA. Under comms denial,
CSI determines what contingent portions of a plan
are likely to be active at any point, in order to better
understand what information a user needs to maintain
awareness of that plan. The APE module applies a
scoring method that takes a set of plans and a set of
plan-evaluation dimensions as input, and ranks those
input plans based on the score it computes across the
input dimensions for the plans and their associated
contingencies. Plan evaluation dimensions include
metrics such as probability of success, number of
assets required, fuel usage, duration, and possibly
others.

APE enables a quantitative comparison of plan
alternatives, which might be generated by the human
operators, CODE planners, SCOPE itself, or some
combination, along several possible evaluation
dimensions. The plans are ranked according to the
aggregate score of the weighted dimensions, and the
ranked plan alternatives are displayed for the human
operator to visually explore and choose tradeoffs.
 A fundamental element of SCOPE’s analysis
methods are CRAMs – Contingency and Repair
Analysis Models. CRAMs are graphical models of plans that specify probabilistic, resource, and causal
dependencies between actions. We have developed this formalism by extending the causal models used by the
AFRL’s Causal Analysis Tool (CAT)12. In SCOPE, CRAMs extend CAT’s causal models to include resource
modeling (e.g., fuel usage, duration, and others). CRAMs allow the causal information in the plans and in the
contingencies to be used in a semantically consistent way to estimate other entries, which the plan representations or
the human modelers choose not to provide.

FIT: Fusion/IMPACT Testbed

1. Fusion and IMPACT
Fusion is a framework for the development and experimentation of user-interfaces that enable various types of

human interaction with autonomous, intelligent agents. Designed and developed by AFRL Wright Patterson AFB,
Fusion uses an instrumented, play-oriented UI and connects to an extensible Java-based simulation framework that
provides a configurable simulation of multiple air and ground vehicles, as well as access to various automation
services to govern the behavior of those vehicles.

CPA
Counter Plan

Analysis

HPR++
Hierarchical
Plan Repair

CSI
Contingency

State
Inferencing

Suggested
Plans from
Autonomy
Planners

to
HSI

APE
 Alternative Plan Evaluation

CRAMs: Contingency and Repair
Analysis Models

Figure 3: High-Level SCOPE Architecture

!

Fusion can connect to many different simulation environments or external services, using diverse
communication protocols from STANAG 4586 to JSON and others. In addition, Fusion’s highly modular and open
architecture makes it possible to develop custom components for both the HSI and vehicle autonomy purposes.

The graphical layout of the baseline Fusion screen design is a map-based view that fills the screen with a
notification bar along the top, a feedback bar along the bottom, and individual tiles that may be dynamically shown
or hidden. These elements are shown in Figure 4. The notification bar is used to display messages and alerts, and can
be expanded to pull up a Fusion control panel for managing the tile and canvas layout. The feedback bar is used for
automation feedback, as well as for speech control and response. For example, a press-and-hold on the feedback bar
triggers speech recognition to process voice commands. We used this feature to call plays via voice. Both the map-
based canvas and floating tiles are used to implement specific UI controls. All of the HSI components that we
developed in Fusion for Phase 1 were implemented either as map-based icons or tiles.

!

!
Figure 4. Example of the Fusion Layout

Since 2014, SIFT has been actively involved with the IMPACT program, a multi-agency coordinated ARPI. The

focus of our work on IMPACT was to extend the functional capabilities of the HSI concepts we previously
developed under our FLEX-IT project in active collaboration with AFRL, and which we implemented in Fusion.
The collaborative work on IMPACT has brought together a number of unique autonomy-related components into the
Fusion environment.

In designing the SuperC3DE HSI, we built upon some of the Playbook-related HSI elements that were part of
IMPACT, including the Play Creator, Playble, and Play Status tiles. For each of these graphical UI widgets, we
made extensive modifications for our own HSI designs and added extensions to support CODE concepts. The HSI
designs are discussed in detail in Section 6.

2. AMASE Simulation
AMASE was developed by the Aerospace Vehicles Technology Assessment and Simulation (AVTAS)

laboratory at AFRL Wright-Patterson8. The motivation for AFRL’s development of AMASE was to provide a
common and extensible simulation framework for researchers across several different organizations to use in their
development and evaluation of control algorithms for teams of UAVs. The Java-based application is provided with a
NetBeans IDE, including a library of tools and a network interface to connect to external applications. The
simulation framework organizes vehicles and other entities as separate models, where each model is simulated with
a set of distinct modules. The attributes of each vehicle and the initial state values for a simulation run are
configured through a scenario EXtensible Markup Language (XML) file. AMASE provides a configurable
kinematic flight module to simulate the basic physics of UAV flight, as well several controlling modules to provide
a core set of commonly used functions, such as gimbal control, camera control, waypoint navigation and loitering.

!

Each of the vehicle modules responds to mission commands or vehicle action commands that are issued as messages
from other modules in the system.

Data transfer in AMASE includes 1) data read from and written to XML files, 2) data exchanged between
software modules within AMASE, and 3) data exchanged between AMASE and other applications over a network
connection. For all of these cases, AMASE uses the Lightweight Message Construction Protocol (LMCP) to
represent objects. The main purpose of LMCP is that it defines a serialization protocol for data types, allowing a
common set of objects to be used between software components implemented in a number of different programming
languages. The LMCP package making tool provided with AMASE automatically generates the methods to serialize
and de-serialize all built-in and user-defined LMCP objects, which enables us to pass any LMCP-based object
between AMASE and its client without incurring any additional work.

LMCP is a generic, domain-independent protocol, and provides the underlying structure for all of the data
objects that are passed to/from the AMASE application or between its modules. Building on top of LMCP is the
Common Mission Automation Services Interface (CMASI). CMASI is a specific type of Message Data Model
(MDM) that uses LMCP. It was developed with the goal of providing a standard of communication between
software tools that perform automated or semi-automated command and control of unmanned vehicles. As such,
CMASI includes an assortment of specific data structures that define the commands, objectives, and constraints
associated with UAV missions and tasking9.

3. Plan Representations
The HSI design is built around a play-calling paradigm that assumes a hierarchical plan structure with branching

logic. This type of branching plan representation is consistent with DARPA’s open architecture vision for CODE
and with the planning approaches being developed by the system integrators. In addition, SCOPE uses two specific
artificial intelligence (AI) planning formalisms to internally represent CODE plans and user plays. It uses the
Planning Domain Description Language (PDDL) to represent primitive program statements and hierarchical task
networks (HTNs) to represent conditionals, loops, methods, and classes in Java programs.

The architecture diagram in Figure 4 illustrates which types of plan representations are used by different
components of the SuperC3DE demonstration system. We stubbed the TAP by simply creating a set of our own
handwritten plans, assigning a unique ID number to each plan so it could be referenced and loaded in the course of
performing demonstrations. For the executive and vehicle simulation in AMASE, these static plans were expressed
using a custom extension of the CMASI protocol. SCOPE, on the other hand, stored a separate instance of each plan
as an HTN.

Figure 5: Plan Representations Used by SuperC3DE Components

Other CODE Components

SuperC3DE

Sources?

Mission commands
Team

Autonomy
Planner
(TAP)

Play
Library

Vehicle
Simulation

Vehicle
Autonomy

Planner

Execution
Manager

HSI

Contingency analysis
Suggested plan repairs
Contingency status

Auxiliary World State Info SCOPE

CPA HPR CSI

Plan from TAP,
Contingency Analysis
Suggested Plan Repairs
Contingency Status

SuperC3DE components

Other CODE components (emulated)

Planner Inputs

Plan

Plan from TAP
Vehicle telemetry

Mission commands

Vehicle Telemetry

e.g., Weather

Data coming from Other CODE Systems
Data coming from SuperC3DE Components
Data coming from the Operator
Data coming from the Vehicle
Data coming from other sources

AMASE

Plan

Plan representation
using CMASI extension

Plan represented
in SCOPE using
HTN and PDDL

!

4. SuperC3DE Extensions to AMASE
We developed several extensions to the core AMASE software to enable automatic execution of the branching

plans that were formulated for the various Phase 1 demos. The diagram in Figure 6 illustrates a subset of the core
AMASE modules that we interfaced with on the right side of the figure, along with the set of SuperC3DE extensions
that we developed on the left. Note that this diagram shows the architecture for a single vehicle, which is applied
uniformly to all UAVs in the simulation. The SuperC3DE Executive (hereafter SCExecutive) extends the AMASE
EntityModule class, and thus it behaves just like another AMASE module. As the diagram shows, the SCExecutive
manages all interactions with other native AMASE simulation modules.
!!
!

! !
Figure 6. AMASE Simulation Architecture with SuperC3DE Extensions

!
The SuperC3DE Executive Plugin (hereafter SCExecPlugin) is used to programmatically generate plans for

execution. It listens for a Plan Request message that may come either from the Fusion application, if it is connected,
or from a SuperC3DE client (hereafter SCClient). The SCClient was developed to expedite development and testing
of the simulation and SCExecutive. This allowed us to develop and test the SCExecutive software using only the
AMASE simulation, rather than having to continually interface with the full HSI in Fusion during this process. As
features in the SCExecutive reached completion, we performed fully integrated tests and demonstrations by 1)
launching the HSI in Fusion, 2) issuing commands to the SCExecutive in AMASE, and 3) observing plan execution
by viewing telemetry in the Fusion HSI.

When the SCExecPlugin receives a Plan Request message, which includes a plan ID, it programmatically
generates the hierarchical branching plan associated with that ID, and then sends the SCPlan object back to the client
in a Plan Response message. This plan generation service was used by the Fusion-based SuperC3DE HSI to emulate

SuperC3DE Extensions AMASE

SuperC3DE
Executive

Kinematic
Flight

Gimbal
Control

Autopilot CommandsWaypoint
Follower

Loiter
Control

Target
Detector

Camera
Control

Camera State

Gimbal State

Air Vehicle
State

EntityDetection

navMode,
cmdHdg,
cmdAlt,

cmdSpeed,
cmdVertSpeed,

maxBank

maxBank

Camera
Configuration

Profile
ManagerLoiterAction

Flight
Director

MissionCommand
with WaypointList

FlightDirectorAction

GimbalStareAction

SuperC3DE
Exec Plug-In

SuperC3DE
Client
-or-

Fusion Client

Plan
Request

Plan
ResponseSCPlan

XML
Scenario

File
Air Vehicle

Configuration

Payload
Configuration

SC Search
Patterns

Java Class Extends
AmasePlugin

 Extends
EntityModule Data Object File

!

the type of interaction it would have with a TAP component. At this point, the client now has a SCPlan object that it
can send to the SCExecutive for execution.

The SCExecutive class stores one SCPlan at a time, where each SCPlan data structure includes a linked-list of
uniquely numbered SCActions, and where the first action to be executed has an ActionID of 0. Each SCAction in a
SCPlan is extended from the generic SCAction type to be a specific type of action, such as FlyWaypoints or
SearchAreaForTarget, for example. Every SCAction also has an array of ExitData structures to facilitate branching.
Each ExitData block provides the conditions under which the current action should be terminated and identifies the
next ActionID to switch to. The executive issues commands to execute the current action and continuously monitors
the state of the simulation. When any of the exit conditions prescribed for the current action are satisfied, it switches
to the corresponding ActionID for that exit condition.

As Figure 6 indicates, the SCExecutive module controls the UAV actions by sending four different types of
commands:

• LoiterAction—is sent to the LoiterControl module. The loiter command specifies the latitude, longitude
and altitude of a loiter center-point, the type of loiter pattern (circle, figure eight, or race-track), the
dimensions of the pattern (radius and baseline if needed), and the airspeed.

• MissionCommand—with a waypoint list is sent to the WaypointFollower module. Waypoint following
is used to execute several different actions, including ingress, egress, and search patterns.

• FlightDirectorAction—is sent to the FlightDirector module, which supersedes the autopilot and all other
flight modules. This action specifies the heading and airspeed for the aircraft to fly. The SCExecutive
uses a FlightDirectorAction to avoid restricted operating zones (ROZ) and no-fly zones (NFZ) if they
are encountered.

• GimbalStareAction—is sent to the GimbalControl module. With this action, we specify a latitude/
longitude coordinate on the ground for the camera to point at. This action is used to direct the camera
during egress, ingress, search patterns, and for imaging targets.
The executive uses the SCSearchPatterns class as a utility for developing search patterns. It computes

waypoint sequences for different types of search patterns, including lawn-mower, strip-and-grid, and spiral,
and it performs geodetic calculations to convert between east-/north- and latitude-/longitude-based coordinates.

5. Plan Execution
The main purpose of the SCExecutive is to perform plan execution. By executing the plan in a representative

multi-UAV simulation environment, we can exercise those aspects of the interface that require dynamic vehicle
telemetry updates and, consequently, provide an interactive experience to the human operator.

The plan representations for all AMASE scenarios were encoded in MDMs that extend the CMASI message
protocol. Specific details of the plan representations are discussed on page 6. In Phase 1, we developed a set of
example plans for two main types of play calls: 1) mobile interdiction (XINT), and intelligence preparation of the
operational environment (IPOE). The branching structure of these plays is depicted in Figure 7. The boxes in each
diagram represent specific types of configurable actions that the executive is responsible for managing. The
diamond branch points represent exit conditions that the executive is responsible for monitoring, and that dictate the
next action in the plan to be executed.

In the XINT plan, for example, the vehicles first fly to the area of interest (AOI), performing a scanning ingress
to the expected Scud missile location, and then scan at that location. If a Scud is not found initially, the vehicle
performs a spiral search (by default, though other alternate search patterns may be stipulated) until the Scud is found
or until the prescribed time limit has elapsed. Once the Scud is found, the vehicle loiters, scans and reports from that
location until the prescribed time limit has elapsed. Finally, the vehicle performs a scanning egress and returns to
base.

!

Figure 7. Branching Plan Structure for the XINT and IPOE Plays

The process by which the SCExecutive monitors and carries out the actions in a branching plan is described in

Figure 8. Plan information is encoded as a SCPlan object, which itself contains a linked list of SCAction objects;
both SCPlan and SCAction are a customized extensions of the CMASI message protocol. The executive, along with
all other AMASE modules, updates at default frequency of 10 Hz, though this may be configured in the scenario
XML file. At the beginning of the update function, the executive first checks whether a new SCPlan object has been
received. If so, the executive sets the current action ID to 0, finds the corresponding SCAction within the SCPlan
tree, and begins execution. A list of supported action types is shown in the diagram. Many of these actions represent
extensions to CMASI. The executive will perform specific functions and issue different commands to other AMASE
modules, depending on the current action type being executed.

The executive also monitors the air vehicle state at the end of each update step to determine whether any of the
exit conditions for the current action have been met. If an exit condition is met, it updates the current action ID to
the next action ID specified by that exit condition, causing the new action to be executed on the next update cycle.

Figure 8. SCExecutive Process to Monitor and Execute Branching Plans

XINT%

Time up?

Scanning
Ingress Scan

Scud Found?

No

Yes

Fly to AOI

Scanning
Egress

Loiter, Scan
& Report

No Yes Return to
Base

Spiral
Search

Time up?

Yes

Time up?

Scanning
Ingress Search

High Priority
Entity Found?

No

Yes

Fly to AOI Scanning
Egress

Loiter, Scan
& Report

Area Searched?
Time Up?
Low Fuel?

Yes
No

Yes
Return to

Base

No

IPOE%

Update the current action ID

yes

From
Fusion or
SCClient

for each exit condition
of current action

Execute the action

Get the current action ID

Find the corresponding action
in the plan

Fly to AOI

Ingress to Target

Search Area for Target

Sector Search

Parallel Route Scan

Loiter Phase

Scan Target

Egress From Target

Fly Waypoints

Return To Base

SCPlan

is exit condition satisfied?

Initialize the
current action ID

to 0

Receive new
SCPlan

no

SCAction

Set current action ID to
next action ID for this exit

condition

Send
command to

other
AMASE
modules

Supported Actions

!

III. Example Use Case
Here we describe a notional scenario to provide an example use case for SCOPE and the HSI. The scenario

backdrop is an arbitrary geographic location (in this example, a mountainous area in southern Nevada). We also do
not define or specify any particular UAV platform, though our models assume a medium-altitude, medium-
endurance UAV with heterogeneous sensor packages. The scope of the scenario is illustrated in Figure 9. There are
three areas to search, as well as a no-fly zone that must be avoided. Within the search areas, we have expected
locations for both short-range and long-range surface-to-air missile (SAM) sites. There also exists another pop-up
SAM site (not initially known). To the east of the search areas, we have three sorties, each composed of four UAVs.
The mission has two parallel objectives: 1) XINT, and 2) IPOE. The goal of IPOE is to search the area and build
intelligence by identifying and cataloging all items of interest, while the goal of the XINT is to search, identify and
report Scud missiles specifically.

Figure 9: Scenario for XINT and IPOE with 3 UAV Sorties

!
We used this notional scenario as a means of demonstrating how the SuperC3DE HSI can be used to accomplish

two primary tasks: 1) develop and visualize one or more plans for executing the mission, and 2) monitor the status of
the mission during execution. Using our Playbook approach, the user first calls the play by selecting XINT and
IPOE as objectives, and then continues to specify more detailed priorities and constraints for the mission. With the
play fully defined, the user sends the play call to the planning software, which computes one or more plans to
execute the play. In order to demonstrate interaction with the HSI, we stubbed the planning software and used
SHOP2 to develop a representative set of hierarchical plans that carry out the dual XINT/IPOE mission. We then use
the AMASE simulation with an extended set of onboard control software to execute the plan. Simulated telemetry
from AMASE is provided to the Fusion application, enabling us to dynamically update the map display and provide
user interaction during plan execution. In the next section, we focus on a few specific instances of this overall
process, and discuss the corresponding components of the HSI.

IV. Play-Calling and Play Execution Monitoring
In this section, we provide an overview of selected HSI components used in the process of first calling a play,

and then later monitoring the play’s execution. The notional scenario described in Section III is used to motivate the
examples.

A. Play-Calling Interfaces
The Play Calling component of SuperC3DE is used for creating new Plays and reviewing or editing previously

created Plays. In order to create a new Play, the user either uses the navigation bar or may tap on the microphone
icon on the bottom right of the Map Display to begin speaking. The Play Creator is always available via the
navigation bar or by using voice input. Figure 10 shows an example of the user tapping the microphone icon and
speaking “IPOE on quadrants B, C, and D.” The left side of the picture shows a new Play has been created with the
Sector Search selector set to IPOE. Tooltips appear when the user hovers over each icon on the Play Creator as a
reminder of each option’s functionality. There is a compositional formalism, or visual semantics, to these play icons,

No#Fly'Zone'

Search'Area'1'

Search'Area'2'Search'
Area'3'

UAV'Sor6e'“Falcon”'

UAV'Sor6e'“Eagle”'

UAV'Sor6e'“Hawk”'
Short#Range'&'
Long#Range''
SAM'Sites''
(Known)'

Pop#Up'
Surface'to'
Air'Missile''
(SAM)'Site'

Scud'

SAM'Site'

!

developed originally at AFRL, which provides a reminder of the available plays. For example, all target surveillance
plays have a basic circle with centered “+” sign, all route surveillance plays have a line through the center of the
icon, Sector Search play icons are built around a square box, etc.

!

!!
Figure 10. Voice Input to Play Calling Component

!
!

More detail on our approach, philosophy and prior work in creating play calling interactions may be found in
various resources including1,4,10. Plays are intended not as pre-specified missions, nor as general control modes, but
rather as partially instantiated templates of behavior. Just as in a sport such as American football, or more
continuously, soccer or basketball, a play has a goal and a constrained set of methods that constitute instances of that
play. Other means of accomplishing the goal may exist, but they would not be instances of the play. The methods
are also not exhaustively planned; they are shaped and constrained, but some authority is left to the agents/players at
execution time to implement the plan as best they see fit. Plays are also hierarchically defined and can be composed
and decomposed (as illustrated in Figure 10 above). Plays can be composed of smaller elements to create new plays
or longer missions. While much of this should not be done during mission execution if time and workload
constraints prohibit it, it does provide a bridge between mission planning and dynamic aspects of execution. We
envisioned the possibility of planning multiple plays to meet anticipated needs or contingencies during a mission
with the ability to call them and even to briefly edit them (in the form of modifying pre-set and/or default
parameters) either immediately before launching a UAV salvo or dynamically (assuming comms availability) during
their mission performance.

The view for reviewing or editing previously created Plays is shown on the right of Figure 10 above. On the
bottom left of the review and editing pane of the Play Calling interface is a list of UAV groups and number of
groups participating in the selected Play. The section to the right of that is the main review and edit interface. This
section allows the user to see and set each of the Play’s details. Our general philosophy in play calling is to give the
user the capability to set a wide range of parameters to specialize the play to the current need and intent, but to
require as few as possible of these parameters to be set. Thus, all parameters come with intelligent default settings,
customized to the current mission and expected needs. Furthermore, parameters can adapt as the user stipulates one
or more of them (for example, dictating expected cloudy weather may influence either standoff distance or type of
sensor used). Many of these parameter settings for an XINT play are described below.

The Size section is indicated on the top by several icons depicting relative sizes of the object to be targeted based
on the National Image Interpretability Rating Scales11; a barn is the biggest, and a crumb being eaten by a rodent is

New IPOE play
!  Call with named or (potentially)

drawn quadrants

Pull out panes for more details
!  Input or feedback

UV groups
partici-

pating & #
in each

Additional/Editable
views of Plan Details

“IPOE on Quadrants
B, C and D”

Play tiles after
verbal+ map
touch play call

Pt
Surveil

Rte
Surveil

Sector
Search

Dual
Sensor

Combo

IPOE

Novel Tool Tips

Note “Visual Grammar”
 for Pt. Surveil Plays
 for Rte Surveil Plays
 for Sector Search
 etc.

+

4" 4"4"

Color
indicates
planned
shared
asset

Show
 Targets

Novel Target
Specification

tab for
complex

search plays

Novel Sector Search
Play = IPOE

!

the smallest. Under that is the Visibility section. This section indicated the weather condition (clear or cloudy in this
example). Below the Visibility section is the Optimizations section. This section lists how the play should be
optimized. Time is one of the selected optimizations in this example; other available optimizations include
fuel/power, area coverage and image quality. The Priority section sets the priority of the play, which can be above
normal, normal, and below normal. Under that lies the Sensor section. This section allows the user to select which
sensors the UAV will be using for the play. In this example, the electro-optical (EO) sensor is selected.

Figure 11 and Figure 12 show the contents of each vertical tab on the right of the Play Calling interface. The
Subplay Variants tab shows the user the defaults for the play, but it is also editable. This tab allows the user to select
different search types, search patterns, its report priority, and what each UAV should do after the play is completed.
There are two cases for what the UAV should do after the play is completed. Next+ indicates what the UAV should
do after a successful play (in this case, finding the desired target), and Next- indicates what the UAV should do after
an unsuccessful play.

The tab to the right of Subplay Variants is the Vehicle Assignments tab, which illustrates (and provides control
over, if desired) the vehicles assigned to the play. The next tab shows the Play Quality Glyph, a pie chart developed
at AFRL that indicates the play’s current expected or actual quality against several play-specific parameters. We
explained this chart in more depth in the subsequent section.

The last tab is the Details Pane. The Details Pane allows the user to view and edit any other miscellaneous
information in more detail. This list is scrollable, so the figure illustrates only the top of a potentially long list of
available details which can be edited. While this is not a particularly efficient means of viewing or editing such
details, a successful design should make details at this level of granularity almost never needed during mission
execution. It is our assumption that it is better than not to have them available for those rare cases where they are
needed.
!

!
Figure 11. Play Calling Interface: Sub-Variants, Vehicle Assignments, and Play Quality Glyph

!
!

!!
Figure 12. Play Calling Interface: Details Pane

!

Context Presets

!!

!!

Details Pane provides access to most details about
play; scrollable and editable

!

Note that all of the above examples were depicted for an XINT play. The set of options available on the Play
Calling Pane will be different depending on the play to be called, though they will adhere to the same general layout.
For example, Figure 13 illustrates the design for a new icon for an IPOE play we added as a type of multi-sector
search (illustrated using the graphic convention of multiple rectangles).
!

!
Figure 13. IPOE Play Icon Design

!
The IPOE play’s expanded, additional tabs are similar to those for XINT illustrated above, but include a

substitution for XINT’s Context Variants tab in the form of a novel Targets Control. This was because the XINT
play involved searching for specific targets in an area, and thus, specifying elements of search patterns, etc. for those
targets was an appropriate level of detail given the assumed context of the XINT play. The IPOE play, however,
involves searching a larger area for, essentially, anything of interest. Hence, in the context of this play, an
appropriate level of intent specification detail involves specifying the types of targets of interest, their relative
priorities and what to do about them if found.

B. Contingency Analysis and Plan Evaluation
Once the user has specified the priorities and constraints for the play within the Play Creator tabs, she can send

the play-call to the planning software by pressing the Play icon, . The planning software then attempts to generate
one or more plans for the group of vehicles to execute the play, subject to those detailed specifications. Once a plan
exists for executing the play, we use the counter-planning capabilities of our SCOPE software to attempt to identify
breakdown cases – conditions in the environment, or perhaps actions taken by other actors in the environment, that
have the potential to break our plan. SCOPE then attempts to generate repairs for the breakdown cases by creating
new branches within the original plan. Note that this approach is valid whether SCOPE resides only at the ground
control station, or if it is implemented onboard the vehicles as part of the autonomous planning software. In general,
because contingency planning can be computationally intensive, and because it has the potential to generate a large
number of branching repairs, it seems more practical to perform this analysis at the ground control station where
there ought to be more computational resources, and where a human operator can judiciously prune the space of
alternative plans.

Because each breakdown case is identified as potentially (probabilistically) causing the failure of the plan, we
initially chose to present these as a series of events or outcome effects, each occupying one row of a table. Events
could be sorted or filtered by probability under the user’s control as one means of managing a potential flood of
SCOPE outputs. Both event name and the Trigger/Cause column entry were derivable from the knowledge base that
SCOPE uses to perform counter-planning. SCOPE’s Hierarchical Plan Repair component generates minimal repair
plans to (again probabilistically) provide a means of avoiding plan breakdowns stemming from the initially detected
event. From these repairs, we derived both a repair suggestion name and an expected value (in terms of increased
probability of success) of the repair. Other concepts were also explored for showing, in more detail, the tradeoff
space of various elements, since complex planning for multiple UAVs in unpredictable environments frequently
becomes a process of trading one kind of risk for another, or of trading risk for plan outcome quality. While many
approaches are possible, we were of the opinion that they were generally far too complex for use during mission
execution in the CODE context – and probably too complex for even immediate pre-mission planning.

The SCOPE Table display described above was reviewed by subject matter experts (SMEs) at a formative
review (see Section V below). Feedback from the SMEs confirmed that it was both too complex and too abstract for

!

operators to be completely comfortable. They were particularly critical of a portion of the table display in which we
presented an expected value computation of each potential plan repair which they neither understood nor trusted.
Their primary request was that we replace them with concrete dimensions that could project actual usage or risk
dimensions for operator consideration and risk awareness.

Using these critiques and requests, we developed the Alternate Plan Evaluator (APE) as a more compact way of
visualizing and comparing plan quality. APE projects the effects of a plan along dimensions that are previously
defined as relevant for the play (and that can be tuned for different plays, either a priori or during analysis). A basic
view of the APE Widget is shown in Figure 14 below.
!

!!
Figure 14. APE Widget Basic View

!
The APE Widget is a sprocket display similar to the initial AFRL Play Quality Pane, and is, in fact, built on the

same basic software. The center of the display conveys the overall estimated probability of success of the plan. Each
slice or sprocket conveys how the plan is projected to do along a dimension of interest within caution and warning
thresholds. Slices are normalized in such a way that expanding slices always convey more of the dimension and
relatively worse outcomes. The thresholds (caution in yellow and warning in red) can be set, but the dimensional
score is meant to be conveyed as a percentage of some maximal acceptable value. This means that the dimensions
cannot be arbitrarily chosen, but must sometimes be re-defined to be conveyed by the slice dynamics. For example,
instead of conveying simple pounds of fuel expected to be used, a slice for Fuel Use is configured to be presented as
the percentage of an allowable maximum range. Similarly, instead of the degree of coverage of an area during a
search play, we would use a Non-Coverage percent. Note, though, that the actual value for a dimension can be
presented via a Tool Tip pop-up at any time. While we acknowledge that there may be a need to revise this display
to convey minimal thresholds and/or to convey positive increases in a dimension, we have not yet found a
compelling need to do so. We also note that recent feedback has critiqued the use of larger green colored slices to
convey relatively worse outcomes—a violation of most cockpit and MIL STD conventions. We believe this is a
valid concern and can be easily corrected by either replacing the green with a translucent white or light gray color,
or by omitting the full fill-in of slices that don’t reach warning or caution thresholds.

Controls for setting up dimensions and their thresholds in the APE Widget are shown in Figure 15. In essence,
the user (probably pre-mission) can set up the dimensions to be shown and can adjust the thresholds for them,
perhaps on a mission-specific basis. Again, this is another area where our core philosophy of allowing but not
requiring or expecting user input is used. Dimensions and thresholds appropriate to each play are expected to be
predefined well before use and specific mission planning and then to be rarely changed, but the opportunity exists
for the user to alter these values if desired.
!
!

Multiple
dimensions,
user
selectable
and
weightable

Contrasting alternate plans, shrink and
expand to include more plans

Overall
probability
of success

Move mouse or touch to present
actual calculated values in
dimension-relevant units

User-/unit-
settable,
dimension-
specific
thresholds

All
dimensions
scaled so
more is
worse

UVs UVs

!

!
Figure 15. APE Widget Controls

!
!

In Figure 14, we show two APE Widgets side by side. We expect this to be a common usage when comparing
multiple plans or plan repairs. In addition, we have designed controls to review and select from among multiple
plans or plan repairs, potentially tens of alternatives. In that context, a single sprocket view is also used to show the
range of values across a large number of plans and the user can drag sliders along each slice to specify the range of
values that are acceptable for each dimension – thereby pruning the set of acceptable plan repairs.

C. Play Execution Monitoring
Various components of the Map Display are used to visualize both the planned (pre-mission) and actual (in-

mission) execution of a play. Here, we provide a brief discussion of just a few of these elements. It is important to
point out that the CODE concept presents many challenges to the HSI design, such as:

a. How to de-clutter the display with a large number of vehicles?
b. How to compactly describe teams of heterogeneous vehicles?
c. How to associate vehicles and teams with targets or tasks?
d. How to zoom in on smaller areas without losing context?
e. How to visualize and understand when and how tasks will be completed?
f. How to best notify the user of significant events, that have either already occurred or are about to

occur?
g. How to properly account for uncertainty of plan execution when comms are denied?
h. How to convey to the user the communications topology (current and/or expected) among all vehicles?

While we have developed in-depth HSI designs to address each of the above challenges, in this paper we provide

only a brief overview of a subset of elements, focused on items a. through e.

1. Aggregate Icons
Aggregate icons were created as a means of showing groups of platforms using less screen space (see).

Aggregate icons are shown on the map display when multiple units, which are close to each other, share the same
task. They are meant to de-clutter the screen, so the user can focus on other things. Aggregation of units is toggle-
able, by clicking on or touching the icon.

!

In the innermost part of the icon, smaller unit icons are used to describe the aggregate’s number of units of that
type (e.g., letters to distinguish platforms). Alternatively, a single number may be used to simply indicate the
number of platforms in the team, which is the method shown in
subsequent map views. The direction these icons face is the
average directional movement of the aggregate. The color
around these smaller icons indicate the unit’s secondary task, if
any, white being used to convey a planned but not-yet-executing
play. The color of the outer circle describes the aggregate unit's
primary task. If the outer circle is dashed, one or more of the
member UAVs is currently out of communication with the
ground station. If there is a rotating arc around the edge of the
main icon, it indicates that the aggregate unit is carrying out the
core part of its primary task. This may be defined on a task by
task basis, but generally refers those portions of the UAV’s
mission other than ingress and egress. On core is meant as a cue
to the operator that this vehicle or aggregate is worth paying
more attention to. There is an optional dashed white circle
beyond the On Core symbol, which conveys that a new play is planned (but not yet executing) which will replace
this aggregate’s previous primary task. Finally, the small but wide arrow around the edge of the main icon points at
the direction of the target area which may, of course, not be the direction the aggregate is currently heading.!

2. Planned Routes
As a way of showing the planned routes for individual UAVs, SuperC3DE made use of a baseline Fusion

functionality with minor modifications which we came to call thin routes. These lines can be both solid and dashed.
If solid, they were shown in the vehicle/task color. If dashed, they were either colored (indicating that the UAV had
an assigned route that it was expected to be executing but lack of communications made verification currently
impossible – and perhaps we were projecting that route via SCOPE’s CSI function (see Section 7.3.3). A dashed
white line meant that the path was proposed and not yet accepted and active. An example of thin line, individual
proposed routes for a group of UAVs is shown in Figure 17 below.
!

!
Figure 17. Proposed Routes for a Group of UAVs

3. Fat Routes and Target Icons
An interesting expansion on the unit aggregation icon is a larger arrow that we’ve termed the Fat Route.

Showing individual thin routes for each vehicle quickly produces a “spaghetti” effect when more than a few UAVs
are involved (as is already becoming apparent in Figure 17 with only four UAV routes expanded). Thus, the Fat
Route was developed to show the route and travel behavior of an aggregate set of UAVs. Each Fat Route indicates
the aggregate’s current direction and route, with hashes representing five minutes of travel each. Figure 18 below
gives an example from the notional IPOE/XINT scenario. Note that each aggregate icon points to a target symbol
(circle) that exists within a task-appropriate region outlined using same color as the related play. In this case,

!

x"x"

z"y"

Number'of'
UVs'in'group'

Background'color'
='secondary'task'

Rota;on'=''
on'core'task'

Direc;on'to'
target'area'''

Aggregate Icons

Color''
='task'

Le?ers'='
UV'type'

UV'heading'='
Average'Heading'

Figure 16: Aggregate Icon Design

!

rectangles show the region in which the IPOE task is to be carried out. This figure also provides an added example
of both Aggregate Icons and their target symbols, since the orange colored aggregate icon represents a group of
UAVs performing two concurrent tasks – both one sector of the IPOE search (the blue rectangle) and an XINT task
involving searching for Scuds in the region of the orange oval. The fact that these vehicles are multi-tasked is
conveyed by the blue outline in addition to the orange fill of the individual vehicles in the aggregate icon.

!
Figure 18. Fat Routes and Target/Task Icons Example

4. Gutter Functionality
Figure 19 below shows another feature designed to enhance the map display: a peripheral edge known as the

gutter designed to improve SA and provide easy access to UAVs and task groups that might be outside the current
pan and zoom settings for the map. The gutter is displayed as the outer side of the dashed grey line around the edges
of the map display. It uses a further
miniaturized version of the UAV or
aggregate icon to indicate the direction
and direction of travel of UAVs that are
not currently on-screen. Clicking on an
icon in the gutter immediately pans the
screen to center on that group (and results
in other UAVs, likely including those
formerly on screen to now appear as gutter
icons). Gutter icons appear at the bearing
of the vehicles in that cluster relative to
the center of the screen and, thus, in the
direction one would have to look or travel
from the screen’s center to encounter those vehicles. Gutter icons will move around the screen’s edge if the screen
center moves or if the vehicles in the cluster change their bearing to the screen center. Once a UAV or aggregate
UAV group is in the gutter, it does not move laterally within the gutter and no indication of its total distance from
the current map center is provided, though it may rotate as it shifts direction of travel.

Figure 20 illustrates the appearance and several of the behavioral features of the Gutter. An alternate
implementation of the gutter transition behavior was suggested during our interim reviews. This would have a click
or touch on one of the icons in the gutter shift the map not directly to that group, but rather to a zoomed-out view
that included the UAVs currently on screen as well as those tapped by the operator. A subsequent user action could

Figure 19. Map Display Gutter

!

then pan and zoom the map on the new group if desired. We have not implemented or tested this option, largely due
to time constraints, but suspect that the need to perform two actions to view a new UAV group would be disfavored
by operators. On the other hand, a behavior that rapidly animates the transition from the current screen focus to the
new requested one—combining pan and zoom in one animated motion which leaps out from the current view to an
all-encompassing view and then immediately zooms in to the new view—might well be a desirable improvement.
Such an implementation would combine the single click access of our current implementation with some of the
global map-based SA of the two-step mode described above.

!
Figure 20. Gutter Behavioral Features

5. Sensor Coverage Overlay
As a commandable overlay the user can call up (and turn off) when desired, we created a Projected Sensor

Coverage Overlay as a view overlaid on the map using a translucent variation of the play color to convey the region
inspected by the UAVs in that play over time. The degree of translucency corresponds to the latency of coverage
(more color saturation conveys more recent inspection) and time is controlled via a slider bar – or could be allowed
to run at a multiple of real time as a movie. Figure 21 illustrates these features with multiple vehicles inspecting
different quadrants (and leaving alternate sensor trails; the time slider bar is included in the lower left).
!

Smaller task group icons
indicate direction to pan to

locate other groups

Aggregate
icons, fat
routes and
route
targets –
used for
“on screen”
elements

4

4

2

4

Outer edge of map behaves as
“gutter”

Some sort of visual boundary
between “normal” map and
gutter is important – dashed
line (as here), translucent

frame, etc.

4

Icons can overlap but not
completely

!

!
Figure 21. Projected Sensor Coverage Overlay

V. Evaluations
We performed a series of evaluations on both the HSI and SCOPE components. In this section, we describe the

objectives and overall approach of the HSI evaluations, and provide a summary of the results.

A. Formative Review Approach
We held a formative review of the in-progress design of the HSI and SCOPE in July 2015. Formative reviews

are so-called because they help to inform the design during its formative stages, and thus, are done on a partial
design still somewhat in flux. Indeed, some textbooks recommend that they be done using pencil and paper sketches
of the designed HSI elements so as not to convey the image that designs are fixed and will be difficult to modify.

Our formative review was held with four subject matter experts as described below. Three had experience in
current UAV operations – two as pilots, one as a mission intelligence officer. The fourth was an F-16 pilot familiar
with the CODE program and CONOPS.

• SME1. Former F-16 pilot. Familiar with the CODE CONOPS and with future tactics for onboard

control of multiple UAVs. Volunteer.

• SME2. Six years’ experience supporting UAV operations as an intelligence operations supervisor and
mission intelligence coordinator. Paid participant.

• SME3. Five years’ experience as a UAV pilot. Paid participant.

• SME4. More than 2,000 hours as a UAV pilot. Paid participant.

The materials reviewed in this exercise were the slides, videos, and live demonstration created for and presented
at one of our technical interchange meetings. At this time, we had a well-articulated vision and multiple examples,
but the designs were not yet fixed. This allowed sufficient time to react to feedback from SMEs and to revise our
designs accordingly. Note that the designs described previously in this paper were completed after this review
(which was performed on earlier versions of these designs). The designs presented above take advantage of inputs
from the SMEs who participated and are thus, expected improved versions of the core concepts.

The review was held in a large conference room at SIFT’s Minneapolis headquarters with the four SMEs, as well
as some SIFT employees. The format, as explained to the SMEs, involved an initial presentation of the goals of
CODE and our designs, followed by a presentation of the overall system via the live demonstration of its behavior in
a representative mission. SME participants were then asked to complete the first block of four questions in the
questionnaire below. We then presented each major component of the HSI design in detail, showing slides, videos
and/or live demonstrations of the component behaviors. After an initial presentation of each element, we opened the

!

floor for discussion and clarification of the design, with SIFT employees taking notes. After discussion, SMEs
completed the associated block of questions for that component. Following this extended series of demonstrations
and discussions at the component level, we again asked the original set of overview questions to see if any changes
in opinion had occurred. This process took approximately eight hours.

The following sections detail the questionnaire the SMEs responded to and summarize both their quantitative
responses and their comments.

B. Questionnaire and Response Summaries
For the questionnaire, we used a 1-10 rating scale for participants to rate their impression of different aspects of

design. The scale was defined such that: 1 = Potentially Harmful, 5 = Neutral, and 10 = Extremely Helpful. We
posed a unique set of questions for each of the following aspects/components of the SuperC3DE HSI design:

• Overview/Summary (scores for the overall HSI design)
• Map Display and Comms Status
• Timeline Display
• Play Calling and Review (Quality) Panes
• Active Play Summary Display (Playble)
• SCOPE Breakdown and Repair Table
• Overview/Summary (repeated)

 While the full questionnaire is too long to include in this paper, we do, however, provide the set of

Summary/Overview questions and responses in Appendix A. These questions were asked to the SMEs participating
in our formative review. Each question is listed on a row of the table, with the individual SME response scores and
transcriptions of their written comments provided in subsequent columns in that row.

C. Summary of Results
Overall, we collected 151 ratings from the four SMEs during the day-long Formative Review. The average rating

was 7.8 and the standard deviation was 1.8 on a 10-point scale ranging (as shown above) from 1 = Potentially
Harmful through 10 = Extremely Helpful. The minimum score given for any HSI feature was a 3 and the maximum
was a 10. This (combined with both written and verbal comments) can be taken as general support for our designs
with a few specific critiques and requests for revisions. The ratings of our different design elements appear in Figure
22.

Figure 22. HSI Design Element Ratings

!
General impressions from this review are summarized in Figure 23 with the green arrows indicating elements

that were favorably reviewed and the red ones indicating elements that needed redesign, improvement or
replacement.

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!

!

!
!

!
Figure 23. Formative Review General Impressions

!
Numerical values are the average of responses to sub-questions asked within each broad HSI element category.

Note, that (as illustrated for the map display), the sub-questions sometimes pointed to a specific element that needed
to be redesigned rather than overall satisfaction or dissatisfaction with the HSI element as a whole.

General take away themes from the discussions held during the formative review are included below along with
specific actions we took in subsequent design phases (as described above) to address the SMEs’ concerns.

1. De-clutter (or better, don’t clutter in the first place)
• Providing information on demand was seen as a better approach instead of offering de-cluttering options

or controls.
• Action: Substantial redesign to reduce general clutter, especially through the introduction of callouts and

popups and use of the pie menu to access related content.
2. Play Calling “coincides with real-world operations” and “feels intuitive,” but SMEs wanted to understand

the consistency in play symbols.
• Action: Some symbols were redesigned, but the consistency which was there was better explained as

well. The introduction of Tool Tip mouse-over labels for play-calling icons also helped to address this
issue.

3. Aggregate icons and gutter features were very well regarded – but should be simplified.
• Action: Aggregate icons were greatly simplified in later designs – both in larger form on the map and in

smaller form as a part of the gutter.
4. Timeline display “has enormous SA building potential;” notifications should record actual events.

• Action: Considering for future implementation.
5. Map display needs play-specific filtering options and combinations.

• Action: Organizational tools were added to the display to enable custom filtering of displayed entities.
6. SCOPE outputs were “very useful” as a “double check” on planning, but expected value numbers were hard

to interpret.
• Action: Overall expected value numbers were abandoned and were replaced using more concrete

numbers (e.g., fuel remaining, image quality, etc.) with mission-specific thresholds in later APE design.

We also asked the SMEs, as a take-home exercise, to complete a comparative timeline analysis in which they
were to think through the tasks required to complete a scenario we described (planning and executing an XINT task
with four UAVs) as well as a rough estimate of the time required to complete each task both with and without
CODE/SuperC3DE. This analysis was completed by three of the SMEs. The resulting data, though admittedly
subject to a number of different biases, provides intriguing, if preliminary, evidence for the benefits of the CODE
system overall and of our HSI in particular. Across the three data sets prepared for a four UAV XINT mission
against four Scuds, the average “fully occupied” minutes during mission execution (not counting flying time) for a
human operator was expected to be 23 minutes for a baseline system (without CODE/SuperC3DE) but only 5-8
minutes for the same mission using CODE/SuperC3DE. Thus, we can (with appropriate caveats for the preliminary
and subjective nature of this data and process) say that CODE/SuperC3DE has the potential to reduce human
workload and time required by 65-78 percent.

–  Overview/Summary:.before:.7.75,.a6er:.8.
–  Timeline.Display:.9.25.
–  Play.Calling/Review.Panes:.8.5.
–  SCOPE.Breakdown/Repair.Table:.8.5.
–  Playble:.6.5.and.Play.Quality:.5.75.
–  Map.Display.and.Comms.Status:.6.75.

•  Aggregate.Icons:. .7.75.
•  GuPer: . .8.00.
•  Arrow.nubs: .7.75.
•  Filtering.concept: .8.50.
•  Uncertainty.regions:.7.00.
•  Arrows.for.comms: .5.50.

!

VI. Conclusions
We set out to achieve several goals in our development of SuperC3DE:

• Improve human-system performance and trust while minimizing human workload and system
bandwidth requirements.

• Enable mission commanders to rapidly and flexibly convey their intent to and maintain awareness of
multiple UAVs, even when they are distracted or harried and, most importantly, when communications
are restricted.

• Extend and improve performance under Vehicle and Team Autonomy by integrating them more closely
with HSI using counter-planning, contingency delegation, and contingency status inferencing.

• Provide novel situation awareness tools, integrated with the HSI, to make commanders more aware of
and involved in UAV operations, even under comms denial.

To meet these objectives, we designed an architecture for SuperC3DE comprised of a holistic HSI, a plan-
critiquing tool (SCOPE), and a FIT testbed for user-interactive demonstrations. We used AFRL’s Fusion
environment as a springboard to rapidly prototype new HSI concepts. The FIT testbed enabled interactive testing
with multiple simulated vehicles via its connection to a configurable AMASE simulation. We leveraged prior
designs from the FLEX-IT and IMPACT work with which we had been involved at AFRL to serve as the basis of
our integrated, task-centered architecture for commanding and maintain awareness of many UAVs. Our design
included several novel display concepts for maintaining situation awareness in the challenging environment of
CODE missions, which involved multiple diverse vehicles with uncertain threat and target information in a denied
environment. Recognizing the inherent uncertainty that the commander and planning system will face before
mission execution, we developed SCOPE as a planning and plan review aid. Given a plan and a model of our actions
and the world, SCOPE will find contingencies within that uncertainty space that will cause the plan to fail, and it
will generate repairs in the form of new branches to make the plan resilient to those contingencies. The primary
interaction between the HSI and SCOPE is performed through SCOPE’s APE, whose design was in response to
suggestions from SMEs at a review of an earlier, more complex version of a SCOPE display, which evaluates a set
of alternate plans and scores them along multiple dimensions to estimate the plan’s performance in various areas,
such as mission completion time, threat exposure, or total number of vehicles required.

Moving forward, we plan to build on the above accomplishments in ways that would both further the CODE
program objectives, as well as extend our research in the general areas of decision support and planning for semi-
autonomous systems. By integrating as fully as possible with Track A architectures, we intend to advance the
Technology Readiness Level of selected SuperC3DE components through live flight demonstrations.

!

Appendix!

Table 1: Overview/Summary Questionnaire with Responses – Initial
< < Rating< Comments<
1< Overall'impression<of<

SuperC3DE<HSI<design:<
7,7,8,9<< SME1—Good<initial<design,<some<interface<seems<

cumbersome<
SME2—Straightforward<map<and<timeline<views;<
overall<seems<optimized<for<GCS/OPS5<center<use<
SME3—High<volume<of<data<available<in<finite<space,<
high<level<of<organization.<Some<icons<are<very<similar.<
SME4—Looks<very<nice.<Might<be<a<little<busy<on<a<
small<display.<

2< Use<of<tasks'as<an<
organizing,<controlling<&<
reporting<structure:<

7,5,8,7X
8<

SME1—I<like<the<playbooks,<but<I<think<they’d<need<to<
be<more<of<a<mission<planning<function<and<less<of<an<
execution<function<
SME2—Play<creator<is<fairly<straightforward<requiring<
only<brief<guide<or<legend<for<identifying<various<play<
options<–<speed<and<proficiency<will<come<over<time.<
SME3—Structure<seems<well<thought<out.<Ability<to<
control<groups<or<individual<RPAs<feels<intuitive<
SME4—I<like<the<ability<to<build<scan/flight<plan<
functions.<Map<and<CSI<are<good.<Some<of<the<
contingency<variable<predictions<might<be<a<little<busy,<
but<ok<to<include.<<

3< Use<of<maps'AND'
timelines<as<core<
organizing<views<

8,9,9,9< SME1—Easy<to<follow<along<as<the<msn/cc6<might<
want<to<combine<routes<into<1<with<offshoots<to<deX
clutter<screen.<
SME2—Maps<and<timeline<views<very<reminiscent<of<
realXworld<tools,<thus<facilitating<easier<
implementation<and<use<
SME3—Division<of<attention<will<likely<be<one<of<the<
biggest<limiting<factors,<this<overview<has<a<very<good<
situational<awareness<increasing<potential<
SME4—Nice<way<to<organize<the<map<and<various<
input<functions<

4< Does<the<SuperC3DE<HSI<
hold<promise<to<enable<
controlling<many'
unmanned'air'systems'
(UASs)?<

8,7,9,10< SME1—With<some<reductions<on<required<inputs<from<
msn/cc<during<execution,<I<think<it’d<be<more<feasible.<
SME2—Definitely<
SME3—<Yes,<with<some<familiarity<with<the<system<I<
see<a<lot<of<potential<here.<
SME4—Yes.<Looks<similar<if<not<much<better<to<<
software<we<use<today.<

!!!
5 “GCS” refers to the Ground Control Station, while “OPS” refers to Operations.
6 “msn/cc” refers to mission command and control.

!

Table 2: Overview/Summary Questionnaire Responses – Repeated after full description of each component
< < Rating< Comments<
1< Overall'impression<of<

SuperC3DE<HSI<design:<
7,8,9,8< SME1—<We<gave<you<a<lot<of<inputs,<but<I<think<you<

have<a<solid<base<and<the<ability<to<expand<on<it<to<
have<an<awesome<product.<
SME2—Very<good<initial<approach.<Main<
recommendation<focuses<on<cleaning<up<display.<<
SME3—I<really<like<the<way<information<is<displayed<
to<the<user.<With<some<mods,<this<will<be<very<useful.<
SME4—Some<details<need<work<but<overall<great<idea<
and<concept<

2< Use<of<tasks'as<an<
organizing,<controlling<&<
reporting<structure:<

XX,10,XX,7< SME1—No<change<
SME2—Coincides<with<realXworld<operations—both<
planning<and<execution<
SME3—<
SME4—Need<some<work<on<play<menu,<but<well<
organized<

3< Use<of<maps'AND'
timelines<as<core<
organizing<views<

XX,9,10,9< SME1—Maps<are<key,<with<data<on<demand<
SME2—Very<effective<at<conveying<mission<essential<
information<only<requiring<some<map<display<icon<
clean<up/simplification<
SME3—Using<primarily<the<map<and<timeline<as<SA<
tools<the<display<is<deXcluttered<and<efficient.<
SME4—Love<the<timeline,<map<is<good<too<

4< Does<the<SuperC3DE<HSI<
hold<promise<to<enable<
controlling<many'UASs?<

XX,10,XX,9< SME1—Definitely<
SME2—Definitely<
SME3—The<most<important<thing<is<having<the<right<
information<when<you<need<it,<but<only<the<
information<you<need<at<that<time.<I<think<this<is<a<big<
step<in<the<right<direction.<
SME4—Very<useful<for<planning/controlling<a<large<
number<of<vehicles<

Acknowledgments
This work was developed with funding from the Defense Advanced Research Projects Agency (DARPA)

through AFRL contract FA8650-15-C-7508.
In addition to our funding sponsors, the authors would also like to thank our colleagues at AFRL’s Supervisory

Control & Cognition Branch, 711th Human Performance Wing: Gloria Calhoun, Mark Draper, Heath Ruff, and
Allen Rowe. Their prior work in this field, including research under the IMPACT and FLEX-IT programs and the
Fusion software, was instrumental to our work on this contract.

The views, opinions and/or findings expressed are those of the authors and should not be interpreted as reflecting

the official views or policies of the Department of Defense or the U.S. Government.

!

References
1 Miller, C. and Parasuraman, R. “Designing for Flexible Interaction between Humans and Automation: Delegation
Interfaces for Supervisory Control.” Human Factors, 49(1), 57–75, 2007.

2 Parasuraman, R., Galster, S., Squire, P., Furukawa, H. and Miller, C. “A Flexible Delegation-Type Interface Enhances
System Performance in Human Supervision of Multiple Robots: Empirical Studies with RoboFlag.” IEEE Systems, Man
and Cybernetics—Part A, Special Issue on Human-Robot Interactions, 35(4), 481–493, 2005.

3 Kidwell, B., Calhoun, G., Ruff, H., Parasuraman, R. “Adaptable and Adaptive Automation for Supervisory Control of
Multiple Autonomous Vehicles.” In 56th Annual Human Factors and Ergonomics Society Meeting, pp. 428–432. HFES
Press, Santa Monica, 2012.

4 Miller, C., Draper, D, Hamell, J., Calhoun, G., Barry, T., and Ruff, H. (2013). Enabling Dynamic Delegation Interactions
with Multiple Unmanned Vehicles; Flexibility from Top to Bottom. Lecture Notes in Computer Science Volume 8020, pp
282-291.

5 Behymer, K., Rothwell, C., Ruff, H., & Patzek, M. (in preparation). Initial Evaluation of the Intelligent Multi-UxV Planner
with Adaptive Collaborative/Control Technologies (IMPACT). Technical Report AFRL-RH-TR-2017-TBD. Air Force
Research Laboratory.

6 Calhoun, G.L., Ruff, H.A., Behymer, K.J., & Mersch, E.M. 2017. Operator-Autonomy Teaming Interfaces to Support
Multi-unmanned Vehicle Missions. Chapter in Advances in Human Factors in Robots and Unmanned Systems: Advances
in Intelligent Systems and Computing 499, edited by P. Savage-Knepshield & J. Chen (pp. 113-126). Springer International
Publishing.

7 Rowe, A.J., Spriggs, A., & Hopper, D. (2015). FUSION: A Framework for Human Interaction with Flexible-Adaptive
Automation across Multiple Unmanned Systems. In Proceedings of the 18th International Symposium on Aviation
Psychology.

8 Duquette, M. “Effects-Level Models for UAV Simulation.” In proceedings of AIAA Modeling and Simulation
Technologies Conference, Chicago, IL, Aug 10–13, 2009.

9 Duquette, M. “The Common Mission Automation Services Interface.” In proceedings of Infotech@Aerospace, St. Louis,
MO, March 29–31, 2011.

10 Miller, C., Shaw, T., Musliner, D., Hamell, J., Emfield, A. and Parasurman, R., (2011). Delegation to Automation:
Performance and Implications in Off-Nominal Situations. In Proceedings of the 14th International Conference on Human
Computer Interaction Orlando, FL. 9-14 July 2011.

11 Maver, L. A., Erdman, C. D., Riehl, K. “National Image Interpretability Rating Scales.” URL:
http://fas.org/irp/imint/niirs.htm, updated on January 16, 1998. Accessed January 31, 2016.

12 Lemmer, J. F. and Gossink, D. “Recursive noisy-or: A rule for estimating complex probabilistic causal interactions.”
IEEE Transactions on Systems, Man, and Cybernetics. Reference Number: SMCB-E-10152003-0493.R1, 2004.

