

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 8, no. 3 & 4, year 2015, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 8, no. 3 & 4, year 2015, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2015 IARIA

International Journal on Advances in Security

Volume 8, Number 3 & 4, 2015

Editor-in-Chief

Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany

Editorial Advisory Board

Masahito Hayashi, Nagoya University, Japan

Clement Leung, Victoria University - Melbourne, Australia

Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan

Dan Harkins, Aruba Networks, USA

Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany

Editorial Board

Gerardo Adesso, University of Nottingham, UK

Ali Ahmed, Monash University, Sunway Campus, Malaysia

Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA

Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil

Reza Azarderakhsh, The University of Waterloo, Canada

Ilija Basicevic, University of Novi Sad, Serbia

Francisco J. Bellido Outeiriño, University of Cordoba, Spain

Farid E. Ben Amor, University of Southern California / Warner Bros., USA

Jorge Bernal Bernabe, University of Murcia, Spain

Lasse Berntzen, Vestfold University College - Tønsberg, Norway

Jun Bi, Tsinghua University, China

Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Alexis Bonnecaze, Université d'Aix-Marseille, France

Carlos T. Calafate, Universitat Politècnica de València, Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA

Clelia Colombo Vilarrasa, Autonomous University of Barcelona, Spain

Peter Cruickshank, Edinburgh Napier University Edinburgh, UK

Nora Cuppens, Institut Telecom / Telecom Bretagne, France

Glenn S. Dardick, Longwood University, USA

Vincenzo De Florio, University of Antwerp & IBBT, Belgium

Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium

Pierre de Leusse, AGH-UST, Poland

Raimund K. Ege, Northern Illinois University, USA

Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens AG - Corporate Technology, Germany

Shao-Ming Fei, Capital Normal University, Beijing, China

Eduardo B. Fernandez, Florida Atlantic University, USA

Anders Fongen, Norwegian Defense Research Establishment, Norway

Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand

Steven Furnell, University of Plymouth, UK

Clemente Galdi, Universita' di Napoli "Federico II", Italy

Emiliano Garcia-Palacios, ECIT Institute at Queens University Belfast - Belfast, UK

Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany

Manuel Gil Pérez, University of Murcia, Spain

Karl M. Goeschka, Vienna University of Technology, Austria

Stefanos Gritzalis, University of the Aegean, Greece

Michael Grottke, University of Erlangen-Nuremberg, Germany

Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel

Indira R. Guzman, Trident University International, USA

Huong Ha, University of Newcastle, Singapore

Petr Hanáček, Brno University of Technology, Czech Republic

Gerhard Hancke, Royal Holloway / University of London, UK

Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var,

France

Dan Harkins, Aruba Networks, Inc., USA

Ragib Hasan, University of Alabama at Birmingham, USA

Masahito Hayashi, Nagoya University, Japan

Michael Hobbs, Deakin University, Australia

Neminath Hubballi, Infosys Labs Bangalore, India

Mariusz Jakubowski, Microsoft Research, USA

Ángel Jesús Varela Vaca, University of Seville, Spain

Ravi Jhawar, Università degli Studi di Milano, Italy

Dan Jiang, Philips Research Asia Shanghai, China

Georgios Kambourakis, University of the Aegean, Greece

Florian Kammueller, Middlesex University - London, UK

Sokratis K. Katsikas, University of Piraeus, Greece

Seah Boon Keong, MIMOS Berhad, Malaysia

Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark

Marc-Olivier Killijian, LAAS-CNRS, France

Hyunsung Kim, Kyungil University, Korea

Ah-Lian Kor, Leeds Metropolitan University, UK

Evangelos Kranakis, Carleton University - Ottawa, Canada

Lam-for Kwok, City University of Hong Kong, Hong Kong

Jean-Francois Lalande, ENSI de Bourges, France

Gyungho Lee, Korea University, South Korea

Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong

Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy

Gui Lu Long, Tsinghua University, China

Jia-Ning Luo, Ming Chuan University, Taiwan

Thomas Margoni, University of Western Ontario, Canada

Rivalino Matias Jr ., Federal University of Uberlandia, Brazil

Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Ajaz H. Mir, National Institute of Technology, Srinagar, India

Jose Manuel Moya, Technical University of Madrid, Spain

Leonardo Mostarda, Middlesex University, UK

Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong

Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la

Communication),Belgium

Sarmistha Neogy, Jadavpur University, India

Mats Neovius, Åbo Akademi University, Finland

Jason R.C. Nurse, University of Oxford, UK

Peter Parycek, Donau-Universität Krems, Austria

Konstantinos Patsakis, Rovira i Virgili University, Spain

João Paulo Barraca, University of Aveiro, Portugal

Sergio Pozo Hidalgo, University of Seville, Spain

Vladimir Privman, Clarkson University, USA

Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea

Rodrigo Roman Castro, Institute for Infocomm Research (Member of A*STAR), Singapore

Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster /

North-German Supercomputing Alliance, Germany

Antonio Ruiz Martinez, University of Murcia, Spain

Paul Sant, University of Bedfordshire, UK

Peter Schartner, University of Klagenfurt, Austria

Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada

Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece

Pedro Sousa, University of Minho, Portugal

George Spanoudakis, City University London, UK

Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany

Lars Strand, Nofas, Norway

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea

Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Enrico Thomae, Ruhr-University Bochum, Germany

Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India

Panagiotis Trimintzios, ENISA, EU

Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany

Simon Tsang, Applied Communication Sciences, USA

Marco Vallini, Politecnico di Torino, Italy

Bruno Vavala, Carnegie Mellon University, USA

Mthulisi Velempini, North-West University, South Africa

Miroslav Velev, Aries Design Automation, USA

Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico

Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.

Piyi Yang, University of Shanghai for Science and Technology, P. R. China

Rong Yang, Western Kentucky University , USA

Hee Yong Youn, Sungkyunkwan University, Korea

Bruno Bogaz Zarpelao, State University of Londrina (UEL), Brazil

Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 8, Numbers 3 & 4, 2015

CONTENTS

pages: 109 - 119
Terminal Virtualization Framework for Mobile Services
Tao Zheng, Orange Labs International Center Beijing, China
Song Dong, Orange Labs International Center Beijing, China

pages: 120 - 129
Chronomorphic Programs: Runtime Diversity Prevents Exploits and Reconnaissance
Scott Friedman, SIFT, LLC, USA
David Musliner, SIFT, LLC, USA
Peter Keller, SIFT, LLC, USA

pages: 130 - 140
Building Trusted and Real Time ARM Guests Execution Environments for Mixed
Criticality With T-KVM, a hypervisor architecture that implements an hardware isolated
secure and real time environment
Michele Paolino, Virtual Open Systems, France
Kevin Chappuis, Virtual Open Systems, France
Alvise Rigo, Virtual Open Systems, France
Alexander Spyridakis, Virtual Open Systems, France
Jérémy Fanguède, Virtual Open Systems, France
Petar Lalov, Virtual Open Systems, France
Daniel Raho, Virtual Open Systems, France

pages: 141 - 152
The Dichotomy of Decision Sciences in Information Assurance, Privacy, and Security
Applications in Law and Joint Ventures
Simon Reay Atkinson, Centre for International Security Studies, FASS, University of Sydney.,
Australia
Gregory Tolhurst, Faculty of Law, University of Sydney., Australia
Liaquat Hossain, Information Management Division of Information and Technology Studies,
The University of Hong Kong, Hong Kong

109

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Terminal Virtualization Framework for Mobile Services

Tao Zheng, Song Dong
Orange Labs International Center

Beijing, China
e-mail: {tao.zheng | song.dong}@orange.com

Abstract - Terminal virtualization focuses on applying
Information Technology (IT) virtualization technology to the
terminals, and realizes the full or parts of terminal functions
extension or migration to other devices on the network, such as
resource reducing, information sharing, data synchronization, etc.
It is becoming increasingly clear that more and more features of
terminal virtualization and mobile computing on the edge will be
used in practice. However, some issues are raised with terminal
virtualization, such as security, privacy, Quality of Service (QoS),
efficient transmission, computation/functions offloading
management, etc. In this paper, after analyzing above issues, a
mobile terminal virtualization framework is proposed to solve
them. Then the implementation methods of the proposed
framework modules are presented in detail, which are based on
popular the terminal Operating System (OS) and some current
technologies. This framework provides a better transparent
experience to users from free handover on network to unified
sensors usage.

Keywords - terminal virtualization; mobile cloud computing;
computation offloading; QoS; Content Centric Networking (CCN);
fountain code; Quality of Experience (QoE).

I. INTRODUCTION

This paper extends our earlier work [1] presented at the
Eleventh International Conference on Networking and Services
(ICNS 2015).

With the explosive growth of mobile terminals in recent
years, user preferences have shifted from traditional cell
phones and laptops to smartphones and tablets. In recent years,
there are abundant applications in various categories, such as
entertainment, health, games, business, social networking,
travel and news, running at mobile terminals. The burden of
computation on the terminals has been raised rapidly and more
functions and sensors are required to be applied to them.
Mobile cloud computing and terminal virtualization are
proposed to handle these issues, which are able to provide tools
to the user when and where it is needed irrespective of user
movement, hence supporting location independence. Indeed,
“mobility” is one of the characteristics of a pervasive
computing environment where the user is able to continue ones
work seamlessly regardless of the movement.

Advances in the portability and capability of mobile
terminals, together with widespread Long Term Evolution
(LTE) networks and WiFi access, have brought rich mobile
application experiences to end users. Undoubtedly, mobile
broadband terminals, such as smart phones, tablets, wireless
dongles and some data-intensive apps have caused an
exponential increase in mobile Internet Protocol (IP) data usage,

and they use up the mobile bandwidth. The demand for
ubiquitous access to a wealth of media content and services
will continue to increase, as indicated in a report by Cisco [2]:
the Compound Average Growth Rate (CAGR) of global IP
traffic from mobile terminals is 57% from 2014 to 2019, which
is triple CAGR from fixed Internet.

In addition, the resource-constrained mobile terminals,
especially with limited battery life, have been a barrier to the
improvements of mobile applications and services. While new
smart phones with bigger screens, faster Central Processing
Units (CPUs), and larger storage are launched continually, and
the bandwidth of wireless networks has increased hundreds of
times from the second-generation wireless telephone
technology to the fourth-generation wireless telephone
technology in just a few years, the development of batteries has
lagged far behind the development of other components in
mobile terminals. In fact, faster CPUs, larger displays and
multimedia applications consume more battery energy. The
limitations of computation resources and sensors are other
stumbling blocks for services development. Mobile cloud
computing and terminal virtualization can help to resolve this
issue.

Mobile cloud computing and terminal virtualization have
been the leading technology trends in recent years. The
increasing usage of mobile computing is evident in the study
by Juniper Research, which states that the consumer and
enterprise market for cloud-based mobile applications is
expected to rise to $9.5 billion by 2014 [3]. Mobile cloud
computing/terminal virtualization is introduced to resolve the
conflicts mentioned above, where the cloud serves as a
powerful complement to resource-constrained mobile terminals.
Rather than executing all computational and data operations
locally, mobile cloud computing/terminal virtualization takes
advantage of the abundant resources in cloud platforms to
gather, store, and process data for mobile terminals. Many
popular mobile applications have actually employed cloud
computing to provide enhanced services. More innovative
cloud-based mobile applications like healthcare monitoring and
multiplayer online mobile games are also under development.

The objective of the paper is to introduce the concept of
terminal virtualization and study the related issues and research
status. On this basis, a proposal terminal virtualization
framework is finally presented and discussed on the
implementation. This framework provides a better transparent
experience to users through utilizing various techniques and
based on the current terminal OS.

110

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper is organized as follows. In Section II, we
introduce the concept and current status of terminal
virtualization. In Section III, capabilities and functions
extension are analyzed. In Section IV, a terminal virtualization
framework for mobile networks is presented. Implementation
method of the proposed framework in detail is presented in
Section V. Finally, Section VI summarizes the conclusions.

II. TERMINAL VIRTUALIZATION

Terminal virtualization helps to relieve the local resource-
constrained problem through offloading some tasks to the
cloud and utilizing capabilities and functions in the cloud. First,
the scope of terminal virtualization needs to be clarified. Then,
drivers and benefits are proposed. Finally, some challenges are
raised by terminal virtualization.

A. The scope of terminal virtualization

From the virtualization point of view, mobile cloud
computing can support a part of terminal virtualization scenario.
There are two scenarios as following.

 Full Virtualization Scenario

The requirement for full terminal virtualization mainly
comes from some enterprises. In these enterprises, employees
are buying their own terminals and want to connect to the
enterprise network so that they can do their work with greater
flexibility. However, the employees also do not want to give up
user experience and freedom at the cost of complex IT security
policies. In order to achieve this goal, terminal virtualization is
becoming a very attractive choice because it offers flexibility
and addresses the concerns over privacy of personal data while
also delivering the security requirements of the enterprise. On
the other side of the ecosystem, the terminal makers and
carriers will benefit from terminal virtualization because they
are able to more easily replicate the features found in various
terminals and also deliver more features at a lower cost.

Full terminal virtualization is not an ordinary schema for
public mobile customers. In general way, the terminal is sold
with a pre-determined OS and customers can use services
based on this OS.

 Partial Virtualization Scenario

Broadly speaking, mobile cloud computing can be as one
kind of partial terminal virtualization, a part of terminal
computation powers and functions can be virtualized into the
remote networked cloud. Terminals can get local experience
through running remote apps or some information located in
the remote cloud.

This scenario is more practiced and popular at present.
Some applications employ this method to add enhanced
functions or improve user experience. Even cloud phone
appears and is deeply merged with networking services for user
convenience. In this paper, we mainly focus on the partial
virtualization scenario.

B. Drivers and benefits of terminal virtualization

Terminal virtualization facilitated the fusion of mobile
terminal and cloud service that provides a platform wherein
some computing, storing and data abstraction tasks are
performed by the cloud and mobile terminal simply seeks an
access to them. In the following, we show the drivers and
benefits of terminal virtualization.

 Limitless Storage Space

Now, instead of memory cards for more space, the cloud
storage can provide limitless space for applications, even with
the help of terminal virtualization framework/middleware they
do not need to care about the location of the storage.

 Improved Processing Facility

The price of a mobile terminal is largely dependent on its
CPU’s speed and performance. With the help of terminal
virtualization, all the extensive and complex processing is done
at the cloud level, thereby enhancing the mobile terminal’s
performance without upgrading the terminal’s CPU.

 Save Radio Access Network (RAN)/Access Bandwidth
& Resources

With the tremendous increase in mobile bandwidth
consumers and user’s throughput, RAN/access resources have
become more valuable than before. When some functions and
computation tasks are offloaded into cloud, the result instead of
the original metrical is sent to the terminal, so the RAN/access
bandwidth can be saved for other use.

 Enhanced Battery Life

Terminal virtualization lends a very strong helping hand to
battery life of terminals. With most of the processing handled
by the cloud, the battery life is enhanced, thereby making the
most optimum use of the remaining recharge cycles.

 Improved User Experience

The above mentioned features will improve the end-user
experience substantially, especially the experience from low-
end terminals.

 Economic Factors

For the consumers, terminal virtualization can bring some
new functions and improved capabilities to the old terminal
without spending one penny. For operators, the benefits come
from saved network resources and flexible service deployment
by terminal virtualization.

 Reserving for Upcoming Technologies

Terminal virtualization is adapted to the tremendous pace
of development technologies and works most efficiently with
the upgrades. Through separating the implementation from the
function body, upcoming technologies can be easily introduced
to the terminals.

C. Challenges

In this section, we argue that some issues in terminal
virtualization have not been sufficiently solved satisfactorily.

111

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Energy-efficient Transmission

Wireless networks are stochastic in nature: not only the
availability and network capacity of access points vary from
place to place, but the downlink and uplink bandwidth also
fluctuates due to weather, building/geographical shields,
terminal mobility, and so on. Measurement studies [4] show
that the energy consumption for transmitting a fixed amount of
data is inversely proportional to the available bandwidth.

Computation/Data offloading can save energy only if heavy
computation is needed and a relatively small amount of data
has to be transferred. Energy efficiency can be substantially
improved if the cloud stores the data required for computation,
reducing data transmission overhead. Bandwidth allocation and
admission control mechanisms in cellular base stations and
access points may guarantee network connectivity to a certain
extent, but cannot eliminate the stochastic nature of wireless
links. An alternative approach is to dynamically adjust
application partitioning between the cloud and mobile
terminals according to network conditions, although it is
challenging to quickly and accurately estimate the network
connectivity with low overhead.

Energy-efficient transmission is also critical when
exploiting the cloud to extend the capabilities of mobile
terminals. Frequent transmissions in bad connectivity will
overly consume energy, making the extended capabilities
unattractive, as battery life is always the top concern of mobile
users. A solution called eTime [5] is to adaptively seize the
timing opportunity when network connectivity is good to pre-
fetch frequently used data while deferring delay-tolerant data.

 Security

There are several aspects of terminal virtualization security,
including antivirus, authentication, data protection, and digital
rights management. Security vulnerability can cause serious
problems, including property damage, cloud vendor economic
loss, and user distrust. Since mobile terminals are resource-
constrained, locally executed antivirus software can hardly
protect them from threats efficiently. A current solution is to
offload the threat detection functionality to the cloud.
Nevertheless, since a pure cloud antivirus relies on cloud
resources, it is difficult to deal with malware that can block the
terminal’s Internet connection.

Besides, authentication is critical for access to sensitive
information, such as bank accounts and confidential files. With
constrained text input on mobile terminals, users tend to use
simple passwords, making mobile applications more vulnerable
to authentication threats. To solve this issue, Chow et al. [6]
build up an authorization platform where users are identified by
their habits (e.g., calling patterns, location information, and
web access). The platform routinely records user behavior
information. When a server receives an authorization request, it
redirects the request to an authorization engine, which uses the
aggregated behavior information and an authorization policy to
decide whether to accept the request or not.

 Privacy

Since mobile terminals are usually personal items, privacy
must be considered when leveraging the cloud to store and
process their confidential data remotely.

A secure data processing framework [7] can be used into
terminal virtualization, where critical data are protected by the
unique encryption key generated from the user’s trusted
authority and stored in an area named Extended Semi-Shadow
Image isolated from the public domain. Even when storage is
breached in the cloud, unauthorized parties including the cloud
vendor cannot obtain the private data.

Another particular privacy issue for mobile users is the
leakage of personal location information in location-based
services. To address the issue, a method called “location
cloaking” [8] makes user location data slightly imprecise
before submitting them to the cloud . But the imprecise data
sometimes cannot provide relevant or satisfactory results to
users in certain applications. Therefore, location cloaking
should be adaptively tuned to balance the trade-off between
privacy and result accuracy.

 Real-time Requirements and Service QoS

When terminal virtualization and mobile computing are
applied, QoS will become more important. How to guarantee
the related data or stream to be transmitted in time determinates
the services’ failure or success.

While different applications offer different functionality to
end users, the primary service Key Quality Indicators (KQIs)
across the application’s customer facing service boundary for
end users of applications generally include service availability,
service latency, service reliability, service accessibility, service
throughput, and application specific service quality
measurements.

III. COMPUTATION OFFLOADING & FUNCTIONS EXTENSION

Terminal virtualization enables enhanced mobile
experiences that were previously impossible on resource-
constrained and function-constrained mobile terminals. Many
commercial mobile applications use the cloud to bring about
rich features. They usually employ a client-server framework
that consists of two parts, which run on the mobile terminal and
the cloud, respectively. Essentially, cloud computing helps
extend the capabilities and functions of mobile terminals in
some aspects.

A. Capabilities & Functions extension

Through terminal virtualization, the capabilities and
functions can be reallocated between terminal and cloud, as
shown in the following examples

 Computation-intensive Task

At present, many applications nowadays support
speech/picture/video recognition. The models for recognition
and high-quality synthesis must be trained with millions of
samples in thousands of examples. This computation-intensive
task is infeasible on a mobile terminal and should be offloaded
to the cloud.

112

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The procedure of computation offloading

 Remote Sensors/Inductors

Because of the limitation from terminal itself (low-end
model lacking some sensors or inductors) or other conditions
(e.g., distance exceeding the maximum length of sensors),
some services cannot work well. However, these services can
work through getting and storing related information from
mobile cloud platform. From the terminal point of view, its
functions are extended.

 Application Portability

It allows for the rapid transfer of applications (which may
occur on the fly), providing the freedom to optimize, without
the constraints of the location and required resources of the
virtual appliances. The precise but extensible definition of the
services provided by the application platform is the key to
ensuring application portability.

B. Computation offloading Decision

To overcome resource constraints on mobile terminals, a
general idea is to offload parts of resource-intensive tasks to the
cloud (centralized server or other peers). Since execution in the
cloud is considerably faster than that on mobile terminals, it is
worth shipping code and data to the cloud and back to prolong
the battery life and speed up the application. This offloading
procedure is illustrated in Fig. 1. The application will be
separated to several computation units/tasks according to
functions or calling relations. Then some of the computation
units/tasks will be offloaded to could devices to be executed
remotely. At last, the executing results will be returned to the
terminal as if the total application is executed locally.

There are several technologies to realize the runtime
environment in the cloud, and the major differences between
offloading techniques lie in the offloading unit and partitioning
strategies.

 Client–Server Communication Mechanism

In the Client–Server Communication, process
communication is done across the mobile terminal and cloud

server via protocols, such as Remote Procedure Calls (RPC),
Remote Method Invocation (RMI) and Sockets. Both RPC and
RMI have well supported APIs and are considered stable by
developers. However, offloading through these two methods
means that services need to have been pre-installed in the
participating terminals.

Spectra [9] and Chroma [10] are the examples of systems
that use pre-installed services reachable via RPC to offload
computation. Hyrax [11] has been presented for Android
smartphone applications, which are distributed both in terms of
data and computation based on Hadoop ported to the Android
platform. Another framework based on Hadoop is presented
in [12], for a virtual mobile cloud focusing on common goals
where mobile terminal are considered as resource providers.
Cuckoo [13] presents a system to offload mobile terminal
applications onto a cloud using a Java stub/proxy model. The
Mobile Message Passing Interface (MMPI) framework [14] is a
mobile version of the standard Message Passing Interface (MPI)
over Bluetooth where mobile terminals function as fellow
resource providers.

 Mobile Agent

Scavenger [15] is another framework that employs cyber-
foraging using WiFi for connectivity, and uses a mobile code
approach to partition and distribute jobs. Using its framework,
it is possible for a mobile terminal to offload to one or more
agents and its tests show that running the application on
multiples in parallel is more efficient in terms of performance.
However, the fault tolerance mechanism is not discussed and
since its method is strictly about offloading on agents and not
sharing, it is not really dynamic. Also, its agents are all
desktops and it is unclear if Scavenger is too heavy to run on
mobile phones.

 Virtualization/Virtual Machine (VM) Migration

The execution cannot be stopped when transferring the
memory image of a VM from a source terminal to the
destination server [16]. In such a live migration, the memory
pages of the VM are pre-copied without interrupting the OS or
any of its applications, thereby providing a seamless migration.
However, VM migration is somewhat time-consuming and the
workload could prove to be heavy for mobile terminals.

VM migration is used by a majority of frameworks,
including Cloudlets [17], Maui [18], CloneCloud [19], and
MobiCloud [20]. Virtualization greatly reduces the burden on
the programmer, since very little or no rewriting of applications
is required. However, full virtualization with automatic
partitioning is unlikely to produce the same fine grained
optimizations as that of hand coded applications, although
rewriting each and every application for code offload is also
not practical. Maui actually does not rely on pure VM
migration as done in CloneCloud and Cloudlets, but uses a
combination of VM migration and programmatic partitioning.
However, in cases where the mobile terminal user is within
range of an agent terminal for a few minutes, using VM
migration may prove to be too heavyweight, as is pointed out
by Kristensen [15], which uses mobile agents in light of its
suitability in a dynamic mobile environment.

113

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Hierarchical structure of the framework

C. Applications

The following lists the current applications using terminal
virtualization concept, from functions extension to complex
computing tasks.

 Mobile Cloud Phone

Mobile cloud phone differs from other smart phones in that
it does not need to download and store apps and content on the
phone; it instead accesses personal information and runs
programs stored on remote network servers, via the cloud.

YunOS 3.0 [21], developed by Alibaba, debuts officially
with cloud-based service for movie, taxi and other reservations
on October 20th, 2014. It comes with the brand new service
Cloud Card, which runs entirely in the cloud and offers the user
the option to select movie tickets, taxi services and more.

 Cloud Storage and Video Adaption

Through terminal virtualization, some part of data that is
stored in the cloud instead of stored on the terminal can be
treated as local data. And video stored in cloud platform can be
adapted to appropriate format and code streaming fitting for the
terminal when the terminal requests this video.

 Image and Natural Language Processing

For this kind of applications, the complex computation jobs,
which are difficult for local operating OS, should be offloaded
to the cloud platform and the mobile terminal just holds some
interface functions. Image and voice recognition, search,
adaption, natural language translation, and Artificial
Intelligence (AI) machine conversation, etc., which belong to
this kind of applications, can be implemented on some low-end
phones with the help of computation offloading.

 Augmented Reality (AR)

Algorithms in augmented reality are mostly resource and
computation-intensive, posing challenges to resource-poor
mobile devices. These applications can integrate the power of
the cloud to handle complex processing of augmented reality
tasks. Specifically, data streams of the sensors on a mobile
device can be directed to the cloud for processing, and the
processed data streams are then redirected back to the device. It

should be noted that AR applications demand low latency to
provide a life-like experience.

IV. PROPOSED FRAMEWORK FOR MOBILE SERVICES

This section proposes a mobile terminal virtualization
framework based on mobile OS. The framework locates in the
middleware layer between OS kernel and applications, as
shown in Fig. 2, which proxies the calls between the apps and
the OS and provides the virtualization function to apps using
networks, remote cloud platforms and services through OS,
hardware and network.

A. The framework overview

The framework illustrated in Fig. 3 is composed of four
processing modules: application virtualization module,
computation virtualization module, storage virtualization
module and network virtualization module, and a management
module.

In the framework, processing modules are in charge of
receiving and responding the callings from applications to OS.
Management module is used to manage the framework,
including security management, configuration management,
network and cloud service monitoring, etc.

B. Component Modules

As shown in Fig. 3, the processing modules are able to
choose the best method to process the calling according to the
current status of mobile network bandwidth, local resources,
terminals hardware limitation and remote cloud resources.
Meanwhile, the framework provides local calling responses to
the applications and shields the actual calling responses.

 Application Virtualization Module

This module is in charge of processing the functions
extension of applications. When the application accesses the
terminal’s hardware, for example one kind of sensor, this
module will check if it is available. If not, this module is
responsible for finding a same remote available sensor in the
cloud to satisfy the application’s demand and providing the
response with the result from the remote sensor to the
application.

Figure 3. The functions of processing modules

114

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Computation Virtualization Module

This module takes charge of monitoring the terminal’s
computation resource and analyzing the computation request
from applications. When the computation resource is
constrained (for example, the CPU usage is more than 85%) or
some applications with sophisticated computing power are run
(for example, virtual reality service, language processing, etc.,
it can be configured in advance), this module will offload some
computation tasks to the remote cloud server and provide the
processing result to the applications.

 Storage Virtualization Module

This module is in charge of monitoring the terminal’s
storage resource and providing the remote cloud storage to
applications. Through this module, the local applications can
use cloud storage provided by different Service Providers (SPs),
such as Baidu, Tencent, Huawei, etc., as using a local storage.
At the same time, this module monitors the speed and status of
the remote cloud storages and provides the best one to
applications.

 Network Virtualization Module

This module is in charge of monitoring the terminal’s
network status and providing the best one or binding different
network accesses to increase the data throughput according to
the applications’ demand.

 Management Module

The management module is responsible for managing the
framework. The security function including network security
and resources security is an important function in this module.
Other management functions include all kinds of configuration
management, for example, some resources and offloading
thresholds, and remote resource monitoring, for example, all
kinds of cloud services, network status.

V. FRAMEWORK IMPLEMENTATION

We are implementing an early-phase prototype based on
Android OS according to the proposed framework in our lab.
The following part discusses the implementation of the
modules, where network virtualization module and the storage
virtualization module are relatively easier to be implemented
than other three modules in the framework.

Figure 4. The overview of network virtualization function

A. Network Virtualization Implementation

Network virtualization means that services and applications
just make the networking call and do not have to be concerned
with the details of network environment, e.g., the network type
(WiFi/3G/4G), the network failure and recovery, how to use
multiple network paths (priority/traffic offloading) .

The network virtualization module employed a method [22]
to implement the network access independence, for example,
using multiple access paths simultaneously, switching between
access paths according to the current network environment, and
recovering the access path automatically. A local proxy in
terminal and a remote proxy in network cooperate to
implement the functions of network virtualization module. And
the applications and services are able to automatically adapt the
change of network and are not affected by it.

The system overview is illustrated in Fig. 4. It is composed
of terminal local proxy and remote proxy. A local proxy built
in the terminal is responsible for relaying the conversation
between applications and network. The remote proxy
exchanges Data packets with the local proxy through the
Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP) based tunnel established over multiple
heterogeneous links in the content centric way.

The remote proxy fetches the content from the outer server
in the Internet to satisfy the terminal’s request. The main
reason for using two proxies is that the tunnel between the two
proxies can help Content Centric data stream penetrate the
network.

The working environment can be IPv4 or IPv6. In IPv6
network, the remote proxy can be assigned with different IPv6
addresses including unicast address, multicast address and
anycast address. Given the unicast address, the terminal
establishes the tunnel with the single specific remote proxy.
The multicast addressing refers to the configuration where the
terminal can set up the tunnels concurrently connecting the
collection of remote proxies. The anycast addressing makes the
terminal build the tunnel to the nearest remote proxy among
several candidates.

Since the service session in the scheme is identified with
the Uniform Resource Identifier (URI) that is independent of
the IP addresses associated with the different connections to the
network, the terminal can keep the ongoing session alive as
long as the content identifier is invariant. The dynamics due to
the connection switching in the mobile scenario is only visible
in the tunnel running over the TCP or UDP sessions managed
by the local proxy.

CCN is an alternative approach to the architecture of
networks, which was proposed by Xerox PARC within the
Content Centric Networking (CCNx) [23] project. From the
network perspective, in CCN, network entities in ordinary
network are replayed by data entities.

Unlike state-of-the-art multi-path approaches such as Multi-
Path Transmission Control Protocol (MP-TCP), CCN can help
us to hide some network control implementing details with the
help of the ‘connection-less’ nature of CCN. In the network
virtualization solution, we utilize the CCN concept rather than

115

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CCN protocol, thus it is not necessary to consider the change of
network access paths through fountain codes to encapsulate
data packets.

The service session coupling with the remote proxy avoids
the problem of Domain Name System (DNS) resolution
potentially confronted with the multi-homed terminal. Since the
remote proxy acts as the agent of the terminal for content
acquisition, the terminal has no need for DNS resolution except
to forward the request message to the remote proxy. The update
on the access router is additionally not mandatory anymore
because the conversion between IP address and URI is
executed in the sense of application layer.

In this solution, fountain codes are used to transport data
packets between two proxies. The reasons of choosing fountain
codes as the encapsulation technology are shown as follows.
Fountain codes are rateless in the sense that the number of
encoded packets that can be generated from the source message
is potentially limitless. Regardless of the statistics of the
erasure events on the channel, the source data can be decoded
from any set of K’ encoded packets, for K’ slightly larger than
K. Fountain codes can also have very small encoding and
decoding complexities and automatically adapt the change of
multiple access paths to avoid the implementation of path
control details [24].

In this module, the source hosts simply transfer as many
packets with the different coding schemes as possible to the
destination hosts without concerns over the reordering induced
in various paths. It increases the data throughput and avoids the
complicated reconciliation between the multiple paths.

The local proxy and remote proxy, fountain encoding and
decoding had been implemented in our lab. The test-bed is
illustrated in Fig. 5. Because there is no mobile data access in
the lab, we chose two WiFi interfaces and Access Points (AP)
to simulate two access paths. On this test-bed, we tested
various combinations of two access paths and handover
between them. The data delivery between the laptop and
Internet cannot be interrupted during the transition among these
scenarios. The test result validated the feasibility and validity
of network virtualization solution.

Figure 5. The test-bed for network virtualization

Figure 6. The flowchart of storage virtualization function

B. Storage Virtualization Implementation

The storage virtualization module adds online storage
services/cloud platforms into the system storage as a directory,
which can be accessed by the applications like a local one.
When the directory is accessed, the storage virtualization
module will automatically exchange the data with the online
storages/cloud platform. Another issue we need to be
considered is security, including the storage location security
and the transport security. The detail implementation of
security is discussed in part E in Section V.

The flowchart of storage virtualization function is shown in
Fig. 6.

When the system storage APIs are called, the usage of local
storage will determine whether to call the remote storage APIs.
If the remote storage is called, the confidentiality data will be
stored in the remote safe platform through secure transmission
mode (refer to part E) and the data without security
requirement will be transported to some online storages
through Internet, such as Baidu, Huawei online storage services.

C. Application Virtualization Implementation

To implement application virtualization, some operating
system calls accessing local hardware need to be intercepted
and rewritten. The functions to access online hardware resource
will be added into the application virtualization module.

For example, some kinds of sensors are supported by
Android OS, which are defined in APIs. The sensors include
accelerometer sensor, gravity sensor, gyroscope sensor, light
sensor, linear acceleration sensor, magnetic field sensor,
proximity sensor, rotation vector sensor, temperature sensor
and pressure sensor. The last two sensors are relatively rare in
most of the terminals. So, the remote sensors can be used to get
some information for the applications as local calls through the
application module.

116

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Changed sensor framework in application virtualization module

Fig. 7 shows the new sensor framework for terminal
virtualization. In this framework, the original Sensor Hardware
Abstraction Layer (HAL) is rewritten. Some new functions are
added to the new HAL, including determining if remote sensor
services should be accessed, sending the request to remote
sensors and receiving the response and updating information.
The new block, remote sensor manager, is the interface
between the local system and remote sensor services. It is
responsible for exchanging the sensor information, including a
remote sensor list for the local system, and the terminal’s
Global Position System (GPS) information for remote sensor
services to acquire the terminal’s position and remote sensor’s
information corresponding to the terminal's position.

D. Computation Virtualization Implementation

In the computation virtualization module, we plan to take
different approaches according to the type of tasks. For
example, for the tasks requiring sophisticated computing power
defined in advance, RPC/RMI method will be used; for the
independent tasks undefined in advance, virtual machine
migration will be used.

Offloading the computation tasks to remote execution can
be a solution to go over the limitations of mobile terminal’s
computing power and can be seen as a way for extending
terminal battery. Remote execution leverages the high
computation capacity of the server to extend the poor one of
the terminal and battery through energy savings. Similarly,
thanks to the increased memory of the remote server, it is

possible to provide a large set of applications to the mobile user,
which are difficult to be run on the terminals.

However, computation offloading is energy efficient only
under various conditions. It is vital to look at what happened in
context. So, the computation offloading algorithm is very
important in the computation virtualization module.

Maui [18] and CloneCloud [19] can be considered as
solutions. In Maui, Microsoft’s researchers presented a fine-
grained solution to reduce programmers work by partitioning
the application code automatically, deciding at runtime which
methods should be offloaded to be remotely executed. Maui
formulates the problem as an Integer Linear Programming
(ILP). A comparison of the energy consumption of three
applications (face recognition application, video game and
chess game) pointed out that energy savings from 27% up to
80% can be achieved. However, this approach works only on
Microsoft Windows OS and requires only one server serving
each application, which is not scalable to handle many
applications.

In CloneCloud, a more coarse-grained offloading approach
is proposed that offloading is performed by a modified Dalvik
VM automatically. Meanwhile, this approach requires pre-
processing on the client side, which can also lead to excessive
network traffic from the cloud network to the terminal.

These two approaches do not provide QoE guarantees for
mobile users in case of computation offloading. Moreover, the
impact of mobile environment in the matter of quality of radio
interface according to the position of the end user in the cell
has not been considered in these solutions.

A solution named Mobile Application’s Offloading (MAO)
algorithm was proposed [25], which considers a combination of
multiple constraints including CPU, State of Charge (SoC) of
the battery, and bandwidth capacity. MAO also evaluates the
performance of CPU intensive and I/O interactive applications.
The objective is to focus on job offloading, which is a
convenient way to achieve energy consumption optimization if
certain constraints are satisfied.

The specificities of MAO algorithm with respect to other
two offloading algorithms are points out by Table I. “Network
Conditions” refers to the fluctuated quality of the radio
interface and “User Mobility” refers to the position of the end
user within the cell. Compared with Maui and CloneCloud,
MAO considers all five aspects, such as QoE, user mobility
and SoC of battery. So, it is more applicable to mobile terminal
with limited battery.

TABLE I. COMPARISON OF COMPUTATION OFFLOADING ALGORITHMS

Aspects QoE
satisfaction

Network
Conditions

User
Mobility

CPU SoC

Maui No Yes No Yes No

CloneCloud No Yes No Yes No

MAO Yes Yes Yes Yes Yes

117

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. The updated MAO algorithm flowchart

Based on the MAO algorithm, we added one aspect, the
CPU load, and embodied QoE as Round-Trip Time (RTT) to
the server and access network bandwidth. The updated
flowchart is shown in Fig. 8.

E. Security Function Implementation in Management
Module

Because the terminal virtualization needs to transport some
vital information, such as VM, part of application, users’
identification related, security issues are very important to
avoid exposing it to the network directly.

To implement the security function in the management
module, the data communication should to be encrypted to
ensure integrality and confidentiality.

Therefore, considering these characteristics in this security
case, a solution based on public-key cryptography is proposed
[26], also known as asymmetric cryptography.

In this solution, the cloud platform is employed as the
server-side to implement the key management and server-side
encryption/decryption function.

When the terminal communicates with the server with
security transport, the specific steps are described below. Fig. 9
and Fig. 10 show the steps of the security function.

Uplink (from the terminal to the server)

Step 1: the server in the cloud platform generates public
key and private key and sends the public key to the Operation
Administration and Maintenance (OAM).

Step 2: when the terminal needs to communicate safely
with the server, the terminal gets the public key of the server
from OAM. Then the terminal first generates a MD5 [27] of
the sending information for the server to validate the integrality
of it. Next, the terminal encrypts the sending information and
MD5 digest using the public key of the server.

Step 3: the terminal sends the encrypted packet to the
server through the network.

Step 4: the server decrypts the packet received using its
private key;

Step 5: the server generates its own MD5 of the decrypted
information and compares it with the MD5 received from the
terminal to determine the integrality of the packet received. If
the two MD5s are equal, the information received is reliable.
Otherwise, the information has been tampered and should be
discarded and retransmitted.

Figure 9. The uplink steps of the security function

118

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. The downlink steps of the security function

Downlink (from the server to the terminal)

Step 1: the terminal generates public key and private key
after it boots and sends the public key to the OAM.

Step 2: when the server needs to communicate safely with
the terminal, the server gets the public key of the terminal from
OAM. Then the server first generates a MD5 of the sending
information for the terminal to validate the integrality of it.
Next, the server encrypts the sending information and MD5
digest using the public key of the terminal.

Step 3: the server sends the encrypted packet to the
terminal through the network.

Step 4: the terminal decrypts the packet received using its
private key;

Step 5: the terminal generates its own MD5 of the
decrypted information and compares it with the MD5 received
from the server to determine the integrality of the packet
received. If the two MD5s are equal, the information received
is reliable. Otherwise, the information has been tampered and
should be discarded and retransmitted.

VI. CONCLUSION AND FUTURE WORK

Terminal virtualization has overlapped with some areas,
such as mobile peer-to-peer computing, application partitioning,
and context-aware computing, but it still has its own unique
challenges. There is still a long way to go before terminal
virtualization is widely used.

In this paper, we try to build up a unified framework to
cover all aspects of terminal virtualization using current
technologies and platforms. We analyze some aspects of
current terminal virtualization, highlight the motivation for it,
and present its functions, applications and some challenges.
And on this basis, we proposed a terminal virtualization
framework for mobile services. In this framework, four
processing modules and one management module are
employed to handle the resource requests from apps and shield
the details for accessing cloud services. Then we gave some
implementation details of these modules.

In the future work, we shall consider analyzing the
performance of the prototype in this framework, and give some
improved recommendations on the performance.

REFERENCES

[1] T. Zheng and S. Dong, “Terminal Virtualization for Mobile Services,”
ICNS 2015, pp. 31-37.

[2] “Cisco Visual Networking Index: Forecast and Methodology, 2014–
2019,” http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-network/white_paper_c11-
481360.html, May 2015.

[3] “Mobile Cloud Applications & Services,” Juniper Research, 2010.

[4] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy Consumption in Mobile Phones: a Measurement Study and
Implications for Network Applications,” Proc. ACM IMC, 2009, pp.
280-293.

[5] P. Shu, F Liu, H. Jin, M. Chen, F. Wen, and Y. Qu, “eTime: Energy-
Efficient Transmission between Cloud and Mobile Devices,” Proc. IEEE
INFOCOM, 2013, pp. 195-199.

[6] R. Chow et al., “Authentication in the Clouds: a Framework and Its
Application to Mobile Users,” Proc. ACM Cloud Computing Security
Wksp. 2010, pp. 1-6.

[7] D. Huang, Z.Zhou, L. Xu, T. Xing, and Y. Zhong, “Secure Data
Processing Framework for Mobile Cloud Computing,” Proc. IEEE
INFOCOM, 2011, pp. 614-618.

[8] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar, “Preserving User
Location Privacy in Mobile Data Management Infrastructures,” Proc.
Wksp. Privacy Enhancing Technologies, 2006, pp. 393-412.

[9] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance,
energy, and quality in pervasive computing,” Proc. IEEE ICDCS 2002,
pp. 217-226.

[10] R. Balan, M. Satayanarayanan, S. Park, and T. Okoshi, “Tactics-based
remote execution for mobile computing,” Proc. ACM Mobisys, 2003, pp.
273-286.

[11] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using
MapReduce,” Masters Thesis, Carnegie Mellon University, 2009.

[12] G. Huerta-Canepa, and D. Lee, “A virtual cloud computing provider for
mobile devices,” Proc. ACM MCS 2010, article No. 6.

[13] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation
offloading framework for smartphones,” Proc. ACM Mobisys, 2010, pp.
59-79.

[14] D. C. Doolan, S. Tabirca, and L.T. Yang, “Mmpi a message passing
interface for the mobile environment,” Proc. ACM Mobisys, 2008, pp.
317-321.

[15] M. Kristensen, “Scavenger: transparent development of efficient cyber
foraging applications,” Proc. IEEE PerCom, 2010, pp. 217-226.

[16] C. Clark, et al., “Live migration of virtual machines,” Proc. of the 2nd
conference on Symposium on Networked Systems Design &
Implementation, USENIX Association, 2005, vol 2, pp. 273-286.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM –based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, vol. 8, no. 4, 2009.

119

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] E. Cuervo et al., “Maui: Making Smartphones Last Longer with Code
Offload,” Proc. ACM MobiSys, 2010, pp. 49-62.

[19] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic Execution Between Mobile Device and Cloud,” Proc. ACM
EuroSys, 2011, pp. 301-314.

[20] D. Huang, X. Zhang, M. Kang, and J. Luo, “MobiCloud: Building
Secure Cloud Framework for Mobile Computing and Communication,”
Proc. IEEE SOSE, 2010, pp. 27-34.

[21] http://www.yunos.com, YunOS, November 2015.

[22] T. Zheng and D. Gu, “Traffic Offloading Improvements in Mobile
Networks,” ICNS 2014, pp. 116-121.

[23] http://www.ccnx.org, CCNx, November 2015.

[24] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain
approach to reliable distribution of bulk data,” Proc. ACM SIGCOMM
'98, pp. 56-67.

[25] A. Ellouze, M. Gagnaire, and A. Haddad, “A Mobile Application
Offloading Algorithm for Mobile Cloud Computing,” Proc. IEEE
MobileCloud 2015, pp. 34-40.

[26] http://www.merkle.com/1974/, R. C. Merkle, November 2015.

[27] http://en.wikipedia.org/wiki/MD5, November 2015.

120

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Chronomorphic Programs: Runtime Diversity Prevents Exploits and Reconnaissance

Scott E. Friedman, David J. Musliner, and Peter K. Keller
Smart Information Flow Technologies (SIFT)

Minneapolis, USA
email: {sfriedman,dmusliner,pkeller}@sift.net

Abstract—In Return Oriented Programming (ROP) attacks, a
cyber attacker crafts an exploit from instruction sequences
already contained in a running binary. ROP attacks are now used
widely, bypassing many cyber defense mechanisms. While pre-
vious research has investigated software diversity and dynamic
binary instrumentation for defending against ROP, many of these
approaches incur large performance costs or are susceptible
to Blind ROP attacks. We present a new approach that auto-
matically rewrites potentially-vulnerable software binaries into
chronomorphic binaries that change their in-memory instructions
and layout repeatedly, at runtime. We describe our proof of
concept implementation of this approach, discuss its security and
safety properties, provide statistical analyses of runtime diversity
and reduced ROP attack likelihood, and present empirical
results that demonstrate the low performance overhead of actual
chronomorphic binaries.

Keywords-cyber defense; software diversity; self-modifying code.

I. INTRODUCTION

In the old days, cyber attackers only needed to find a buffer
overflow or other vulnerability and use it to upload their
exploit instructions, then make the program execute those new
instructions. To counter this broad vulnerability, modern oper-
ating systems enforce “write XOR execute” (W⊕X) defenses:
that is, memory is marked as either writable or executable, but
not both. So exploit code that is uploaded to writable memory
cannot be executed. Not surprisingly, attackers then developed
a more sophisticated exploit method.

Computer instruction sets are densely packed into a small
number of bits, so accessing those bits in ways that a program-
mer did not originally intend can yield gadgets: groups of bits
that form valid instructions that can be strung together by an
attacker to execute arbitrary attack code from an otherwise
harmless program. Known as Return Oriented Programming
(ROP), these types of cyber exploits have been effective
and commonplace since the widespread deployment of W⊕X
defenses. This paper extends our previous research on runtime
program security to prevent ROP exploits [1].

Software with a single small buffer-overflow vulnerabil-
ity can be hijacked into performing arbitrary computations
using ROP-like code-reuse attacks [2], [3]. Hackers have
even developed ROP compilers that build the ROP exploits
automatically, finding gadgets in the binary of a vulnerable
target and stringing those gadgets together to implement the
attacker’s code [4], [5]. And to counteract various software
diversity defenses that try to move the gadgets around, so
that a previously-compiled ROP attack will fail, attackers have

developed Blind ROP (BROP) attacks that perform automated
reconnaissance to find the gadgets in a running program [6].

This paper presents a fully automated approach for trans-
forming binaries into chronomorphic binaries that diversify
themselves during runtime, throughout their execution, to offer
strong statistical defenses against code reuse exploits such as
ROP and BROP attacks. The idea is to modify the binary
so that all of the potentially-dangerous gadgets are repeatedly
changing or moving, so that even a BROP attack tool cannot
accumulate enough information about the program’s memory
layout to succeed.

In the following sections, we discuss related research in
this area (Section II), we outline the threat of ROP exploits
(Section III), we describe how our prototype Chronomorph
tool converts regular binaries into chronomorphic binaries
(Section IV), and we review its present limitations. We then
describe an analysis of the safety and security of the resulting
chronomorphic binaries, and performance results on early
examples (Section V). We conclude with several directions for
future work, to harden the tool and broaden its applicability
(Section VI).

II. RELATED WORK

Various defense methods have been developed to try to foil
code reuse exploits such as ROP and BROP. Some of defenses
instrument binaries to change their execution semantics [7] or
automatically filter program input to prevent exploits [8]; how-
ever, these approaches require process-level virtual machines
or active monitoring by other processes. Other approaches
separate and protect exploitable data (e.g., using shadow
stacks [9]), but such approaches incur comparatively high
overhead.

To reduce overhead and maintain compatibility with ex-
isting operating systems and software architectures, many
researchers have focused on lightweight, diversity-based tech-
niques to prevent code reuse exploits. For example, Address
Space Layout Randomization (ASLR) is common in modern
operating systems, and loads program modules into different
locations each time the software is started. However, ASLR
does not randomize the location of the instructions within
loaded modules, so programs are still vulnerable to ROP
attacks [10]. Some diversity techniques modify the binaries
themselves to make them less predictable by an attacker. For
example:

• Compile-time diversity (e.g., [11]) produces semantically
equivalent binaries with different structures.

121

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Attacker

0x0804A880
0x41414141
0x41414141
0x41414141

0x41414141

0x41414141

0x00FF0101

…

…
Stack Memory

Attacker’s Outdated
Memory Map

B-3

B-2

B-1

…

…

other
locals

stack
buffer

overflow-based
ROP exploit

overflowed
padding

ret addr
overwrite

add’l ROP
gadget(s)

1. Attacker overflows stack buffer; overwrites
return address with a sequence of gadgets
based on his knowledge/recon of the executable.

2. The chronomorphic program regularly rewrites its CFG upon
each transaction. The program returns from the vulnerable
function into unexpected instructions and subsequently crashes.

Actual Memory Map
at Attack Time

B-1

B-3
B-2

…

…

desired:
gadget
in block

B-2

Executable Memory

actual:
crash

Figure 1. A traditional ROP attack– or blind ROP attack– is thwarted by the runtime diversity of a chronomorphic program.

• Offline code randomization (e.g., [12]) transforms a bi-
nary on disk into a functionally equivalent variant with
different bytes loaded into memory.

• Load-time code randomization (e.g., [13], [14]) makes
the binary load blocks of instructions at randomized
addresses.

These diversity-based approaches incur comparatively lower
overhead than other ROP defenses and they offer statistical
guarantees against ROP attacks.

Unfortunately, these compile-time, offline, and load-time
diversity defenses are still susceptible to BROP attacks that
perform runtime reconnaissance to map the binary and find
gadgets [6]. So, even with compile-time, offline, or load-time
diversity, software that runs for a significant period of time
without being reloaded (e.g., all modern server architectures) is
vulnerable. Some ROP defenses modify the operating system
to augment diversity [15], [16], but by nature they do not work
on existing operating systems.

Another recent approach uses compile-time diversity in
tandem with hardware-based enforcement mechanisms that
prevents adversaries from reading any code [17]. This protects
against memory disclosure— and thereby prevents ROP and
BROP attacks— but like the above techniques, this requires
modifying the underlying operating system or hardware.

Some runtime techniques clone executable elements in
memory and toggle between them during runtime, so the
attacker is unaware of which memory layout is executing;
however, the diversity factor is not as high as the above
approaches. Another recent approach combines execution-time
switching with runtime diversification [18] by instrumenting
all call, return, and jump instructions. On these instrumented

instructions, execution may randomly switch between exe-
cutable copies while the other copy is diversified by fine-
grained ASLR. While this approach prevents varieties of ROP
attacks, it incurs significant runtime overhead due to a dynamic
binary instrumentation framework, and it doubles the size of
the binary due to executable memory cloning.

Other tools such as DynInst1 rewrite the binary to add
runtime libraries and instrumentation, but this instrumentation
consumes substantially higher disk space, memory footprint,
or performance overhead.

Unlike the above diversity-based protection techniques,
chronomorphic programs only utilize a single instance of the
program in memory at any time, making them more suitable
for embedded or memory-constrained systems. Chronomor-
phic programs will diversify themselves throughout program
execution to statistically prevent code reuse attacks, even if
the attacker knows the memory layout. The only runtime
costs are incurred when actually morphing the program; when
not morphing, the program executes (almost) its original
instructions. Furthermore, the costs of the morphing behavior
can be adjusted and controlled to achieve desired performance
levels in the face of changing threat levels, rates of adversary-
provided input, etc. Unlike other approaches, our prototyped
chronomorphic programs run on existing hardware and oper-
ating systems, making them suitable for legacy systems.

III. THREAT MODEL

Here we describe the setting for chronomorphic programs—
including assumptions about the target program, the target
system, and the attacker— and we illustrate this setting in

1http://www.dyninst.org/

122

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The chronomorphic defense against code reuse
attacks assumes the following of the targeted system and its
adversaries:

• The target program has a vulnerability that permits the
adversary to hijack the program’s control flow.

• The target host uses write-xor-execute (W⊕X) permis-
sions on its memory pages.

• The target operating system contains standard functions
to modify W⊕X memory permissions (e.g., mprotect
in Linux and VirtualProtect in Windows), which
we describe later.

• The adversary cannot influence the offline operations that
create the chronomorphic binary and its morph table from
a standard executable (see Figure 2).

• The adversary may have access to the target program’s
source code and to the original (non-chronomorphic) off-
the-shelf executable.

• The adversary may have a priori knowledge of the pro-
gram’s in-memory code layout at any point in execution,
unlike other ROP defenses (e.g., [11], [12], [13], [14],
[17]), due to cyber reconaissance (e.g., [6]) or runtime
information leaks whereby timing data, cache data, and
side channel data is available to the attacker.

• The adversary must interact with the target program (e.g.,
execute its in-memory code) in order to observe its in-
memory code layout or conduct an exploit.

Under these assumptions, the adversary may successfully
exploit the target program over multiple transactions (e.g.,
server requests), provided the target program does not change
its exploitable memory layout before or after those transac-
tions.

Chronomorphic programs foil cyber-attacks that rely on
consistency of a program’s memory layout— including code
reuse attacks like ROP— since the memory layout changes
during execution. As described below, these memory changes
should occur early in the processing of each transaction. Fig-
ure 1 illustrates an attempt of a classic stack-overflow-based
ROP exploit on a chronomorphic executable. The attacker
overflows a stack buffer to overwrite the return address with
one or more gadget addresses that he may have learned by
analyzing the executable on disk or by exploiting the runtime
information leaks mentioned above.

The chronomorphic program rewrites itself regularly
throughout execution (Figure 1, right), so the attacker’s knowl-
edge of the program is outdated. When the program returns
into the chain of gadgets written by the attacker, the program
executes different instructions than those intended by the
attacker. The program promptly crashes without executing the
exploit.

The empty, unlabeled area (i.e., block relocation space)
could be comprised of invalid, unexploitable instructions that
quickly cause a crash, or alternatively, nop-slides into an invo-
cation of alarms or forensic analysis functions that terminate
with an error signal, consistent with other software “booby
trapping” approaches [19].

Chronomorphic programs diversify themselves based on
random selections from their morph tables, which describe
how the program can be changed during execution. This means
that if the morph table is aware to the attacker and the
target host’s random operation is perfectly predictable, then
the attacker can predict the next configuration assumed by
the chronomorphic program and thereby conduct a successful
code reuse exploit. Consequently, even if the morph table is
acquired and decrypted by the adversary, they must perfectly
predict— or somehow influence— the host’s randomization,
which would already constitute a deep intrusion of the target
system.

We next describe how we create chronomorphic programs
from off-the-shelf executables, and how these programs diver-
sify themselves throughout the course of their execution.

IV. APPROACH

The Chronomorph approach requires changing machine
code at runtime, a technique known as self-modifying code
(SMC). Using SMC, Chronomorph must preserve the func-
tionality of the underlying program (i.e., maintain semantics),
maximize diversity over time, and minimize performance
costs.

Any SMC methodology requires a means to change the
permissions of the program’s memory (i.e., temporarily cir-
cumvent W⊕X defense) to modify the code and then re-
sume its execution. Different operating systems utilize dif-
ferent memory protection functions: Linux’s mprotect and
Windows’ VirtualProtect have different signatures, but
both can temporarily change program memory permissions
from executable to writable, and back again, during program
execution. In this paper, we describe Chronomorph in a 32-bit
Linux x86 setting.

Our approach automatically constructs chronomorphic bi-
naries from normal third-party programs with the following
enumerated steps, also illustrated in Figure 2:

Offline:
1) Transform the executable to inject the Chronomorph

SMC runtime that invokes mprotect and rewrites
portions of the binary during execution. This produces a
SMC binary with SMC functions that are disconnected
from the program’s normal control flow.

2) Analyze the SMC binary to identify potentially-
exploitable sequences of instructions (i.e., gadgets).

3) Identify relocatable gadgets and transform the SMC
binary to make those gadgets relocatable.

4) Compute instruction-level, semantics-preserving trans-
forms that denature non-relocatable gadgets and sur-
rounding program code.

5) Write the relocations and transforms to a morph table
outside the chronomorphic binary.

6) Inject morph triggers into the SMC binary so that the
program will morph itself periodically. This produces
the chronomorphic binary.

Online:

123

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Offline analysis & binary rewriting

Target program binary

Target program source
(optional)

ROP Compiler

Transformations

Relocations

Chronomorph SMC runtime

Control flow analysis
Morph table

Chronomorphic
binary

SMC
binary

Triggers

Figure 2. Chronomorph converts a third-party program into a chronomorphic binary.

7) During program runtime, diversify the chronomorphic
binary’s executable memory space by relocating and
transforming instructions without hindering performance
or functionality.

We have implemented each step in this process and inte-
grated third-party tools including a ROP compiler [5], the
Hydan tool for computing instruction-level transforms [20],
and the open-source objdump disassembler. We next describe
each of these steps in this process, including the research
challenges and the strategy we employ in our Chronomorph
prototype implementation. We note relevant simplifying as-
sumptions in our prototype, and we address some remaining
research challenges in Section VI.

A. Injecting SMC morphing functionality

Before the Chronomorph tool can analyze the binary and
compute transformations, it must inject the Chronomorph
SMC runtime, which contains functions for modifying mem-
ory protection (e.g., mprotect), writing byte sequences to
specified addresses, and reading the morph table from outside
the binary. These Chronomorph functions may themselves
contain gadgets and have runtime diversification potential,
so the SMC-capable binary that includes these functions is
the input to the subsequent offline analyses, including ROP
compilation.

We identified three ways of automatically injecting the
Chronomorph runtime code, based on the format of the target
program.

1) Link the target program’s source code against the
compiled Chronomorph runtime. This produces a
dynamically- or statically-linked SMC executable. This
is the simplest solution, and the one used in our exper-
iments, but source code may not always be available.

2) Rewrite a statically-linked binary by extending its binary
with a new loadable, executable segment containing the
statically-linked Chronomorph runtime. This produces a
statically-linked SMC executable.

3) Rewrite a dynamically-linked binary by adding
Chronomorph procedures and objects to an alternative
procedure linkage table (PLT) and global object
table (GOT), respectively, and then extend the binary
with a new loadable, executable segment containing
the dynamically-linked Chronomorph runtime. This
produces a dynamically-linked SMC executable.

All three of these approaches inject the self-modifying
Chronomorph runtime, producing the SMC binary shown in
Figure 2. At this point, the self-modification functions are not
yet invoked from within the program’s normal control flow,
so we cannot yet call this a chronomorphic binary.

B. Identifying exploitable gadgets

As shown in Figure 2, the Chronomorph offline analysis
tool includes a third-party ROP compiler [5] that automatically
identifies available gadgets within a given binary and creates
an exploit of the user’s choice (e.g., execute an arbitrary shell
command) by compiling a sequence of attack gadgets from
the available gadgets, if possible. The Chronomorph analysis
tool runs the ROP compiler against the SMC binary, finding
gadgets that span the entire executable segment, including the
Chronomorph SMC runtime.

The ROP compiler prioritizes Chronomorph’s diversification
efforts as follows, to allocate time and computing resources
proportional to the various exploitation threats within the
binary:

• Attack gadgets have the highest priority. The chronomor-
phic binary should address these with its highest-diversity
transforms.

• Available gadgets (i.e., found by the ROP compiler but
not present in an attack sequence) have medium priority.
These too should be addressed by high-diversity trans-
forms, within acceptable performance bounds.

• Instructions that have not been linked to an available gad-
get have the lowest priority, but should still be diversified

124

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MorphPoint 0:
 Option 0-0:
 {<85 c0>@0x804ec3e}
 Option 0-1:
 {<23 c0>@0x804ec3e}
 Option 0-2:
 {<21 c0>@0x804ec3e}
 …
MorphPoint 1:
 Option 1-0:
 …
…

Morph Table

Chronomorphic Binary

Normal control flow

Chronomorph SMC runtime

Morph triggers

Figure 3. The resulting chronomorphic binary and its interaction with the morph table.

when feasible. Since zero-day gadgets and new code-
reuse attack strategies may arise after transformation
time, this diversification offers additional security.

Our approach attempts all transformations possible, saving
more costly transformations, e.g., dynamic block relocations,
for the high-risk attack gadgets. The ROPgadget compiler [5]
currently used by Chronomorph may be easily replaced by
newer, broader ROP compilers, provided the compiler still
compiles attacks and reports all available gadgets. Also, a
portfolio approach may be used, running a variety of ROP
compilers and merging their lists of dangerous gadgets.

C. Diversity with relocation

We may not be able to remove a high-risk gadget entirely
from the executable, since its instructions may be integral to
the program’s execution; however, the chronomorphic binary
can relocate it with high frequency throughout execution, as
long as it preserves the control flow.

Relocation is the highest-diversity strategy that
Chronomorph offers. Chronomorph allocates an empty
block relocation space in the binary, reserved for gadget
relocation. Whenever the chronomorphic binary triggers a
morph, it shuffles relocated blocks to random locations in the
block relocation space and repairs previous control flow with
recomputed jmp instructions to the corresponding location in
the block relocation space.

For each high-risk attack gadget, Chronomorph performs
the following steps to make it relocatable during runtime:

1) Compute the basic block (i.e., sequence of instructions
with exactly one entry and exit point) that contains the
gadget.

2) Relocate the byte sequence of the gadget’s basic block
to the first empty area in the block relocation space.

3) Write a jmp instruction from the head of the basic block
to the new address in the block relocation space.

4) Write nop instructions over the remainder of the gad-
get’s previous basic block, destroying the gadgets.

5) Write the block’s byte sequence and the address of the
new jmp instruction to the morph table.

The morph table now contains enough information to place
the gadget-laden block anywhere in the block relocation space
and recompute the corresponding jmp instruction accordingly.

Intuitively, diversity of the binary increases with the size of
the block relocation space. For a single gadget block g with
byte-size |g|, and block relocation space of size |b|, relocating
g adds V (g, b) = 1 + |b| − |g| additional program variants.

If we relocate multiple gadget blocks G = {g0, ..., g|G|−1},
then we add the following number of variants:

V (G, b) = |G|+
|G|−1∏
i=0

(|b| −
i∑

j=0

|gj |). (1)

The probability of guessing all of the relocated gadgets’
addresses is therefore 1/V (G, b), which diminishes quickly
as the chosen size of the block relocation space increases.

Our Chronomorph prototype has the following constraints
for choosing gadget blocks for relocation:
• Relocated blocks cannot contain a call instruction.

When a call instruction is executed, the subsequent
instruction’s address is pushed onto the stack, and if the
calling block is then relocated, execution would return
into an arbitrary (incorrect) spot in the block relocation
space.

• Relocated blocks must be at least the size of the jmp
to the block relocation space, so that Chronomorph has
room to write the jmp.

• Relocated blocks must end in an indirect control flow
(e.g., ret) instruction; otherwise, we would have to
recompute the control flow instruction at the block’s tail
at every relocation. Empirically, the vast majority of these
blocks end in ret.

• Relocated gadgets cannot span two blocks.
In the conclusion of this paper we discuss some potential

improvements that would remove some of these constraints.

125

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

func8048b70

func804f4ab

func804d5f2

func804c517

Blk 116 @ 0x8048b70 [6]
jmp *0x8052134

Blk 1990 @ 0x804f4ab [19]
push %ebp
mov %esp,%ebp
sub $0x38,%esp
movl $0x1,-0xc(%ebp)
lea -0x28(%ebp),%eax
mov %eax,-0x10(%ebp)

Blk 1991 @ 0x804f4be [11]
mov 0xc(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1992 @ 0x804f4c9 [9]
mov %eax,-0x14(%ebp)
cmpl $0xffffffff,-0x14(%ebp)
je 0x804f513

default

Blk 1993 @ 0x804f4d2 [8]
mov -0x14(%ebp),%eax
cmp 0x14(%ebp),%eax
jne 0x804f4e4

default

Blk 1999 @ 0x804f513 [1]
nop

je

Blk 1994 @ 0x804f4da [10]
subl $0x1,-0xc(%ebp)
cmpl $0x0,-0xc(%ebp)
jle 0x804f514

default

Blk 1995 @ 0x804f4e4 [8]
mov -0x14(%ebp),%eax
cmp 0x10(%ebp),%eax
jne 0x804f4f0

jne

default

Blk 2000 @ 0x804f514 [36]
mov -0x10(%ebp),%edx
lea -0x28(%ebp),%eax
mov %edx,%ecx
sub %eax,%ecx
mov %ecx,%eax
mov %eax,%edx
mov 0x8(%ebp),%eax
mov %edx,0x8(%esp)
lea -0x28(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x804f426

jle

Blk 1996 @ 0x804f4ec [4]
addl $0x1,-0xc(%ebp)

default

Blk 1997 @ 0x804f4f0 [33]
mov -0x14(%ebp),%eax
mov %eax,%edx
mov -0x10(%ebp),%eax
mov %dl,(%eax)
addl $0x1,-0x10(%ebp)
mov -0x14(%ebp),%eax
mov %eax,0x4(%esp)
movl $0x805027e,(%esp)
call 0x8048af0

jne

default

Blk 1998 @ 0x804f511 [2]
jmp 0x804f4be

default

jmp

default

Blk 2001 @ 0x804f538 [10]
sub $0x4,%esp
mov 0x8(%ebp),%eax
leave
ret $0x4

default

Blk 1443 @ 0x804d5f2 [33]
push %ebp
mov %esp,%ebp
sub $0x48,%esp
movl $0x0,-0x10(%ebp)
movl $0x804c5ac,0x4(%esp)
movl $0x2,(%esp)
call 0x8048b60

Blk 1444 @ 0x804d613 [21]
movl $0xffffffff,0x80521ec
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1445 @ 0x804d628 [8]
mov %eax,-0xc(%ebp)
jmp 0x804da48

default

Blk 1529 @ 0x804da48 [10]
cmpl $0xffffffff,-0xc(%ebp)
jne 0x804d630

jmp

Blk 1446 @ 0x804d630 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1447 @ 0x804d63b [13]
mov %eax,-0x20(%ebp)
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804d650

default

Blk 1448 @ 0x804d648 [8]
mov -0x20(%ebp),%eax
mov %eax,0x80521ec

default

Blk 1449 @ 0x804d650 [38]
mov -0x10(%ebp),%eax
mov %eax,-0x14(%ebp)
movl $0x0,-0x10(%ebp)
mov -0x20(%ebp),%eax
mov -0x14(%ebp),%edx
mov %edx,0x8(%esp)
mov %eax,0x4(%esp)
mov -0xc(%ebp),%eax
mov %eax,(%esp)
call 0x804c610

jne

default

Blk 1450 @ 0x804d676 [9]
cmp $0xa,%eax
ja 0x804da42

default

Blk 1451 @ 0x804d67f [9]
mov 0x805009c(,%eax,4),%eax
jmp *%eax

default

Blk 1528 @ 0x804da42 [6]
mov -0x20(%ebp),%eax
mov %eax,-0xc(%ebp)

ja

Blk 1452 @ 0x804d688 [17]
mov 0x80521ec,%edx
mov -0x20(%ebp),%eax
cmp %eax,%edx
je 0x804da32

Blk 1453 @ 0x804d699 [14]
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804da32

default

Blk 1522 @ 0x804da32 [3]
nop
jmp 0x804da42

je

Blk 1454 @ 0x804d6a7 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

jne

call
Blk 1455 @ 0x804d6b2 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da32

default

jmp

Blk 1456 @ 0x804d6ba [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1457 @ 0x804d6c5 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da42

default

jmp

Blk 1458 @ 0x804d6cd [17]
mov -0x20(%ebp),%eax
mov %eax,-0xc(%ebp)
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1459 @ 0x804d6de [29]
mov %eax,-0x20(%ebp)
mov -0x20(%ebp),%eax
mov %eax,0x80521ec
lea -0x28(%ebp),%eax
mov %eax,0x4(%esp)
mov -0xc(%ebp),%eax
mov %eax,(%esp)
call 0x804ef4a

default

Blk 1460 @ 0x804d6fb [8]
test %eax,%eax
jne 0x804da35

default

Blk 1461 @ 0x804d703 [18]
mov -0x28(%ebp),%eax
mov -0x24(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1523 @ 0x804da35 [3]
nop
jmp 0x804da42

jne

Blk 1462 @ 0x804d715 [13]
mov 0x80521ec,%edx
mov -0x20(%ebp),%eax
cmp %eax,%edx
je 0x804d73a

default

Blk 1463 @ 0x804d722 [10]
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804d73a

default

Blk 1466 @ 0x804d73a [11]
lea -0x28(%ebp),%eax
mov %eax,(%esp)
call 0x804f084

je

Blk 1464 @ 0x804d72c [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

jne

call

Blk 1465 @ 0x804d737 [3]
mov %eax,-0x20(%ebp)

default

default

Blk 1467 @ 0x804d745 [8]
test %eax,%eax
jne 0x804da38

default

Blk 1468 @ 0x804d74d [8]
mov -0x28(%ebp),%eax
cmp $0x1,%eax
jne 0x804d76c

default

Blk 1524 @ 0x804da38 [3]
nop
jmp 0x804da42

jne

Blk 1469 @ 0x804d755 [18]
mov -0x28(%ebp),%eax
mov -0x24(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1471 @ 0x804d76c [8]
mov -0x28(%ebp),%eax
cmp $0x2,%eax
jne 0x804d7c0

jne

Blk 1470 @ 0x804d767 [5]
jmp 0x804da38

default

jmp

Blk 1472 @ 0x804d774 [11]
lea -0x28(%ebp),%eax
mov %eax,(%esp)
call 0x804c57b

default

Blk 1478 @ 0x804d7c0 [20]
movl $0xffffffff,0x4(%esp)
movl $0x804fc9e,(%esp)
call 0x804db5f

jne

Blk 1473 @ 0x804d77f [9]
cmp $0x4,%eax
jne 0x804da38

default

Blk 1474 @ 0x804d788 [10]
mov 0x8052274,%eax
cmp $0x1,%eax
je 0x804d79c

default

jne

Blk 1475 @ 0x804d792 [10]
mov $0x0,%eax
jmp 0x804da9f

default

Blk 1476 @ 0x804d79c [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x805003c,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

je

Blk 1539 @ 0x804da9f [2]
leave
ret

jmp

Blk 1477 @ 0x804d7bb [5]
jmp 0x804da38

default

jmp

Blk 1479 @ 0x804d7d4 [5]
jmp 0x804da38

default

jmp

Blk 1480 @ 0x804d7d9 [10]
mov 0x8052274,%eax
cmp $0x1,%eax
je 0x804d7ed

Blk 1481 @ 0x804d7e3 [10]
mov $0x0,%eax
jmp 0x804da9f

default

Blk 1482 @ 0x804d7ed [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x805003c,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

je

jmp

Blk 1483 @ 0x804d80c [17]
mov 0x80521ec,%edx
mov -0x20(%ebp),%eax
cmp %eax,%edx
je 0x804da3b

default

Blk 1484 @ 0x804d81d [14]
mov 0x8052214,%eax
cmp %eax,0x8(%ebp)
jne 0x804da3b

default

Blk 1525 @ 0x804da3b [3]
nop
jmp 0x804da42

je

Blk 1485 @ 0x804d82b [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

jne

call
Blk 1486 @ 0x804d836 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da3b

default

jmp

Blk 1487 @ 0x804d83e [34]
mov 0x8(%ebp),%eax
mov %eax,0x8052278
mov -0xc(%ebp),%eax
mov %eax,0x8052280
mov -0x20(%ebp),%eax
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x8048cc0

Blk 1488 @ 0x804d860 [36]
mov 0x80521e4,%edx
lea -0x1c(%ebp),%eax
lea -0x20(%ebp),%ecx
mov %ecx,0xc(%esp)
mov %edx,0x8(%esp)
movl $0x804c517,0x4(%esp)
mov %eax,(%esp)
call 0x804e109

default

Blk 1489 @ 0x804d884 [21]
sub $0x4,%esp
mov -0x1c(%ebp),%eax
mov -0x18(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1490 @ 0x804d899 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1491 @ 0x804d8a4 [8]
test %eax,%eax
je 0x804da3e

default

Blk 1492 @ 0x804d8ac [5]
jmp 0x804da6f

default

Blk 1526 @ 0x804da3e [3]
nop
jmp 0x804da42

je

Blk 1536 @ 0x804da6f [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x804fdcf,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

jmp

Blk 1493 @ 0x804d8b1 [18]
mov -0x20(%ebp),%eax
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x8048cc0

Blk 1494 @ 0x804d8c3 [34]
lea -0x30(%ebp),%eax
movl $0x5d,0xc(%esp)
movl $0x5b,0x8(%esp)
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x804f4ab

default

call

Blk 1495 @ 0x804d8e5 [26]
sub $0x4,%esp
mov -0x30(%ebp),%eax
mov -0x2c(%ebp),%edx
mov %eax,-0x28(%ebp)
mov %edx,-0x24(%ebp)
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1496 @ 0x804d8ff [8]
test %eax,%eax
jne 0x804da68

default

Blk 1497 @ 0x804d907 [18]
mov -0x28(%ebp),%eax
mov -0x24(%ebp),%edx
mov %eax,(%esp)
mov %edx,0x4(%esp)
call 0x804ee38

default

Blk 1533 @ 0x804da68 [3]
nop
jmp 0x804da6f

jne

Blk 1498 @ 0x804d919 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1499 @ 0x804d924 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da42

default

jmp

Blk 1500 @ 0x804d92c [18]
mov -0x20(%ebp),%eax
mov 0x8(%ebp),%edx
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x8048cc0

Blk 1501 @ 0x804d93e [37]
mov 0x8052214,%edx
lea -0x30(%ebp),%eax
movl $0xa,0xc(%esp)
movl $0xa,0x8(%esp)
mov %edx,0x4(%esp)
mov %eax,(%esp)
call 0x804f4ab

default

call

Blk 1502 @ 0x804d963 [28]
sub $0x4,%esp
mov -0x30(%ebp),%eax
mov -0x2c(%ebp),%edx
mov %eax,-0x28(%ebp)
mov %edx,-0x24(%ebp)
mov 0x8052214,%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1503 @ 0x804d97f [8]
test %eax,%eax
jne 0x804da6b

default

Blk 1504 @ 0x804d987 [11]
mov -0x24(%ebp),%eax
mov %eax,(%esp)
call 0x804f542

default

Blk 1534 @ 0x804da6b [3]
nop
jmp 0x804da6f

jne

Blk 1505 @ 0x804d992 [8]
mov %eax,(%esp)
call 0x804dbda

default

Blk 1506 @ 0x804d99a [14]
lea -0x28(%ebp),%eax
add $0x4,%eax
mov %eax,(%esp)
call 0x804f391

default

Blk 1507 @ 0x804d9a8 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

call

Blk 1508 @ 0x804d9b3 [8]
mov %eax,-0x20(%ebp)
jmp 0x804da42

default

jmp

Blk 1509 @ 0x804d9bb [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

call

Blk 1510 @ 0x804d9c6 [5]
mov %eax,-0x20(%ebp)
jmp 0x804d9cc

default

Blk 1512 @ 0x804d9cc [8]
mov -0x20(%ebp),%eax
cmp $0xffffffff,%eax
je 0x804d9dc

jmp

Blk 1511 @ 0x804d9cb [1]
nop

default

Blk 1513 @ 0x804d9d4 [8]
mov -0x20(%ebp),%eax
cmp $0xa,%eax
jne 0x804d9bb

default

Blk 1514 @ 0x804d9dc [8]
mov -0x20(%ebp),%eax
cmp $0xffffffff,%eax
je 0x804da41

je

jnedefault

Blk 1515 @ 0x804d9e4 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b70

default

Blk 1527 @ 0x804da41 [1]
nop

je

call
Blk 1516 @ 0x804d9ef [5]
mov %eax,-0x20(%ebp)
jmp 0x804da41

default

jmp

Blk 1517 @ 0x804d9f4 [9]
movl $0x1,-0x10(%ebp)
jmp 0x804da42

jmp

Blk 1518 @ 0x804d9fd [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

Blk 1519 @ 0x804da08 [4]
test %eax,%eax
jne 0x804da6e

default

Blk 1520 @ 0x804da0c [31]
mov 0x80526a4,%edx
mov 0x8052200,%eax
mov %edx,0x8(%esp)
movl $0x8050074,0x4(%esp)
mov %eax,(%esp)
call 0x8048c70

default

Blk 1535 @ 0x804da6e [1]
nop

jne

Blk 1521 @ 0x804da2b [7]
mov $0x2,%eax
jmp 0x804da9f

default

jmp

jmp

jmp

jmpjmp

jmp

default

default

jne

Blk 1530 @ 0x804da52 [11]
mov 0x8(%ebp),%eax
mov %eax,(%esp)
call 0x8048b30

default

Blk 1531 @ 0x804da5d [4]
test %eax,%eax
jne 0x804da6f

default

Blk 1532 @ 0x804da61 [7]
mov $0x0,%eax
jmp 0x804da9f

defaultjne

jmp

jmp

jmp

default

Blk 1537 @ 0x804da8e [12]
movl $0x8050088,(%esp)
call 0x8048b80

default

Blk 1538 @ 0x804da9a [5]
mov $0x2,%eax

default

default

Blk 1097 @ 0x804c517 [16]
push %ebp
mov %esp,%ebp
sub $0x28,%esp
mov 0x8052280,%eax
cmp $0xffffffff,%eax
je 0x804c53e

Blk 1098 @ 0x804c527 [23]
mov 0x8052280,%eax
mov %eax,-0xc(%ebp)
movl $0xffffffff,0x8052280
mov -0xc(%ebp),%eax
jmp 0x804c54b

default

Blk 1099 @ 0x804c53e [13]
mov 0x8052278,%eax
mov %eax,(%esp)
call 0x8048b70

je

Blk 1100 @ 0x804c54b [2]
leave
ret

jmpcall defaultgetc()

Figure 4. Small portion of a control flow graph (CFG) automatically created during Chronomorph’s offline analysis. Shaded regions are functions, instruction
listings are basic blocks, and edges are control flow edges.

D. Diversity with in-place code randomizations

Chronomorph uses in-place code randomization (IPCR)
strategies to randomize non-relocated instructions [12]. IPCR
performs narrow-scope transformations without changing the
byte-length of instruction sequences.

At present, Chronomorph uses two IPCR strategies to com-
pute transformations. The first, instruction substitution (IS),
substitutes a single instruction for one or more alternatives.
For example, comparisons can be performed in either order,
xor’ing a register with itself is equivalent to mov’ing or
and’ing zero, etc. These instructions have the same execution
semantics, but they change the byte content of the instruction,
so unintended control flow instructions (e.g., 0xC3 = ret)
are potentially transformed or eliminated. A single IS adds as
many program variants as there are instruction alternatives.

Another IPCR strategy, register preservation code reorder-
ing (RPCR) reorders the pop instructions before every ret
instruction of a function, and also reorders the corresponding
push instructions at the function head to maintain symmetry.
A register preservation code reordering for a single function
adds as many variants as there are permutations of push or
pop instructions.

Importantly, RPCR changes the layout of a function’s stack
frame, which may render it non-continuable. For instance, if
control flow enters the function and it preserves register values
via push’ing, and then the chronomorphic binary runs RPCR
on the function, it will likely pop values into unintended
registers when it continues the function, which will adversely
affect program functionality.

Any stack-frame diversity method such as RPCR should
only be attempted at runtime if execution cannot continue
or re-enter the function, e.g., from an internal call, after
a SMC morph operation. We enforce this analytically with
control flow graph (CFG) analysis: if execution can continue
within a function f from the morph trigger (i.e., if the morph

trigger is reachable from f in the CFG), the stack frame of
f should not be diversified. Stack frame diversification is a
valuable tool for ROP defense, but it requires these special
considerations when invoked during program execution.

E. Writing and reading the morph data

The morph table is a compact binary file that accompa-
nies the chronomorphic binary, as shown in Figure 3. The
morph table binary represents packed structs: MorphPoint
structs with internal MorphOption byte sequences. Each
MorphPoint represents a decision point (i.e., an IS or RPCR
opportunity) where any of the associated MorphOption
structs will suffice. Each MorphPoint is stateless (i.e., does
not depend on the last choice made for the MorphPoint),
and independent of any other MorphPoint, so random
choices are safe and ordering of the morph table is not
important.

The relocation data is a separate portion of the morph table,
containing the content of relocatable blocks alongside their
corresponding jmp addresses. Like IPCR operations, reloca-
tions are stateless and independent, provided the Chronomorph
runtime does not overlay them in the block relocation space.

Intuitively, the morph table cannot reside statically inside
the binary as executable code, otherwise all of the gadgets
would be accessible.

F. Injecting morph triggers

We have described how Chronomorph injects SMC ca-
pabilities into third-party executables and its diversification
capabilities, but Chronomorph must also automatically connect
the Chronomorph runtime into the program’s control flow to
induce diversification of executable memory during runtime.

The injection of these morph triggers presents a trade-off:
morphing too frequently will unnecessarily degrade program
performance; morphing too seldom will allow wide windows
of attack. Ideally, morphing will happen at the speed of input,

126

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

e.g., once per server request or user input (or some modulo
thereof). The location of the morph trigger(s) in the program’s
control flow ultimately determines morph frequency.

Figure 4 shows a portion of the CFG for the program used
in our experiment, calling out the getc() input function.
Chronomorph can inject calls to the SMC runtime at these
input points, or at calling functions with stack-based buffers
(which are more likely to contain vulnerabilities through which
a ROP attack would begin).

Chronomorph also includes an interface for the application
developer to add a specialized MORPH comment in the source
code, which is replaced by a morph trigger during the rewriting
phase.

G. Runtime diversification

A chronomorphic binary executes in the same manner as
its former non-chronomorphic variant, except when the morph
triggers are invoked.

When the first morph trigger is invoked, the Chronomorph
runtime loads the morph table and seeds its random number
generator. All morph triggers induce a complete SMC diver-
sification of the in-process executable memory according to
IPCR and relocation data in the morph table:

1) The block relocation space is made writable with
mprotect.

2) Relocated basic blocks in the block relocation space are
overwritten with nop instructions.

3) Each relocatable block is inserted to a random block
relocation space address, and its jmp instruction (where
the block used to be in the program’s original CFG) is
rewritten accordingly.

4) The block relocation space is made executable.
5) Each MorphPoint is traversed, and a corresponding

MorphOption is chosen at random and written. Each
operation is surrounded by mprotect calls to make
the corresponding page writable and then executable.
Future work will group MorphPoints by their ad-
dress to reduce mprotect invocations, but our results
demonstrate that the existing performance is acceptable.

We have described how to create chronomorphic bina-
ries from off-the-shelf binaries, and we have described how
chronomorphic binaries perform runtime diversification. Next
we discuss important safety and correctness considerations
for chronomorphic programs, since runtime rewriting has
implications for concurrency, continuation, and reentrancy.

H. Multithreading

In a traditional multi-threaded setting, multiple threads use
the same executable memory. This means that one thread
could diversify the function, block, or even the instruction that
another thread is executing.

Without additional protections such as thread synchroniza-
tion, many runtime diversification strategies are unsafe in a
multithreaded setting:
• Block relocation is unsafe if another thread is executing

a relocatable block.

• Reordering a function’s push and pop register preserva-
tion instructions is unsafe if another thread is executing
the function, since the thread may pop values into the
wrong registers.

• Reordering instructions within a block (e.g., [12]) is
unsafe if another thread is executing the block.

Injecting thread synchronization around diversifiable re-
gions in the chronomorphic program’s morph table would
prevent these unsafe operations, but this might be costly,
since— as we demonstrate in our experiments— there are
many diversifiable regions in even the smallest binaries.

For the above reasons, our prototype tool only supports
creating chronomorphic binaries for single-threaded execution,
but we discuss some possible avenues for multi-threaded
chronomorphic programs in our discussion of future work.

I. Guaranteeing safe continuation

Runtime diversity can invalidate stack frame integrity and
return address correctness if not properly constrained. These
are important considerations for guaranteeing function contin-
uation (i.e., resuming execution of a function after returning
from another function) within a chronomorphic program. We
discuss two continuation pitfalls and our approach for avoiding
them.

Reordering push and pop instructions, are effective meth-
ods of foiling ROP attacks [12]; however, performing these
operations at runtime will complicate continuation by chang-
ing the expected structure of the stack frame: if execution
continues in (i.e., returns back into) a function whose push
and pop differ from when execution initially entered, the
program will pop the wrong data into the registers, causing
a random fault in subsequent execution.

Another consideration is return address correctness. When a
program executes a call instruction, it will write the address
following the call onto the stack as the return address,
and then transfer control flow to the called function. Suppose
that after invoking a call instruction and writing the return
address, the program triggers a downstream diversification that
relocates this upstream call instruction. This changes the
address that the program should return to; however, the old
address is still written to the stack, and the program will
ultimately return into an undesired location, causing a random
fault.

Both of these continuation problems stem from changing ex-
ecutable memory in a way that is inconsistent with presently-
written stack memory. There are three general strategies for
preserving continuation in light of both of these problems:

1) Avoidance: Do not perform push and pop register
preservation reordering, and do not relocate any block
containing a call instruction.

2) Rectification: Rectify stack memory at diversification
time by transposing register preservation data (to al-
low push and pop reordering) and rewriting return
addresses (to allow call relocation) of continuable
functions.

127

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Reachability: Do not modify the stack frame (e.g.,
push and pop register preservation) or return addresses
(e.g., location of call instructions) of functions that
can plausibly be continued after runtime diversification,
using a CFG graph-reachability criterion.

All of these strategies incur a cost. The avoidance strategy
reduces diversity by disallowing push and pop register
preservation and disallowing call instructions to be relo-
cated. Other strategies such as instruction substitution and the
relocation of other non-call blocks are still plausible, but
this is an unnecessary loss.

The rectification strategy will incur memory overhead to
store the data necessary to identify register preservation values
and return addresses that have been pushed onto the stack. The
time necessary to rectify the stack would be proportional to
the depth of the stack, and it could take arbitrarily long to
rectify all of the values, e.g., when modifying deep recursive
functions.

The reachability strategy reduces diversity potential, but
provides more diversity potential than the avoidance strategy.
This approach also incurs substantially less overhead than
the rectification strategy and permits more diversity than
the avoidance strategy, so this is our preferred strategy for
chronomorphic programs.

Our prototype tool implements the reachability strategy
using a graph-theoretic reachability criteria in the program’s
CFG. From the CFG, we can infer the set of functions that
could reach the runtime diversification function injected into
the chronomorphic binary. Our approach recovers the CFG
from the binary automatically, using mixed recursive/linear
disassembly of the binary, static identification of jump tables,
and dynamic tracing to identify indirect control flow (e.g.,
jump addresses stored as data) [21]. This over-approximates
the CFG and ultimately over-approximates the set of func-
tions that will be continued after runtime diversification. In a
hypothetical worst case, where every function in the program
can reach the runtime diversification function, the reachability
strategy is equivalent to the avoidance strategy described
above, which is still preferable to the rectification strategy.

We conducted an experiment with our Chronomorph proto-
type on a third-party Linux binary to characterize the diversity,
ROP attack likelihood, and performance overhead of our
Chronomorph approach. We discuss this experiment and its
results in the next section.

V. EVALUATION

We tested our prototype tool on small Linux desktop ap-
plications, into which we deliberately injected vulnerabilities
and gadgets (in the source code). Here, we discuss results for
the dc (desktop calculator) program.

The original target program, with injected flaws, is easily
compromised by our ROP compiler. We also inserted the spe-
cial MORPH comment in the source code, to trigger morphing
after each input line was read. After running the prototype
Chronomorph system, the new binary operates as described
in Figure 3, and cannot be defeated by the ROP compiler.

The dynamically-linked version of the original binary is small
(47KB), and after our tool has made it chronomorphic (with
a block relocation space of 4KB) it is 62KB.

The rewritten binary is currently able to perform approxi-
mately 1000 changes to its own code in less than one millisec-
ond, on a standard laptop. When the chronomorphic binary
is not rewriting itself, it incurs no additional performance
overhead, so the overhead is strictly the product of the time for
a complete morph (e.g., one millisecond) and the frequency
of morphs, as determined by the injected morph triggers. In
our experiments with dc performing a short regression test,
the chronomorphic version incurred an additional 2% over-
head. However, this was an unoptimized version that reloaded
the morph table on every morph trigger. For other binaries,
overhead will depend heavily on morph trigger placement.
Also, a more compute-intensive application might suffer a mild
degradation due to cache-misses and branch prediction failures
that might not occur in the non-morphing version.

Figure 5 shows two bitmaps illustrating how the binary
instructions change in memory, as the program runs. Each
pixel of each image represents a single byte of the program’s
executable code segment in memory. At the top of both
images, the gray area is the nop-filled block relocation space,
with colored segments representing the blocks moved there.
Note that the colored segments are in different locations in
the two images. Below the gray area, the original binary
bits that are never changed remain black, while instructions
that are rewritten are shown in different colors, where the
red/green/blue values are computed from the byte values and
nop instructions are gray. Comparison of the images will
show that many of the colored areas are different between the
images— this clearly shows the broad in-memory diversity
induced by the chronomorphic behavior.

We assessed this example’s morph table and estimate that
it is capable of randomly assuming any one of approxi-
mately 10500 variants at any given time during execution. The
chronomorphic version of the statically-linked target binary (>
500KB) can assume any one of approximately 108000 variants,
using about 8ms to perform all of its rewrites. However,
those variant counts do not really accurately characterize the
probability that a ROP or BROP attack will succeed.

To do that, we must consider how many gadgets the attacker
would need to locate, and how they are morphing. The
dynamically linked target contains 250 indirect control flow
instructions, and two thirds of those potentially risky elements
are moved by the block-relocation phase. With the ROPgadget
compiler we used for this evaluation, the original application
yielded an exploit needing eight gadgets, of which six were
subjected to morphing:
• inc eax ; ret – relocated.
• int 0x80 – relocated.
• pop edx ; ret – relocated.
• pop edx ; pop ecx ; pop ebx ; ret – re-

ordered (6 permutations).
• pop ebx ; ret – relocated.
• xor eax,eax ; ret – intact.

128

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Example memory visualizations illustrating how the executable memory space of the binary changes at runtime.

• pop eax ; ret – relocated.
• move [edx],eax ; ret – intact.

Five of the gadgets are relocated dynamically within the block
relocation space of size |b|, and a sixth gadget is rewritten to
one of six permutations. As a result, to accurately locate all
eight of those gadgets in the chronomorphed binary, a potential
ROP attacker would have to pick correctly from approximately
6∗|b|5 alternatives. For our |b| = 4KB example, the probability
of a correct guess is approximately 1/1018, which is extremely
unlikely. Needless to say, the ROPgadget exploit was unable to
compromise the chronomorphic binary, in thousands of tests.
Furthermore, a BROP attack will have no ability to accumulate
information about gadget locations, because they change every
time a new input is received.

VI. CONCLUSION AND FUTURE WORK

We have implemented an initial version of an auto-
matic Chronomorph tool and demonstrated that the resulting
chronomorphic binaries are resistant to ROP and BROP at-
tacks and retain their initial functionality. Our automatically-
generated chronomorphic binary incurred no runtime overhead
during normal operation, and only incurred one millisecond
overhead to perform over 1000 sequential rewrites to exe-
cutable memory during a morph operation.

Our initial version and experimental results demonstrate
that chronomorphic programs are feasible: runtime diversity
yields real security benefits on existing software running on
existing operating systems and hardware. For chronomorphic
programs to become widespread and practical, further research
must characterize the effect on chronomorphic programs’
error reporting capabilities, performance tuning, and reliable
binary disassembly for safe code relocation. We prototyped
our approach in a 32-bit x86 Linux setting, and scaling to
x86 64 would increase the size of the morph table (due to
64-bit addresses), require a x86 64 ROP compiler, and require
support for disassembly and binary rewriting to account for
x86 64 argument-passing via registers.

Additional high-level research challenges remain for safety
and scalability. The system call that allows the chronomorph-
ing code to rewrite executable code is, of course, a dangerous

call; if an attacker could locate it and exploit it, he could
rewrite the code to do whatever he wants. Therefore, we
would ideally like the rewriting/SMC code itself to relocate or
transform at runtime; however, the code cannot rewrite itself.
We can work around this limitation with a fairly simple trick:
we can use two copies of the critical code to alternately rewrite
or relocate each other throughout runtime.

Another security concern requiring additional research is
ROP attacks tailored to chronomorphic programs. If the at-
tacker has full reconnaissance to the program in memory,
he can identify which blocks the program has replaced with
a dynamic jmp instruction that points to the block’s new
(changing) address. This means that the ROP payload can (1)
load the target address of one of said jmp instructions, (2)
use the target address as an offset for the desired attack gadet,
and (3) compute the location of the desired attack gadget.
However, this assumes that (1) the attacker already access to
gadgets that can load these addresses and perform the required
arithmetic, and that (2) all of the desired gadgets are protected
by relocation and not by the other code randomization tech-
niques used in our prototype. Alternatively, chronomorphic
binaries could compute their jumps to relocated blocks using
control-flow-sensitive values, so that relocated block addresses
cannot be trivially looked up. The performance overhead of
this approach might be reasonable, based on the density of
relocated blocks, but this is an empirical question. Even in
light of chronomorph-tailored ROP attacks, chronomorphic
programs offer significantly more protection than the other
techniques reviewed in Section II in a fully-observable setting
on legacy hardware and software.

We do not presently protect the morph table, which resides
outside of the binary. While chronomorphic binaries do not
rely on obscurity for security, an attacker’s chances of success
would be higher if he has access to the morph table describing
how the binary can change itself. Straightforward encryption
techniques should allow us to protect the morph table.

We can potentially support multi-threading— and also en-
sure safe function continuation— by automatically injecting
control flow monitors into diversifiable functions. Control

129

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

flow monitors, similar to those used for runtime-injected
aspect-oriented programming [22], can be certified by well-
established model-checking techniques [23]. These control
flow monitors can determine during runtime when threads
actually have an active stack frame for a given function,
so runtime diversification will not modify those functions.
These control flow monitors could also implement thread
synchronization to prevent threads from entering a function
that is currently being rewritten. Despite their certifiability by
model-checking, these thread monitoring and synchronization
techniques may incur high performance overhead, so this
remains an open empirical question.

These challenges represent areas of future research and
development for chronomorphic programs. Our prototype tool
and preliminary analyses demonstrate that chronomorphic bi-
naries reduce the predictability of code reuse attacks for single-
threaded programs, and we believe that these avenues of future
work will improve the safety and robustness of chronomorphic
binaries in complex multi-threaded applications.

ACKNOWLEDGMENTS

This work was supported by The Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) under contract FA8650-10-C-7087. The
views expressed are those of the author and do not reflect the
official policy or position of the Department of Defense or the
U.S. Government. Approved for public release, distribution
unlimited.

REFERENCES

[1] S. E. Friedman, D. J. Musliner, and P. K. Keller, “Chronomorphic
programs: Using runtime diversity to prevent code reuse attacks,” in
Proceedings ICDS 2015: The 9th International Conference on Digital
Society, Feb. 2015.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[3] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[4] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy.” in USENIX Security Symposium, 2011, pp. 25–41.

[5] J. Salwan and A. Wirth, “Ropgadget,” URL http://shell-
storm.org/project/ROPgadget, 2011.

[6] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in Proceedings of the 35th IEEE Symposium on
Security and Privacy, 2014, pp. 227–242.

[7] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 2012, pp. 571–585.

[8] S. E. Friedman, D. J. Musliner, and J. M. Rye, “Improving automated
cybersecurity by generalizing faults and quantifying patch performance,”
International Journal on Advances in Security, vol. 7, no. 3–4, 2014, pp.
121–130.

[9] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detection
tool to defend against return-oriented programming attacks,” in Pro-
ceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. ACM, 2011, pp. 40–51.

[10] H. Shacham et al., “On the effectiveness of address-space randomiza-
tion,” in Proceedings of the 11th ACM conference on Computer and
communications security. ACM, 2004, pp. 298–307.

[11] M. Franz, “E unibus pluram: massive-scale software diversity as a
defense mechanism,” in Proceedings of the 2010 workshop on New
security paradigms. ACM, 2010, pp. 7–16.

[12] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Security and Privacy (SP), 2012 IEEE Symposium
on. IEEE, 2012, pp. 601–615.

[13] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[14] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino, “Marlin: A
fine grained randomization approach to defend against rop attacks,” in
Network and System Security. Springer, 2013, pp. 293–306.

[15] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space random-
ization.” in USENIX Security Symposium, 2012, pp. 475–490.

[16] M. Backes and S. Nürnberger, “Oxymoron: making fine-grained memory
randomization practical by allowing code sharing,” in Proceedings of
the 23rd USENIX conference on Security Symposium. USENIX
Association, 2014, pp. 433–447.

[17] S. Crane et al., “Readactor: Practical code randomization resilient to
memory disclosure,” 2015.

[18] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming,” Proc. 22nd Network and Distributed Systems Security
Sym.(NDSS), 2015.

[19] S. Crane, P. Larsen, S. Brunthaler, and M. Franz, “Booby trapping
software,” in Proceedings of the 2013 workshop on New security
paradigms workshop. ACM, 2013, pp. 95–106.

[20] R. El-Khalil and A. D. Keromytis, “Hydan: Hiding information in pro-
gram binaries,” in Information and Communications Security. Springer,
2004, pp. 187–199.

[21] D. Babić, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” in Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), Toronto, ON, Canada, Jul. 2011.

[22] K. W. Hamlen and M. Jones, “Aspect-oriented in-lined reference
monitors,” in Proceedings of the third ACM SIGPLAN workshop on
Programming languages and analysis for security. ACM, 2008, pp.
11–20.

[23] M. Sridhar and K. W. Hamlen, “Model-checking in-lined reference
monitors,” in Verification, Model Checking, and Abstract Interpretation.
Springer, 2010, pp. 312–327.

130

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Building Trusted and Real Time ARM Guests Execution Environments for Mixed

Criticality

With T-KVM, a hypervisor architecture that implements an hardware isolated secure and real time environment

Michele Paolino, Kevin Chappuis, Alvise Rigo, Alexander Spyridakis, Jérémy Fanguède,
Petar Lalov and Daniel Raho

Virtual Open Systems
Grenoble, France

Email: {m.paolino, k.chappuis, a.rigo, a.spyridakis, j.fanguede, p.lalov, s.raho} @virtualopensystems.com

Abstract—The new ARMv8 architecture is targeting the server,
Network Functions Virtualization (NFV), Mobile Edge Comput-
ing (MEC) and In-Vehicle Infotainment (IVI) market segments.
At the same time, it will empower Internet of Things (IoT),
Cyber Physical Systems (CPS), automotive Electronic Control
Units (ECU), avionics and mixed criticality devices. In this
context, virtualization is a key feature to enable the cloud
delivery model, to implement multitenancy, to isolate differ-
ent execution environments and to improve hardware/software
standardization and consolidation. Since guaranteeing a strict
isolation of both the data and the code executed in Virtual
Machines (VMs) counts today more than ever, the security of the
hypervisor and its guests has become dramatically important.
This paper extends Trusted Kernel-based Virtual Machine (T-
KVM) [1], an architecture for the KVM-on-ARM hypervisor
proposed to satisfy the above market trends, in the direction
of an efficient and high performance interrupt management. T-
KVM integrates software/hardware components to isolate guest
Operating Systems (OSes) and enable Trusted Computing along
with mixed criticality in ARM virtual machines. It combines
four isolation layers: ARM Virtualization and Security Extensions
(also known as ARM VE and TrustZone), GlobalPlatform Trusted
Execution Environment (TEE) APIs and SELinux Mandatory
Access Control (MAC) security policy. In this paper, the T-KVM
architecture and its interrupt management features are described
in detail, as well as its key implementation challenges and system
security considerations. Lastly, a performance evaluation of the
proposed solution is presented.

Keywords–Trusted KVM; ARMv8 Trusted Computing; ARM
Virtualization; Mixed Criticality; Real Time.

I. INTRODUCTION

The use of virtualization in ARM platforms is rapidly
increasing due to the deployment of SoCs based on this
architecture in different environments such as: servers, Cloud
and High Performance Computing (HPC), NFV, MEC, IoT,
CPS, smart devices, avionics, automotive, etc.

Virtualization enables multiple OSes to run unmodified on
the same hardware, thus sharing system’s resources such as
memory, CPUs, disks and other devices. These resources are
frequently target of specific virtualized environment attacks
(e.g., CPU cache [2], memory bus [3] and VM’s devices [4]

[5]). For this reason, the security of the virtualized systems
is critical. Historically, isolation has been used to enhance
the security of these systems [6], because it reduces the
propagation risks in compromised environments [7].

T-KVM [1] is a novel security architecture for virtualized
systems, which adds three isolation layers (ARM TrustZone,
GlobalPlatform TEE API and SELinux) on top of the standard
VMs isolation provided by the hypervisor and provides support
for the concurrent execution of a hypervisor and a real time
operating system. The main contribution of this paper is the
analysis and benchmark of T-KVM in respect to the interrupt
management mechanisms during the concurrent execution of
two operating systems into the TrustZone execution worlds. In
fact, T-KVM targets to provide a fast and efficient interrupt
handler, which allows to meet real-time constraints while
providing high performance for the guests applications. For
this reason, the ARMv8 interrupt management basics and the
possible T-KVM implementations have been described and
analyzed in this paper, aiming to compare different interrupt
management approaches in order to select the best solution for
mixed criticality systems.

As mentioned, T-KVM proposes four isolation layers: KVM,
ARM TrustZone, GlobalPlatform TEE and SELinux. The
former is considered the most popular hypervisor deployed
in OpenStack [8], which is a key solution for Cloud, NFV
and HPC computing. KVM for ARM is part of the Linux
kernel starting from the version 3.9; it is the Linux component
that, exploiting the ARM Virtualization Extension, allows to
create a fully-featured virtualization environment providing
hardware isolation for CPU, memory, interrupts and timers [9].
TrustZone is an hardware security extension for ARM proces-
sors and Advanced Microcontroller Bus Architecture (AMBA)
devices [10] designed to drastically improve security inside the
ARM ecosystem. The extension starts from the assumption that
a system, in order to deliver secure services, has to decouple
the resources used for general purpose applications from those
that handle security assets. To this end, TrustZone creates two
hardware isolated partitions in the system: the Secure and
the Non Secure World. While the Non Secure World runs a
standard OS with optionally a hypervisor, the Secure World
contains, handles and protects all the sensitive data (credit card

131

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information, customers list, passwords, etc.) and code (e.g.,
real time tasks, ciphers functions, etc.) of the system. These
two worlds are linked together through the GlobalPlatform
TEE API [11] [12], a set of specifications for a secure Remote
Procedure Call (RPC) mechanism between the trusted and non-
trusted compartment of the system. At the time of writing,
these specifications do not support virtualization, preventing
the use of Trusted Platform Module (TPM) services inside
virtual machines. This work addresses this limitation proposing
a design of a set of virtualization extensions to enable the guest
operating systems to make use of TPM services provided by
the TrustZone Secure World. The latter T-KVM isolation layer
is Security-Enhanced Linux (SELinux), a Mandatory Access
Control (MAC) solution, which brings type enforcement, role-
based access control and Multi-Level Security (MLS) to the
Linux kernel [13]. By means of these, SELinux confines
processes in security domains, where the interaction with other
processes and files is permitted only if there is a specific
SELinux policy rule that allows it.

In T-KVM, the above technologies are combined and
adapted to work together, providing high security for guest ap-
plications and strong isolation for the Secure World OS/Real-
Time OS (RTOS), without the need of specific hardware or
software. As a matter of fact, the proposed architecture relies
on open source (KVM and SELinux) components, public
specifications (GlobalPlatform TEE Internal and Client APIs)
and available hardware features (ARM TrustZone and VE).
For these reasons, T-KVM can be easily ported to currently
available ARM platforms, such as Cloud Infrastructure systems
based on OpenStack, automotive ECU, avionics platform and
other embedded systems.

The T-KVM architecture matches perfectly with server plat-
forms and user devices but also with mixed criticality systems,
where different levels of criticality need to interact and co-
exist on a common hardware platform (e.g., infotainment and
instrument clusters in avionics, or Advanced Driver Assistance
Systems - ADAS - and web browsing in automotive, etc.),
because it makes possible to run in the Secure World a critical
security sensitive application (e.g., encryption algorithms, real
time tasks, etc.) totally isolated from the Normal world.

The remaining part of this paper is organized as follows:
Section II introduces the main security components of the
proposed architecture. Section III contains details about the T-
KVM architecture, its implementation and security considera-
tions. Section IV describes the T-KVM interrupt management
for real time and mixed criticality systems while Section V
presents a performance analysis of the overhead and interrupt
latencies of the proposed solution. The related work is pre-
sented in Section VI and Section VII concludes the paper.

II. THE SECURITY COMPONENTS

In this section, the isolation layers, which characterize the
T-KVM architecture, are described.

A. KVM hypervisor

A hypervisor is a software layer, which is able to cre-
ate virtual instances of hardware resources such as CPUs,
memory, devices, etc. in order to enable the execution of
multiple operating systems on the same hardware. Different
implementation approaches lead to different hypervisor types:
a type 1 hypervisor, is a bare metal hypervisor, which runs
directly on the hardware (XEN or VMWare ESX). A type
2 hypervisor is, on the other hand, a hypervisor, which runs
inside an operating system (Oracle VirtualBox or VMWare
Workstation) at the application layer. Usually, the latter is used
in less critical applications [14] because of its dependency from
the underlying operating system.

KVM is a hypervisor included in the Linux kernel and
available for ARM, x86 and s390 architectures. It is neither
a type 2 hypervisor because it does not run as a normal
program inside Linux, nor is a typical type 1 hypervisor,
because it relies on the Linux kernel infrastructure to run.
KVM exploits the CPU Virtualization Extensions to execute
guest’s instructions directly on the host processor and to
provide VMs with an execution environment almost identical
to the real hardware. Each guest is run in a different instance of
this execution environment, thus isolating the guest operating
system. For this reason, this isolation has been used for security
purposes [15] [16] [17] [18] in many scientific works. In the
ARM architecture, the KVM isolation involves CPU, Memory,
Interrupts and timers [9].

B. TrustZone

ARM TrustZone is a set of hardware security extensions
for ARM processors and AMBA devices. With TrustZone, the
hardware platform is split in two parts, the Secure and the Non
Secure Worlds. In order to isolate these two compartments,
TrustZone requires: CPU with ARM Security Extensions (SE)
along with TrustZone compliant Memory Management Unit
(MMU), AMBA system bus, interrupt and cache controllers.
Hence, the isolation provided by TrustZone includes CPU,
AMBA devices, interrupts, memory and caches.

The Secure World is considered trusted, and is responsible
for the boot and the configuration of the entire system. In fact,
the CPU has banked registers for each World, and security
specific configurations can be performed in Secure World
mode only. This compartment contains the root of trust of
the system and protects sensitive data. The access to AMBA
peripherals such as fingerprint readers, cryptographic engines,
etc. can be restricted only to the Secure World, thus protecting
security devices.

On the other hand, the Non Secure World is intended to be
the user’s World. In this untrusted compartment, a standard
operating system (i.e., Android or Linux) is run. Security
sensitive operations such as the access to a secret or the
interaction with a real time task are provided to the user’s
application running in this compartment by the services run in
the Secure World.

132

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These two compartments interact with each other through
a specific CPU mode, namely the Monitor Mode. It typically
runs a secure context switch routine and is capable of routing
interrupts, depending on the configuration, either to the Secure
or Non Secure World.

Moreover, the use of the ARM VE Extensions, and conse-
quently of KVM, is possible only in the Non Secure World.

ARM TrustZone is compliant with the GlobalPlatform TEE
System Architecture specification [19], which defines the at-
tributes that the hardware must have to properly execute a
TEE.

C. GlobalPlatform TEE

GlobalPlatform specification defines the TEE as an ex-
ecution environment, which provides security features such
as isolated execution, integrity of Trusted Applications (i.e.,
applications run in the TEE) along with confidentiality of
their assets [19]. This is done by means of specific hardware
capabilities of the system, such as ARM TrustZone. The TEE
protects Trusted Applications (TA) and their data from the
Rich Execution Environment (REE), the environment where a
standard operating system such as Linux or Android is run.
Figure 1 depicts the standard architecture of a GlobalPlatform
TEE compliant system.

Figure 1. Standard TEE architecture

In order to isolate the TEE from the REE, GlobalPlatform
provides a set of specifications, which include the following
software components [11] [12]:

• The Trusted Core Framework is a common abstraction
layer, which provides to the TEE Internal API OS-like
functions, such as memory management, entry points
for TAs, panic and cancellation handling, TA properties
access, etc.

• The TEE Client API is an Inter Process Communication
(IPC) API that deals with the communication between
the REE and the TEE. It allows the applications in
the REE (Client Applications or CAs) to leverage the
services offered by the TEE.

• The (TEE and REE) communication agents provide
support for messaging between the CAs and the TEE.
They interact with the Monitor mode to request a context
switch between the two Worlds.

• The TEE Internal API allows the TAs to leverage the
services offered by the TEE through the following APIs:
Trusted Storage for Data and Keys, TEE Cryptographic
Operations, Time, and TEE Arithmetical.

Lastly, it is worth to mention that the deployment of a
GlobalPlatform compliant solution enables the use of existing
TA and CA applications. This a is very important factor,
especially in an environment such as the embedded trusted
computing, where by tradition the security solutions were
developed each time from scratch to address new device
families.

D. SELinux

SELinux is a software implementation of the MAC secu-
rity policy available in the Linux kernel as Linux Security
Module (LSM). The key feature of MAC is that the access
control decisions are not at discretion of individual users, root
included [13]. Thus, once the system security policies have
been defined and loaded at boot time in the kernel, they can
not be modified. In this way, the subject (e.g., a process) access
to objects (e.g., file, socket, etc.) is enforced in the system.

The very same concept can be applied to virtual machines
using sVirt, which is a feature of the libvirt library. sVirt
installs a set of virtualization specific security policies and
automatically tags VMs and their resources in order to isolate
guest systems. This isolation prevent any access to VM’s
resources (disk/kernel files, shared memory, etc.) from external
subjects (other VMs, the root user, etc.).

For this and for performance reasons [20], the use of
SELinux in virtualized systems is encouraged.

III. THE TRUSTED HYPERVISOR: T-KVM

T-KVM is a secure hypervisor architecture based on KVM,
which combines a Trusted Computing solution such as Trust-
Zone with GlobalPlatform TEE and SELinux, to enable both
Trusted Computing and RT support for ARM based platforms.
In Figure 2, all the components described in Section II are
shown together, composing the T-KVM architecture.

In T-KVM, the GlobalPlatform TEE and REE are respec-
tively implemented inside the TrustZone Secure and Non
Secure Worlds. For this reason in the remaining part of this
paper, Secure World/TEE and Non Secure World/REE are used
as synonyms. These two hardware-isolated environments are
linked together with a virtualization-enabled implementation
of the GlobalPlatform TEE specifications. The virtualization
provided by KVM further isolates the user’s applications,
enabling the use of different operating systems. This eases
multitenancy in server and Cloud environments, and enables
BYOD paradigm in smart devices. In addition, SELinux iso-
lates in software the virtual machines, protecting guests and

133

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

their resources from the other virtual machines and the host
itself (e.g., malicious cloud administrators, host privilege esca-
lation exploits, etc.). Lastly libvirt, the main virtualization API
used by OpenStack to interact with KVM, takes automatically
care of the policy configuration and the tag assignment through
its component sVirt.

Figure 2. T-KVM architecture, which includes KVM, TrustZone, SELinux
and virtualized TEE

A. Implementation details

The following part of this manuscript lists the T-KVM
implementation challenges and proposes viable solutions.

1) Trusted boot: The first step of the system’s chain of
trust is performed during the boot procedure. In fact, when
the machine boots, the security configuration of the system is
not yet in place, and as a result the system is vulnerable to
attacks, which target to replace the boot procedure.

In order to minimize this risk, the T-KVM’s first stage
bootloader is a tiny program stored in a on-chip Read Only
Memory (ROM) along with the public key needed for the
attestation of the second stage bootloader. Since the first
stage bootloader is stored in a read-only memory, it can not
be updated and, therefore, it is critical for the security of
the system. Soon after the initialization of the key system
components, it checks the integrity and boots the second
stage bootloader, which is located in an external non-volatile
memory (e.g., flash memory). The second stage bootloader
then loads the real time microkernel binary in the system’s
Secure World memory and boots it.

The third stage bootloader of the T-KVM Trusted boot
mechanism is a Trusted Application inside the TEE. In fact,
when the Secure World OS is up and running, a specific TA
checks the integrity of the Non Secure World OS binary (i.e.,
the Linux kernel) and its bootloader (fourth stage). If this last
security check is successful, the fourth stage bootloader runs
the Non Secure OS and the system can be considered running.

On the other hand, if only one of these checks fails, the boot
process will be stopped and the machine will enter in a secure
and not operational state. Figure 3 shows the T-KVM Trusted
boot chain of Trust.

Figure 3. T-KVM Trusted boot procedure

The Trusted boot process is the key element for the attes-
tation of the user space applications because it ensures the
integrity of the chain of trust. T-KVM runs in the TEE an
attestation service, which is able to check at any moment
the integrity of its key components i.e., QEMU, libvirt, the
VMs and their resources, etc. libvirt in particular, is extended
to attest the VMs identity and integrity in an event-driven
manner (e.g., a new VM is booted/shut down, a new device
is plugged into the guest, etc.), assuring to users and cloud
administrators/providers the authenticity of the workloads run
on the hardware. The security assets (fingerprints, keys, etc.)
of these binaries are stored in the Secure World and by
consequence can be easily updated when necessary.

2) GlobalPlatform TEE support for virtualization: The main
novelty introduced by T-KVM is the support for Trusted
Computing inside the Virtual Machines. The virtualization
of the TEE functions is of utmost importance for the T-
KVM architecture, because it links together the applications
run in the VMs with the secure/RT services available in
the TrustZone Secure World. At the time of writing, the
use of the TEE functions in guest operating systems is not
included in the GlobalPlatform API Specification. To enable
this feature, T-KVM virtualizes the GlobalPlatform TEE APIs,
executing the TEE Client API directly in the Guest Operating
System. In order to be as much as possible compliant with
the GlobalPlatform Specification and to be able to run CAs
also at the host level, T-KVM TEE Client API is the only
virtualization aware component.

This awareness needs support from the hypervisor infras-
tructure, for this reason, as depicted in Figure 4, a specific
QEMU device is used to implement the TEE control plane and

134

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set up its data plane. All the requests (e.g., initialization/close
session, invoke command, etc.) and notification of response
are sent to the TEE Device, which delivers them either to the
TAs or to the CAs running on the guest OS. To provide good
data throughput and latency performance, the data plane is
based on a shared memory mechanism. Thus, when a response
notification arrives from the TrustZone Secure World, the TEE
device notifies with an interrupt its driver, which forwards
the related information to the Guest-Client Application. The
Guest-CA is now able to read the data from the shared memory,
without involving the TEE device in the data transfer.

Figure 4. TEE support for Virtual Machines in T-KVM

3) Shared memory: T-KVM needs a zero copy shared
memory mechanism to share data between the two TrustZone
Worlds and between the virtual machine and the host. The
latter in particular is very important in systems where VMs
need to communicate with each other frequently (e.g., NFV,
HPC, MEC, etc.). Host-guest only shared memory mechanisms
which provide high performance and low latency already exist
for the KVM hypervisor [21] [22]. What these mechanisms
actually lack is the support for TrustZone and, therefore, they
are not able to support communication between the TrustZone
Non Secure and Secure worlds.

By design, the TrustZone Secure World is able to access
the full Non Secure World address space. For this reason, the
Trusted Applications are not able to read/write the content
of the VMs shared memory unless they know the address
where the shared memory area begins. In order to pass this
information, the TEE device control plane extends the T-
KVM shared memory mechanism, enabling it to send the
shared memory address to the Secure World applications. This
mechanism need to be secured, especially in the Non Secure
World, to prevent attacks and information leakage. T-KVM
relies on SELinux to define specific access rules for shared

memory and to enforce the shared memory access only to the
interested parties.

The encryption of the shared memory area is consciously not
considered because, unless hardware accelerators are present
in the platform, there would be a performance loss.

4) Secure World: One of the most important parts of the
T-KVM architecture is the software running in the TrustZone
Secure World. The operating system running in the Secure
World should be fast, secure, real-time and free of program-
ming errors (implementation correctness).

The T-KVM architecture empowers the Secure World envi-
ronment with a real time microkernel. The primary motivation
behind microkernels is the small code footprint, which lead
to a smaller attack surface and an easier process of formal
verification of the code. Moreover, thanks to their real time
capability, they enable the deployment of T-KVM in mixed
criticality environments such as avionics and automotive. In
this context, good candidates are for example seL4, an open-
source third-generation microkernel based on L4 and formally
verified for functional correctness [23], or FreeRTOS [24] one
of the most popular real time operating system for embedded
systems.

The microkernel will run in its user space the implemen-
tation of the GlobalPlatform APIs, the secure device drivers
and the TAs. In order to do this, the Secure World OS does
not use the main platform storage device to store files and the
security assets of the system. An external, non-volatile memory
configured by the Secure World as not accessible by the Non
Secure World, is used to this purpose.

Finally, a possible alternative to microkernels is a secure
library running in the Secure World such as OPTEE [25].
Despite this solution has a code footprint even smaller than
a microkernel, T-KVM uses a microkernel because of its real
time features and a higher flexibility for TA developers.

B. Security considerations

Virtual Machines are widely used because of their flexibility
and capability to run any operating system. Nonetheless, in
order to achieve a higher security level of the system, it is
suggested to run single-application operating systems in the
T-KVM virtual machines. An example of such an operating
system is OSv [26], an open source solution, which is going
to be ported to the ARM v8 architecture. For this reason, this
work does not discuss the security of the applications inside
the virtual machines.

The threat model considered in this paper allows the attacker
to completely control one or more virtual machines, both at
user and kernel space level. In addition, the cloud adminis-
trator, who is permitted to remotely control the virtualized
system, is considered as a potential attacker for the identity
and integrity of the data.

The security of T-KVM is based on two main assumptions:
the attacker does not have physical access to the virtualized
system and the first stage bootloader is flawless (thus, the chain
of trust is not compromised).

135

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T-KVM has been designed to be compliant with additional
hardware accelerators and security modules. For example,
SecBus [27] can be used to protect the system against physical
attacks on the memory components (e.g., cold boot), Direct
Memory Access (DMA) attacks and on-board probing of
the external memory bus. Solutions like Network-on-Chip
(NoC) Firewall [28], can enhance the compartment isolation
granularity at VM level, protecting the system against logical
attacks (virus, Trojans) or security vulnerabilities, e.g., cor-
rupted DMA engines.

IV. THE T-KVM INTERRUPT MANAGEMENT

This section describes how the proposed architecture aims
to minimize the interrupt latencies in order to meet real time
constraints by providing fast responses.

A. T-KVM interrupt allocation

ARM v7, v8 and earlier architectures have been designed
to support two interrupt types: the Fast Interrupt Request
(FIQ) for low latency interrupt handling, and the more general
Interrupt Request (IRQ), which is commonly available also in
other architectures.

The former has higher priority (IRQs are automatically
masked by the CPU core when an FIQ arrives) and can
directly use some banked registers without the overhead of
saving/restoring them through push/pop instructions.

T-KVM takes advantage of the ARM architecture interrupt
management design [29], by programming the Secure world
to respond only to FIQs and the Normal world to handle IRQs
only. This allows critical applications to benefit from fast and
high priority interrupts, while isolating them from the Non
Secure IRQs.

Lastly, is to be said that the ARM v8 architecture adds
the possibility to assign interrupts exclusively to the Monitor
(ARM v8 Exception Layer 3). This is an interesting feature
for solutions like T-KVM, because it enables the system to
isolate interrupts addressed to the Secure World from interrupts
addressed to the TrustZone monitor. However, currently avail-
able platforms equipped with the Generic Interrupt Controller
version 2 (GICv2) such as the ARM JUNO board do not
support this feature. T-KVM has been designed to run on
existing platforms, and will be adapted and extended when
platforms equipped with GICv3 [30] will be available.

The following subsections describe the basic interrupt han-
dling mechanisms for each type of the world execution.

B. Secure World interrupt handling

During the execution of the Secure World, IRQs and FIQs
are enabled. FIQs interrupts are handled by the RTOS (red
arrow in Figure 5), while IRQs are redirected to the Monitor
(green arrow in Figure 5). This minimizes the FIQ interrupts
latency during the Secure World execution, because these
are directly caught in the handler of the critical application,

avoiding any context switch overhead. On the other hand, if
an IRQ occurs during the Secure World execution, the Secure
OS is preempted and the IRQ is caught in the monitor. At
this point, in order to handle the IRQ to the Normal World,
the monitor will provoke a context switch by saving the
Secure World context and restoring the Normal World, before
executing its IRQ handler.

Figure 5. Exception interaction during the Secure world execution

This interrupt management allows IRQs to preempt the
Secure world execution when the critical application does not
execute a sensitive part (e.g., when it is executing a FIQ
handler routine). However, in some specific cases, IRQs can
be disabled to prevent the Normal World from interrupting
the execution of the Secure World. In that case, the Normal
world executes only when there is an explicit request from the
Secure world. This is achieved through the Secure Monitor
Call instruction.

C. Normal World interrupt handling

Similarly to what happens in the Secure World, both FIQs
and IRQs are enabled during the execution of the Normal
World: IRQs are directly handled in the Normal World (green
arrow in Figure 6) while FIQs are redirected to the TrustZone
monitor (red arrow in Figure 6). When a FIQ occurs, the Non
Secure OS is immediately preempted in order to propagate
the FIQ to the Secure World as soon as possible. This lowers
latencies and helps the critical application to meet real time
constraints. At this point, the FIQ is caught in the monitor,
which executes a world context switch, by saving the Normal
World context and restoring the Secure World one, in order to
handle the FIQ.

During the FIQ handling into the monitor layer the FIQ
mask is enabled and prevents any preemption by another FIQs
having higher priority. Then, once the execution control is
given to the Secure world, the FIQ management is handled
by the trusted application. Therefore, the Secure world could
decide to disable the FIQ mask when the critical part is over.

So, once the control is given to the Secure world, the
FIQ management is overseen by the FIQ handler of the
secure application. Therefore, the Secure world could decide to
disable the FIQ mask when the critical part of its FIQ handler
is over.

136

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Exception interaction during the Normal world execution

V. EXPERIMENTAL RESULTS

In this section, the result of experimental tests performed
on a T-KVM prototype are shown and analyzed. These per-
formance measurements have been performed on an ARMv8
Juno board, which is equipped with two Cortex-A57 and four
Cortex-A53 in big.LITTLE configuration. All the workloads
for the performance analysis have been executed on the Cortex-
A53, which is the default CPU that the platform uses to execute
the Secure World OS.

A. SMC propagation

The different isolation layers, which compose T-KVM pro-
vide high security, but at a cost of additional overhead. As a
matter of fact, a request for a security service from a virtual
machine has to pass through the TEE, the host system and
SELinux to arrive in the TrustZone Secure World.

For the T-KVM performance analysis of this paper, we fo-
cused on the hardware isolation provided by the hypervisor and
TrustZone, as the SELinux performance has been measured
by the authors in the past [20], and the TEE overhead will be
detailed in future works.

For this reason, following the path of a Secure Monitor Call
(SMC) from the guest to the Secure World (and then back in
the guest) we measured the overhead introduced by T-KVM.

SMC has been added to the ARM instruction set by the
ARM Security Extension and it is used to request the execution
of a software routine in the TrustZone Secure World passing
through the TrustZone Monitor. In the standard KVM imple-
mentation, when the SMC instruction is run by a guest OS,
its execution is trapped by KVM, which injects an undefined
instruction in the guest, forcing it to handle this accordingly. In
T-KVM instead, when such instruction is run, the hypervisor
traps the guest SMC execution, modifies its arguments and
forwards them to the TrustZone Secure World.

In this scenario, two SMC context switches are involved:
firstly from Guest to Host, then from Non Secure to Secure
World Mode. The overhead assessment of these two context
switch operations is the target of the following analysis.

For the first measurement, we implement a bare metal binary
blob for KVM, which initializes the Performance Monitoring
Unit (PMU) and executes the SMC instruction in the guest.

The SMC is then trapped by KVM, which has been modified
to immediately return the control to the VM. As soon as the
program flow returns back to the guest, it checks the PMU
cycle counter status and calculates the overhead. In this way,
we are able to measure the overhead of a round-trip context
switch between the Guest and the Host when an SMC call is
executed.

On the other hand, for the measurements of the context
switch overhead between the Non Secure and the Secure
Worlds, the PMU cycle counter is set by a Linux kernel
module in the host, which executes soon after the world switch
request (i.e., the SMC instruction). This provokes an additional
switch to the TrustZone Monitor, which saves the Normal
World registers, loads the Secure World status and finally
jumps to the Secure World. In order to measure the T-KVM
context switch cost and not add further overhead, the Secure
World immediately runs the SMC call, without executing any
meaningful operation. When this instruction is executed in the
Secure World, it provokes again a switch to the Monitor Mode,
which will now save the secure world context, restore the non
secure context, and jump back to the Non Secure World. As
soon as the context switch is completed, the Linux kernel reads
the PMU cycle counter state and computes the overhead.

The results of both of the above measurements are defined
minimal because they are not considering any additional work
performed at the destination where they are trapping to.
Moreover, in both cases the system frequency is fixed at boot
time. However, it is to be considered that, in a real scenario,
a trap is followed by the execution of emulation code for a
Guest-Host trap, or some secure service for a Non Secure-
Secure trap.

Figure 7. T-KVM overhead measurements

Each test has been repeated five hundred times, running
Linux version 3.17 in both the host and the guest environments.
ARM Trusted Firmware [31] has been used as firmware
infrastructure.

Figure 7 shows that for a Secure request, which is the sum

137

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the two measurements described before in this section, the
cost is in average 5200 clock cycles. This value represents
the minimum overhead that a guest system has to pay to
request a secure service to the T-KVM Secure World (the
Guest-Host minimum overhead is about 1400, while the Non
Secure-Secure is about 3700). This has been compared with
the minimum overhead that KVM spends to trap the SMC
instruction and perform a context switch between the guest and
the host, which is what has been described above in the Guest-
Host context switch measurement description. This result (in
average about 1400 clock cycles) has been measured with the
SMC instruction, but it is valid for all the instructions trapped
in KVM, as we did not add any specific code to trap the SMC
instruction to the standard KVM implementation.

Finally, it is important to notice that the Non Secure-Secure
context switch is 2.5 times slower than the Guest-Host. The
main reason for this behaviour is in the number of instructions
needed to complete the two operations. In particular, the
number of registers that the system has to save and restore
for the Guest-Host context switch is significantly lower.

B. FIQ latency

As described in the Section III, the T-KVM architecture
isolates the time critical applications in the TrustZone Secure
World. For this reason, the following performance analysis is
focused mainly on the interrupt latencies at the Secure World
side, where a RTOS is running.

The proposed architecture, uses FIQ interrupts only for the
RTOS, for the reason explained in Section IV. However, the
allocation of Fast Interrupts to the RTOS can be implemented
in different ways. Hence, following the FIQ path from the
vector table to the end of FIQ handler in the Secure world,
the overhead introduced by the T-KVM interrupt management
has been compared with the performance of different possible
implementations:

• RTOS only This case represents the T-KVM inter-
rupt management described in Section IV, where FIQs
interrupts are handled by the RTOS, while IRQs are
redirected to the Monitor.

• Monitor/RTOS As above, FIQs are caught in the
Monitor. However, in this case, the monitor does not
acknowledge the interrupt if the FIQ is not dedicated
to the monitor. It forwards FIQs directly to the Secure
world, before disabling FIQ trap in the monitor layer
(EL3). Therefore, if the FIQ is redirected to the Secure
world, the FreeRTOS FIQ handler has to generate an
additional SMC at the end of FIQ process in order to
return in the monitor to re-enable FIQ trap.

• Monitor only The TrustZone monitor (EL3) has full
control of the FIQs. FIQs are always trapped in the
monitor vector, which can read/write GIC registers to
manage the FIQ (activation, acknowledgement, etc.). If
the FIQs is not for the Monitor itself, it propagates the
FIQ to the Secure world (FreeRTOS).

For all the different FIQ paths described above, a system
timer has been programmed to generate periodic interrupts
used by the FreeRTOS Tick management to schedule different
real-time tasks. Moreover, the FIQ handler installed on the
FreeRTOS side, is the same for all tests.

Two different test cases will be taken in consideration for
each possible implementation. The first is the measurement of
the FIQ latency when the interrupt occurs during the execution
of the Normal World (and thus requires a world context
switch), and the second is the measurement of the FIQ process
time when it occurs during the execution of the Secure world.
Moreover, to avoid any cache impact on the results, instruction
and data cache memories have been disabled for all the tests.

Moreover, the measurements are split in three parts, each
one representing the state of the time at a specific phase:

• ”FIQ trigger” is the time to trig the FIQ in the vector
table when the timer reached a specified value.

• ”FIQ propagation in the monitor” is the time for the
monitor to execute some operations to manage the FIQ
before to redirect it to the Secure world.

• ”FreeRTOS FIQ processing” is the time execution of
FIQ handler in FreeRTOS to process the Tick manage-
ment.

The Timer is set in free-running mode with a frequency of 50
MHz.

Figure 8. FIQ latency measurements during the Normal world execution

138

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. FIQ latency measurements during the Secure world execution

Each test has been repeated one hundred times, running
Linux/KVM version 4.0 in the Normal World and a FreeRTOS
v8.2.1 in the Secure World. The code needed to run FreeRTOS
on the ARM Juno board has been shared by Virtual Open
Systems with the FreeRTOS community [32]. Moreover, a
modified version of ARM Trusted Firmware [31] developed by
Virtual Open Systems, also publicly available as open source
software [33], has been used as firmware infrastructure for the
monitor layer.

Figure 8 and Figure 9 show that all ”FIQ trigger” parts have
approximately the same value for all different tests. This is
expected because it corresponds to the hardware time needed
to generate the FIQ, and as a consequence it not influenced by
the chosen software implementation. Moreover, it is important
to notice that the timer value measured to determine the
”FIQ trigger” time has been taken after the execution of few
instructions in the vector table handler. So, the value is slightly
larger that expected.

About the result of different tests during the execution of
the Normal world, Figure 8 shows that the software solution
implemented in the Monitor only case has no impact on the
total FIQ handling time compared to the basic implementation
in the RTOS only. However, the ”FIQ propagation in the mon-
itor” time is more important in the Monitor only case because
the monitor executes some instructions, which are normally
executed in the FreeRTOS FIQ handler. For the Monitor/RTOS
test, there is no overhead during the ”FIQ propagation in the
monitor” part because, as the FIQ is dedicated to the Secure
world, it forwards directly the FIQ to the FreeRTOS. In this
case, an additional communication is implemented to re-enable
FIQ trap in EL3 at the end of FreeRTOS FIQ handler and
Figure 8 shows that this solution adds an important overhead
in the ”FreeRTOS FIQ processing” part.

Additionally, in the case where the FIQ occurs during the
execution of the Secure world, Figure 9 shows that the ”FIQ
propagation in the monitor” time is lower than the same
test realized during the Normal execution. This is expected
because, as the world interrupted is the Secure and the monitor
redirects the FIQ to the Secure world, the monitor does not
execute the context switching operation in this case. Moreover,
in the basic interrupt management of the RTOS only test, there

is no monitor execution overhead because the FIQ is directly
caught in the FreeRTOS FIQ handler.

VI. RELATED WORK

T-KVM is a hypervisor architecture, which mainly targets
security and isolation to run virtual machines and real time
tasks together on the same hardware platform. Hypervisors’
security is a controversial topic in literature. As a matter of
fact, solutions like NoHype [34] [35] propose to secure the
virtual machines removing the hypervisor, while others use
the hypervisor isolation for security applications [16] [18].
In other scientific works, when compared with TrustZone as
a security solution, the hypervisor proves a better flexibility,
e.g., the Secure World is not able to interpose on and monitor
all the important events in the Non-Secure World [17]. The
proposed architecture considers the hypervisor as an additional
isolation layer, while protecting the security assets through the
ARM Security Extensions (TrustZone). T-KVM, combining
both solutions and relying on the attestation enabled by the
secure boot’s chain of trust, is able to provide monitoring
features and high security.

In fact, attestation and integrity checks are of paramount
importance for the security systems because they allow sys-
tem designers and administrators to consider a software
component as trusted. SecVisor [36], HyperSentry [37] and
SPROBES [38] propose different solutions designed for this
purpose: the first checks the integrity of commodity OS
kernels running the attestation code in hypervisor mode, thus
not addressing virtualization. The second enables integrity
measurement of a running hypervisor (i.e., XEN) through
Intel TxT, hence targeting the x86 architecture. The latter
uses TrustZone to enforce kernel code integrity, but without
mentioning the attestation challenges in virtualized systems.

These systems are explicitly addressed by solutions such
as vTPM [39] or sHype [40], both focusing their efforts
on Intel architectures. vTPM proposes a mechanism for the
virtualization of TPM functions, which dedicates a VM to
route and manage the TPM requests, while sHype integrates
the MAC security policy directly inside a typical type 1
hypervisor (i.e., XEN).

On the other hand, the solutions proposed by Narari [41]
and Lengyel [42] are designed for ARM devices with virtu-
alization extensions. The first proposes a security architecture
with TrustZone, SELinux and virtualization, targeting resource
constrained devices. The second combines a hypervisor (XEN)
and MAC Security policies (XEN Security Modules), targeting
high isolation between VMs but without mentioning TPM
access for guest OSes. Both proposals lack of a solution to
standardize the access to TPM functions such as the TEE.

VII. CONCLUSION AND OUTLOOK

This paper proposes T-KVM, a new security architecture for
ARM v7 and v8 virtualized systems, providing architecture de-
tails and a performance analysis. T-KVM’s architecture offers
strong isolation for guest applications by means of the KVM

139

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hypervisor, ARM TrustZone, SELinux and a virtualization
enabled implementation of the GlobalPlatform TEE API. The
main contribution of this work is an analysis of the inter-
rupt mechanisms of the ARMv8 architecture with TrustZone,
along with a comparison of different possible implementations,
which have been described, developed and benchmarked.

The benefits of the T-KVM are its flexibility (programma-
bility of the guests and of the Secure World) and compatibility
with the existing Cloud and smart devices architectures (Glob-
alPlatform and KVM/libvirt support). In fact, since T-KVM
adapts and combines existing open source components which
are already part of virtualized systems and OpenStack Cloud
Computing infrastructure (i.e., KVM, libvirt, qemu, etc.), the
support of T-KVM in these environments is straightforward
to implement. Lastly, monitoring and (remote) attestation are
eased by the combination of a standard hypervisor with Trust-
Zone.

On the other hand, the lack of the ARM VE support in the
Secure World does not allow the hardware assisted virtual-
ization of the TEE. Nonetheless, it is possible to functionally
implement multiple TEE (or vTPMs) using paravirtualization
or virtualization at the application layer.

As for the analysis of the overhead introduced by the
proposed solution, it is possible to claim that the performance
cost of T-KVM is acceptable. In fact, even if the secure
request overhead is significantly higher than a trap in the KVM
hypervisor, the execution frequency of the former is expected
to be lower than the latter: a service request is issued by a
T-KVM guest only to control the communication between the
guest and the Secure World, as all the data exchanges will
be performed through shared memory. In regard to the FIQ
latency tests, the results show that all software solutions to
manage the FIQ exclusively handled at EL3 (i.e., Monitor only
and Monitor/RTOS cases) introduce overhead which impacts
on the FIQ latency. For this reason, in order to privilege
the RTOS latency response time, the interrupt management
implementation chosen by T-KVM is RTOS only.

Finally, the future work includes the implementation of
a complete T-KVM ARMv8 prototype in the direction of
automotive and avionics use cases such as infotainment or
ADAS. With this in mind a full fledged version of the shared
memory mechanism (Section III-A3), GlobalPlatform TEE
(Section III-A2) and Trusted Boot (Section III-A1) will be
developed, tested and benchmarked. Related to the interrupt
management mechanisms, this work has given us the possi-
bility to evaluate different approaches, of which the ”RTOS
only” has been selected as final solution. Unfortunately, it
still lacks of a way to assign interrupts to the Monitor mode.
This problem will be investigated in future works, exploring
software methods to overcome this limitation of the TrustZone
hardware implementation.

Of interest is also the support and integration of T-KVM in
OpenStack, which would enable a complete new set of Cloud
features based on real time and Trusted Computing services
such as real time tasks allocated to the VMs, location aware
scheduling of new instances, trusted multitenancy, etc.

ACKNOWLEDGMENT

This research work is an extension of the ”T-KVM: A
Trusted Architecture for KVM ARM v7 and v8 Virtual Ma-
chines” publication [1], awarded best paper at the IARIA
Cloud Computing Conference 2015 and supported by the FP7
TRESSCA project (grant number 318036).

This research extension has been supported by the
DREAMS project under the grant number 610640.

REFERENCES

[1] M. Paolino, A. Rigo, A. Spyridakis, J. Fanguede, P. Lalov, and D. Raho,
“T-KVM: A Trusted Architecture for KVM ARM v7 and v8 Virtual
Machines,” IARIA Cloud Computing 2015 (CC2015), 2015, pp. 39–
45.

[2] M. Wei, B. Heinz, and F. Stumpf, “A Cache Timing Attack on AES
in Virtualization Environments,” in Financial Cryptography and Data
Security, ser. Lecture Notes in Computer Science, A. Keromytis, Ed.
Springer Berlin Heidelberg, 2012, vol. 7397, pp. 314–328. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-32946-3 23

[3] B. Saltaformaggio, D. Xu, and X. Zhang, “Busmonitor: A hypervisor-
based solution for memory bus covert channels,” 2013.

[4] G. Pék, A. Lanzi, A. Srivastava, D. Balzarotti, A. Francillon,
and C. Neumann, “On the feasibility of software attacks on
commodity virtual machine monitors via direct device assignment,”
in Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ser. ASIA CCS ’14. New
York, NY, USA: ACM, 2014, pp. 305–316. [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590299

[5] N. Elhage, “Virtunoid: A KVM Guest - Host privilege escalation
exploit,” 2011.

[6] S. E. Madnick and J. J. Donovan, “Application and Analysis of
the Virtual Machine Approach to Information System Security and
Isolation,” in Proceedings of the Workshop on Virtual Computer
Systems. New York, NY, USA: ACM, 1973, pp. 210–224. [Online].
Available: http://doi.acm.org/10.1145/800122.803961

[7] M. Paolino, “Isolating ARM platforms: towards secure
virtualized embedded systems,” February 2015. [Online]. Avail-
able: http://www.cspforum.eu/uploads/Csp2014Presentations/Track
8/Strong%20Isolation%20in%20ARM%20Platforms.pdf

[8] G. Chen, “KVM - Open Source Virtualization for the Enterprise and
OpenStack Clouds,” IDC, 2014.

[9] C. Dall and J. Nieh, “KVM/ARM: Experiences Building the Linux
ARM Hypervisor,” 2013.

[10] T. Alves and D. Felton, “TrustZone: Integrated hardware and software
security,” ARM white paper, vol. 3, no. 4, 2004, pp. 18–24.

[11] GlobalPlatform, “TEE Client API Specification, Public Release v1.0,”
2010.

[12] Global-Platform, “TEE internal API Specification, Public Release v1.0,”
2011.

[13] X. Xu, C. Xiao, C. Gao, and G. Tian, “A study on confidentiality
and integrity protection of SELinux,” in Networking and Information
Technology (ICNIT), 2010 International Conference on, June 2010, pp.
269–273.

[14] A. Jasti, P. Shah, R. Nagaraj, and R. Pendse, “Security in multi-tenancy
cloud,” in Security Technology (ICCST), 2010 IEEE International
Carnahan Conference on, Oct 2010, pp. 35–41.

[15] A. Vahidi and C. Jämthagen, “Secure RPC in Embedded Systems:
Evaluation of Some GlobalPlatform Implementation Alternatives,” in
Proceedings of the Workshop on Embedded Systems Security, ser.
WESS ’13. New York, NY, USA: ACM, 2013, pp. 4:1–4:7. [Online].
Available: http://doi.acm.org/10.1145/2527317.2527321

140

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The Untapped Potential of
Trusted Execution Environments on Mobile Devices,” Security Privacy,
IEEE, vol. 12, no. 4, July 2014, pp. 29–37.

[17] C. Gehrmann, H. Douglas, and D. Nilsson, “Are there good reasons
for protecting mobile phones with hypervisors?” in Consumer Commu-
nications and Networking Conference (CCNC), 2011 IEEE, Jan 2011,
pp. 906–911.

[18] F. Liu, L. Ren, and H. Bai, “Secure-Turtles: Building a Secure Execution
Environment for Guest VMs on Turtles System,” Journal of Computers,
vol. 9, no. 3, 2014, pp. 741–749.

[19] GlobalPlatform, “TEE System Architecture v1.0,” 2011.

[20] M. Paolino, M. M. Hamayun, and D. Raho, “A Performance
Analysis of ARM Virtual Machines Secured Using SELinux,” in
Cyber Security and Privacy, ser. Communications in Computer
and Information Science, F. Cleary and M. Felici, Eds. Springer
International Publishing, 2014, vol. 470, pp. 28–36. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-12574-9 3

[21] C. Macdonell, X. Ke, A. W. Gordon, and P. Lu, “Low-Latency, High-
Bandwidth Use Cases for Nahanni/ivshmem,” 2011.

[22] M. Paolino, “A Shared Memory zero-copy mechanism for ARM
VMs:vosyshmem,” February 2015. [Online]. Available: http://www.
virtualopensystems.com/en/products/vosyshmem-zerocopy/

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: Formal Verification
of an OS Kernel,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, ser. SOSP ’09. New
York, NY, USA: ACM, 2009, pp. 207–220. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629596

[24] R. Barry, “Real time application design using freertos in small embed-
ded systems,” 2003.

[25] “OPTEE,” February 2015. [Online]. Available: https://github.com/
OP-TEE

[26] “OSv,” February 2015. [Online]. Available: http://osv.io

[27] J. Brunel, R. Pacalet, S. Ouaarab, and G. Duc, “SecBus, a Soft-
ware/Hardware Architecture for Securing External Memories,” in Mo-
bile Cloud Computing, Services, and Engineering (MobileCloud), 2014
2nd IEEE International Conference on, April 2014, pp. 277–282.

[28] M. D. Grammatikakis, “System-Level Modeling of a NoC Firewall
on Spidergon STNoC,” February 2015. [Online]. Available:
http://www.cspforum.eu/uploads/Csp2014Presentations/Track 8/
System-Level%20Modeling%20of%20a%20NoC%20Firewall%20on%
20Spidergon%20STNoC.pdf

[29] “Programmer’s Guide for ARMv8-A,” March 2015. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/
DEN0024A v8 architecture PG.pdf

[30] “Programmable Interrupt Controllers: A New Architecture,” July 2015.
[Online]. Available: http://community.arm.com/groups/processors/blog/
2015/07/27/gicv3-architecture

[31] “ARM Trusted Firmware,” February 2015. [Online]. Available:
https://github.com/ARM-software/arm-trusted-firmware

[32] “FreeRTOS v8.2.2 port (AARCH32) for ARMv8 platform (ARM
FastModel virtual platform and ARM JUNO Development
Platform) using the GCC ARM compiler (arm-none-eabi),” August
2015. [Online]. Available: http://interactive.freertos.org/entries/
83649935-FreeRTOS-v8-2-2-port-AARCH32-for-ARMv8-platform-\
\ARM-FastModel-virtual-platform-and-ARM-JUNO-Developm

[33] “Add a dispatcher for 32-bit Secure Payload,” Au-
gust 2015. [Online]. Available: https://github.com/ARM-software/
arm-trusted-firmware/pull/363/commits

[34] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized
Cloud Infrastructure Without the Virtualization,” SIGARCH Comput.
Archit. News, vol. 38, no. 3, Jun. 2010, pp. 350–361. [Online].
Available: http://doi.acm.org/10.1145/1816038.1816010

[35] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
Hypervisor Attack Surface for a More Secure Cloud,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 401–412.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046754

[36] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, Oct. 2007, pp. 335–350.
[Online]. Available: http://doi.acm.org/10.1145/1323293.1294294

[37] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.
Skalsky, “HyperSentry: Enabling Stealthy In-context Measurement of
Hypervisor Integrity,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security, ser. CCS ’10. New
York, NY, USA: ACM, 2010, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866313

[38] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing Kernel Code
Integrity on the TrustZone Architecture,” CoRR, vol. abs/1410.7747,
2014. [Online]. Available: http://arxiv.org/abs/1410.7747

[39] R. Perez and et al., “vTPM: virtualizing the trusted platform module,” in
Proc. 15th Conf. on USENIX Security Symposium, 2006, pp. 305–320.

[40] R. e. a. Sailer, “sHype: Secure hypervisor approach to trusted virtualized
systems,” 2005.

[41] H. Nahari, “Trusted secure embedded Linux,” in Proceedings of 2007
Linux Symposium, 2007, pp. 79–85.

[42] T. K. Lengyel, T. Kittel, J. Pfoh, and C. Eckert, “Multi-
tiered Security Architecture for ARM via the Virtualization and
Security Extensions,” in Proceedings of the 2014 International
Semiconductor Laser Conference, ser. ISLC ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 308–312. [Online]. Available:
http://dx.doi.org/10.1109/DEXA.2014.68

141

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Dichotomy of Decision Sciences in Information Assurance, Privacy, and

Security Applications in Law and Joint Ventures

Simon Reay Atkinson

Centre for International Security Studies,

 FASS, University of Sydney,

Sydney, Australia

e-mail: simon.reayatkinson@sydney.edu.au

Gregory Tolhurst

Faculty of Law

University of Sydney

Sydney, Australia

e-mail: greg.tolhurst@sydney.edu.au

 Liaquat Hossain

 Information Management

Division of Information and Technology Studies,

 The University of Hong Kong

 Hong Kong

 e-mail: lhossain@hku.hk

Abstract— Research and practice in decision sciences can be

viewed from the dichotomy that exists in decision making and

decision taking, where decision making is considered as

consensus driven process and decision taking is considered as

an act. We build upon a conceptual paper presented at

INFOCOMP 2014 considering Law as different types of

network and how an understanding of these networks, at the

systems level, might assist in decision making and taking

processes necessary for: information assurance; privacy; and

security applications in Law – as may be applied in Cyber

through emerging legal networks. We first identify the systems

we might be working with before considering Law as a

networked ecology. We then look at law beyond existing stable,

more certain and ruled jurisdictions and how it might be

applied to decision making and taking in Cyber. We consider

an example of how law may apply in areas of uncertainty and

where existing jurisdictional remits may no longer apply, e.g.,

in stateless jurisdictions or those impacted by instability and

uncertainty following a disaster. We conclude by considering

how Legal Networks may assist in the decision making, taking

and social problem solving processes in Cyber and so

contribute to system resilience.

Keywords-Collaboration; Network Law; Stateless Jurisdictions;

Fuzzy Logic; Ecologies; Good Faith.

I. INTRODUCTION

This paper considers Law as comprising different
networks and how an understanding of these networks at the
systems level might assist in the decision making and taking
processes with particular application in addressing complex
problem solving such as recovery from recession and in
Cyber [1]. We first identify the systems we might be
working with before considering Law as a networked
ecology. We note that Europe has two different types of
jurisdictional systems identified as Common Law and
Statutory / Codified Law. We suggest that in recovering from
recession, both these ‘conceptual and normative tools [will
be necessary] to [re]connect…Europe to its institutional
design’ [2]. Furthermore, having both Common and Statutory

Law may provide a unique European co-adaptive [3]
advantage by providing the essential variety [4] for complex
problem solving. Regeneration of Europe without enabling
interaction between the two codes would potentially ‘exclude
large groups of citizens from the political process, but also,
in the long run, destabilize and delegitimize the
European…project’ [2]. As John Dunne [5] comments, ‘if a
clod be washed away by the sea, Europe is the less’. This
paper looks at law as networks and the lacunae that exist
between and beyond largely state-based jurisdictions, e.g., in
Cyber. We consider how such an approach might be applied
to better managing instabilities, such as containing or
preventing an epidemic or recovery from recession. We
identify examples of how law and civil infrastructures and
their associated networks may interact. We conclude by
considering Jurisprudential Networks and Network Law and
how their ecology may exist with similarly entangled legal
networks.

Combined, the authors are thematic leads in the areas of
complex systems, contract law, digital and cyber ecologies,
the management of knowledge including commercial law,
restitution and dynamic social networks. The authors bring
this knowledge to bear in the emerging area they posit to be
‘Network Law’ and ‘Jurisprudential Networks’. Section II
identifies the legal statutory and network systems and
structures we may be working within before in the next
section examining law as a network. We then consider Law
where it presently stands and as it may be applied in areas
beyond the state and thereby more certain jurisdictional
controls and enforcement. Finally, we consider what may be
termed ‘Cyber-in-Law’ and scope how such legal ecologies
may emerge and may assist the decision making and taking
process.

II. SYSTEMS IDENTIFICATION

Communications literature maintains that hierarchical
structures provide a superficial representation of how work
actually gets done [6]. Similarly, Stacey [7] posits that
dynamic organizations should be viewed as a collection of

142

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

informal social networks (i.e., shadow structures beneath the
formal structures); so allowing their elasticity to sustain
continuous innovation and learning [8]. Also, taking
Granovetter’s [9] notion of the importance of strong and
weak ties, we suggest the economic sociology of system
identification and argue that weak signal detection could
serve as proactive strategy for exploring ‘Network Law’ and
‘Jurisprudential Networks’ in cyber. Using this as a basis for
system identification, we consider decision making and
taking as to ‘how work gets done in networks’; ‘how work
may be organizationally gradated within Law’, and finally, in
terms of the two predominant ‘codes’ of law.

A. Abbreviations and Acronyms

Within organizations and networks, we consider one of
the underlying principles to be that of trust and the trusts
established between networks to allow systems to work
without being ordered to do so. These systems we contend
extend to include Law and its application. As identified by
Shaw [10]:

Perhaps the most important general principle,
underpinning many international legal rules is that of
good faith. This principle is enshrined in the UN
Charter, which provides in Article 2(2) that “all
Members…shall fulfill in good faith the obligations
assumed by them in accordance with the Charter”.

Similarly, the International Court declared in the Nuclear

Tests case [11], inter alia:
One of the basic principles governing the creation and
performance of legal obligations, whatever their source,
is the principle of good faith. Trust and confidence are
inherent in international co-operation [we call
collaboration], in particular in an age when this co-
operation in many fields is becoming increasingly
essential. Just as the rule of pacta sunt servanda
[agreements must be kept] in the law of treaties is based
on good faith, so also is the binding character of an
international obligation assumed by unilateral obligation
[12].

These understanding of trust are very similar to those

developed by Augustin José Menéndez where he states, inter
alia:

The first [instrument] is the instrumental inclusion of
trust. From the political perspective, trust needs to be
developed in the EU, to legitimize majoritarian and
redistributive politics and strengthen center-periphery
relations. Trust both enhances societal compliance with
transnational norms of cooperation and conformity, and
at the same time provides the common framework in
which transnational cooperation enables the construction
of social institutions. This is…the implicit trust and
understanding that comes from a continent full of
citizens that interact, on a continuous and intuitive basis.
And that sense of mutual trust that comes from
communication, and communication alone, can further
stabilize both the European space and legitimize the
Union’s position in it [2].

Mumford [13] considered an important risk factor to be
trust: ‘because innovation is frequently a journey into the
unknown, trust is a major factor in its successful
assimilation’. Contrastingly, Giddens [14] defines trust as
‘confidence in the reliability of a person, or system,
regarding a set of outcomes or events’ and Mumford further
observes ‘risk and trust are inextricably intertwined’.
Considering good faith as combining trust and confidence
and taking forward Mumford, Giddens and Mintzberg’s
[13]-[15] understanding, it is suggested that:

‘Trust may be a function of the Likelihood of a person or
system being able to comprehend, explain, understand
[risk] by logic and deal with a set of outcomes or events’
[16].
Therefore, Risk may be considered as obverse to Trust:
‘Risk may be a function of both the Likelihood of an
adverse event occurring and a system or person’s ability
to comprehend, explain and understand [risk] by logic’
[16].
We posit (after Hossain & Wigand [12]) that

organizations need to be seen as dynamic (elastic and plastic)
social-influence networks (SINners!) In these collaborative
[16] networks, complex operations (requiring tacit
knowledge exchange [17]), are achieved through social (and
in this respect, also cyber-) interactions beneath the formal
hierarchical control structures. Co-adaptive [3] viability in
maintaining operational effectiveness and efficiency [18]
may therefore depend more on how we socialize and
capitalize ‘our’ formal (hierarchical) and informal (social)
networks to achieve shared common goals. In this paper, we
consider law as a network applying both formal coordination
by control and rule (CRC) and informal collaborative social
influence (CSI) networks [19]. We further identify, building
on work by Harmaakorpi et al. [20] a ‘techno-socio-
economic paradigm’, aligning significantly to CRC
networks, in which:

‘Info/Techno-Socio (ITS) systems seek to program (as
opposed to programme) the relationship between
technical processes and humans by digitizing
performance fidelity and coding for repeatable risk free
procedures in computer-control-spaces so that data and
communication do not [temporally] contradict each
other’ [16].

Info/Techno-Systems [21] are seen to be ideal for

achieving “in time” coordination by control and rule (CRC).
By contrast Socio-Info/Techno systems are seen to be
capable of enabling collaboration (CSI), “over time”, in
which:

‘Socio-Info/Techno (SIT) systems stress the reciprocal
interrelationship between humans and computers to
foster improved shared awareness for agilely shaping
the social programmes of work, in such a way that
humanity and ICT [control] programs do not contradict
each other’ [18].

Based on this understanding of the Cyber combining both

CRC / ITS and CSI / SIT networks, it is considered Cyber-
may be defined as:

143

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

‘A technologically bounded, largely immeasurable,
strongly scientific, stochastic control space; comprising
virtual-media and the display of data dealing with the
real communication of facts and the conceptualization
of other plausible possibilities, themselves capable of
generating strong physical and weaker more social
effects and influencing them’ [22].

III. JURISDICTION AND JURISPRUDENCE

We consider Jurisdiction (from the Latin ius, iuris
meaning ‘law’ and dicere meaning ‘to speak’) as the
practical authority granted to a formally constituted legal
body to make pronouncements on legal matters and to
administer justice within a defined legal environment. It also
refers to the inherent authority of a court to hear a case and
to declare a judgment and the [sovereign] power to govern or
legislate; make or enforce laws and the power / right to
exercise authority in that environment.

We take a more specific understanding of Jurisprudence
(juris prudentia) as being about the ecology of law, including
its cultural and social underpinnings. In this understanding,
we consider jurisprudence as acting in two interconnected
ways:

1. Interstitial issues of law as a social organization and
legal instrument relating to the local political, sûréte
(considered in the French as including assurance,
sureness, trusts, reassurance, safety and security) and
economic (PŜE) [23] global social ecology in which it
functions.

2. Existential issues of law as a social institution and
legal system relating to the global political, sûréte and
economic social ecologies in which it functions.

A. Statutory / Codified (Roman) Law and Common Law

We identify two predominant systems of law:
1. Common (Customary) Law is a system of laws
originating from the English Commonwealth (or
‘common weal / good’) and based on court decisions, on
the doctrines implicit in those decisions, and on customs
and usages rather than on codified written laws. It is
underpinned by a jurisprudential body of law
responsible for socializing judicial decisions and
customs, as distinct from those of statute law. Common-
law courts base their decisions on prior judicial
pronouncements rather than on legislative enactments.
Under the doctrine of stare decisis, common-law judges
are obliged to adhere to previously decided cases, or
precedents, where the facts are substantially the same.
Customary practice allows common law to adapt to the
local ecology; at the same time, stare decisis provides
certainty, uniformity, and predictability and makes for a
stable jurisdictional environment;

2. Civil / Codified (Statutory) or Roman (Latin) Law is
a legal system originating in Western Europe,
intellectualized within the framework of ‘late Roman
law’ (the Code of Justin overlaid by Germanic law and
local environmental practices). The most prevalent

feature is that its core principles are codified into a
referential jurisdictional system, which serves as the
primary source of law. This contrasts with ‘common law
systems’ whose intellectual framework comes from
judge-made decisional law giving precedential authority
to prior court decisions. Codified or Statutory law is
written (as opposed to oral or customary); set down by a
legislature / legislator and approved by its law creating
jurisprudential body. Conceptually, codified law
proceeds from social abstractions; to formulate general
environmental principles that distinguish substantive
(formal / statutory) from procedural (informal /
customary) rules. It holds case law to be secondary and
subordinate to statutory law. Consequently, the judicial
ecology is socially inquisitorial and unbound by
precedent.

IV. LAW AS NETWORKS

From the above systems analysis it is possible to consider
three different network ecologies operating across the law:

1. Network Law we consider to be: programmable /
downloadable and to exist within current jurisdictions;
connecting between existing jurisprudences and
jurisdictions. It is codified / programmed entirely or
largely by CRC / ITS systems, in which the main
interaction is between IT, and IT and human users – with
minimal involvement from the legal system, lawyers and
solicitors.

2. Jurisdictional Networks we consider to ‘have the
authority and responsibility for making pronouncements
on legal matters; administering justice within a defined
jurisdiction; declaring judgments; legislating and
enforcing laws in time within that environment. They are
a distinct entity or being contained within existing
jurisdictions and connecting between them and different
jurisprudences – and which may create and have value
by combining / synthesizing the existing historical legal
codes, for example Common and Customary Law’.

3. Jurisprudential Networks we consider to be: ‘entities
and beings with a responsibility for understanding the
social and cultural underpinnings of the law. Over time
these networks influence law and allow it to adapt to
change, they promote collaboration. The concern of
such networks is with law as a social organization and
law as a social institution’.

A. Jurisdictional Networks

We consider legal networks as they may be applied
through Common and Statutory legal systems through the
associated executive, legislative, judicial and enforcement
bodies. In this respect, we identify four hard coordination,
rule and control jurisdictional networks: the executive; the
legislative; the judicial and enforcement. In democracies, the
executive is provided by the elected ruling party and the
legislative by parliaments elected to hold the ruling party to
account and to legislate. This forms the legislative

144

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

jurisprudence. Responsible for implementing (the statutory
legal system) and interpreting (the customary legal system)
laws and connecting between the executive, the legislative
and enforcement bodies is the judiciary. This forms the
judicial jurisprudence. The third jurisprudence is provided by
those responsible for enforcing civil legislation – which in
most states includes policing, taxation, border, health,
defense and social services administration. This is suggested
to be the enforcement jurisprudence. Figure 1 situates the
different legal ‘beings’ as vertically integrated, with the
public jurisprudence – the conversation of public opinion and
consent – lowermost. Also shown are the two different codes
of law: one, Codified / Statutory Law, which is more top
down; the other, Common / Customary Law, which is more
rhyzomic. Significantly, the judicial jurisprudence in both
codes interprets and makes social sense of the law either
through inquisition (Codified) or precedence (Common).

Figure 1. Jurisdictional and Jurisprudential Bodies

B. Jurisprudential Networks

We can identify three principal jurisprudential networks,
the legislative, the judicial and enforcement, see Figure 2. At
first glance this appears similar to the jurisdictional networks
we identified. We do recognize that their responsibilities
overlap. However, the jurisdictional networks are concerned
with coordination and control (rank), while the
jurisprudential networks are concerned with collaboration
and influence (position). Examined from a horizontal
perspective, jurisprudential responsibilities may be
considered more in terms of position (than rank) and
overlapping areas of responsibility. Significantly, this view
also situates the Law within its civil, public and social
settings. The inquisitorial and precedential interpretative
roles of judicial jurisprudence also become clearer. Judicial
jurisprudence connects between both legislative and
enforcement jurisprudences. Specialist soft (informal)
jurisprudence networks are identified to exist between the
legislative and the judicial and the judicial and enforcement
networks. We call these Statutory and Customary
Jurisprudences. From a Customary and Statutory Law
position, this analysis also identifies the priority given to the

different judicial environments. Under Statutory Law,
precedent is given to formal / codified rules and then to
informal / customary ones. The position is reversed under
Common Law, which gives precedent to informal customs
and then to formally codified laws (the principle of stare
decisis).

This research reinforced the position that ‘for
understanding and implementing cross-jurisdictional
decision making and taking one needs to understand the
different jurisprudences’. More precisely, one needs to
interact at the jurisprudential level between both codes and
specifically with the statutory and customary jurisprudences.
This is not always well understood – for example, the
continuing struggle between the English Courts and British
Parliament in implementing European Court of Human
Rights statutes. Most significantly, it is the social and
collaborative jurisprudential networks that enable the Law to
be seen as, shared and practiced justly.

Figure 2. Jurisprudential Networks

V. DECISION MAKING AND TAKING

At its heart, decision-taking is about the decision-making
process – how, who, what, where and when. In this ideal
world, strategy is primarily about ‘observation’ and
‘orientation’, while ‘decision’ and ‘action’ are best left to
tacticians and operatives. However, in the ‘real’ world,
strategists have to take account of all the factors impinging
upon their strategic environment and no strategist can
possibly operate in isolation – there is a social and network
component to their knowledge, underpinned by the (social)
strategic planning processes and the (personal) cognitive
ones [24].

As connectivity and the availability of information has
increased, this has often impacted negatively upon the ability
to take and to make effective decisions. The science of
decision making and taking examines the basis of effective
decision-making and decision-taking in complex systems so
as to adequately differentiates between the two [24].

There is a morality / ethicality to the decision making and
taking process that is not always understood and rarely

145

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

articulated [24]. Considering Boyd’s simple OODA Loop
(Observe, Orient, Decide, Act) [25] there are essentially two
loops contained within the one. One loop (Loop 1) is the
observe-orient-decision-make loop; the other the decision-
take-act loop (Loop 2). Together, arguably, they preserve a
moral and ethical basis with decisions being made and taken
based upon the available facts and the three relatives (3Rs:
time, timing and tempo):

Loop 1 may be the home of the diplomat, the public
servant, the researcher, designer and planner [26]. Loop 1
can be described in terms of its focus upon the
methodology, on managing the loop from observation
(experimentation, for example) through to orienting the
structure appropriately for a decision to be made. The
danger in Loop 1 is its focus on the levers and structures
of power not necessarily the agency / and agents
necessary to implement and carry out its decisions or
inform its designs [24].
Loop 2, by contrast, concentrates on decision-taking and

action with no previous research or observation, scant

regard for theory and philosophy and believes largely in

the delivery of action through agency / agents in order to

exploit the results. This is the home of the Neo-Cons

(advocates of the use of force, manipulation and

deception of national / international affairs to promote

rapid (democratic) political change / adoption of free-

market policies; including by military means), who

focus on action as a means of changing the status quo in

their favor and breaking existing structures, methods and

processes they see as constraints to their behavior. Their

emphasis is on controlling the perception and the

narrative as a means of coordinating and dictating the

process and methodology [24].
In an adaptive ecology, one would expect the decision

making and taking process to be continuous. After Bunge
[27] (who considers knowledge as social), the collaborative
social, decision making phase may be described more by CSI
/ SIT networks, while the decision taking phase may be
described more by coordination, rule and control (CRC /
ITS) networks. In a legal setting, it may be suggested that the
jurisprudential networks provide for reflection and
adaptation and the jurisdictional networks the necessary
order for coordination and control. This recognizes work by
Gray [28] and Luttwak [29] ‘that places emphasis on the
importance of strategic culture in networked social
processes and which underpin planning, decision-making
and so decision-taking: good decisions are not capability
driven’ [30]. It is often these reflective, social networks that
are sacrificed to optimization regimes that concentrate on
objective metrication [18].

VI. CYBER-IN-LAW

Zadeh [31] noted decision making and taking has been
dominated by Probability Theory, while Clark et al. [32]
suggested that ‘a new mathematical model, based upon
vagueness, fuzzy sets and partial possibilities [dealing with
uncertainty], may be required to advance the science’.
Additionally, Pólya recognized the relative ease of statistical

programming for verification ‘has tended to favor the
heuristic [evidence based] reasoning of the mathematician
rather than the inductive reasoning of the physicist’ [33].

Cyber may be seen to consist of both the internet and the
social networks that the internet supports; connecting
between two poles. One sub-system may be identified and
classified as being by “Coordination Rule and Control
(CRC)” (akin to Network Law) (explicit); the other described
as being through “Collaboration and Social Influence (CSI)”
(akin to Jurisprudential Networks) (implicit) [34], [35].
These system attributes provide the necessary and “requisite
variety” [4] to enable both control, “in time”, e.g., Just In
Time (JIT), and influence [36]-[40], “over time”.

Our research indicates that understanding the connections
between these poles involves Fuzzy Logic (FL). Emerging
from Probability Theory (PrTh) with its binary logic-sets
Zadeh [41] put forward Fuzzy Logic where ‘linguistic
variables with a truth value ranging in degree between 0 and
1 may be ‘managed by specific functions’. Its main
conceptual difference with PrTh, is that Fuzzy Logic
considers degrees of truth; vagueness (in terms of lack of
specificity and not knowing precisely); partial truth; partial
possibility [42] and uncertainty. Whereas, standard
Probability Theory deals with the stochastic – thereby global
– partitioning of certainties; not the understanding of partial
possibilities or partial truths:

‘Viewed through the prism of partiality, probability
theory is, in essence, a theory of partial certainty and
random behavior. What it does not address – at least not
explicitly – is partial truth, partial precision and partial
possibility – facets, which are distinct from partial
certainty and fall within the province of fuzzy logic. This
observation explains why PrTh and FL are, for the most
part, complementary rather than in competition’ [31].
Noting the linkage between PrTh and FL since the 1990s

Zadeh [31], recognized: ‘the concerted drive toward
automation [and control] of decision-making in a wide
variety of fields [e.g., Cyber]…A side effect…is the
widening realization that most real-world probabilities are
far from being precisely known or measurable numbers’.
Tong [43] had previously concluded that: ‘Fuzzy models can
be made to work…and, even in more complex situations
(more variables or less data for example) they could capture
basic behavior’. He considered them relatively simple to
construct, being themselves quite simple structures whose
greatest value lay in communicating process to others, where
the linguistic value of a highly complex [Bayesian] model is
doubtful. Tong went onto to suggest that fuzzy models are
perhaps ‘most valuable as tools for understanding basic
characteristics rather than as detailed descriptions of process
[and control] behavior’.

In law we may consider a road speed limit as an example
of compliance / control by reason of certain sanction.
Generally, people obey for fear of a fine if caught going over
the limit [44], and the speed limit may result in a reduced
number of accidents caused by speeding. We do not question
the need for formal hard rules; every network needs such
rules to operate efficiently [45]. A concern may be the extent
to which it is possible to promote good behavior, including

146

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in Cyber and beyond state-based jurisdictions, based simply
on Law. The set speed limit may not promote responsible
driving; it may simply ensure people do not go over the
speed limit; indeed, it may simply promote driving at the
speed limit in all situations, regardless. Traffic conditions
vary for many different reasons requiring drivers to make
and take decisions about speed. In this case we are dealing
with a complex system, for which a hard rule cannot regulate
behavior. Hence, as noted, the resort to more fuzzy concepts
[46] for dealing with uncertainty in more complex ecologies,
such as exists in Cyber. We posit that it is the trust and
confidence of CSI principles that are central to influencing
people to act in a good and collaborative way – particularly
in areas of uncertainty where reflective learning plays a key
role. In saying this, we do not doubt that well-formed
principles of CRC / ITS may help, particularly as regards to
enforcement and providing guidance as to fail-safe protocols
and procedures. We also note, though, that even enforcement
agencies are influenced by CSI / ITS principles as they, too,
are parts of the jurisprudential networks.

VII. STATELESS JURISDICTIONS AND CHANGING

ECOLOGIES

Strong signal controls drown out the weaker signals
necessary for innovation and adaptation in a number of
ways. The most significant way they do this is to create
norms-of-behaviour that tend to award compliance to rules
and conformity and punish those who think differently, are
awkward and challenge the consensus [24]. This is where
managed diversity (for all its obvious goods) trumps the
requirement for complex variety [35], necessary to
innovatively problem solve and control [4], [47], [48].

A weak signal decision mathematically can have the
same strength as a strong signal decision; however, it also
has some very different and unique characteristics [24].
Because of the lack of resistance, questions of time, timing
and tempo vary – in other words, there is limited resistance
to be overcome and, indeed, the main challenge is to allow
for reasoning and the reflective capacity [49] – necessary for
episteme (making possible the structures / apparatus
necessary for taking a decision) based, not on the separation
of the true from the false, but upon what may, or may not, be
characterized as empirical [50].

Because of the lack of knowing, it is not so much about
providing persuasion as providing the reasoning for making
a decision, informed very often more by intuition (the ability
to comprehend without inference and / or the use of reason).
Because of the weak signals and potentially fleeting nature of
the decision to be taken, it is not a question (as for strong
signal decisions) of doing one activity in isolation / or by
constraining the other, e.g., freezing persuasion and reducing
resistance. Decisions in the weak signal context need to have
in place the structure, agents and agency necessary for
reasoning – and for both episteme and intuition [24].

In two recent areas of research, the authors applied
principles of uncertainty, instability, and good faith in
relation to statelessness in terms of a Joint Venture case
analysis and a green star accreditation system for building
processes. In this respect, we see statelessness relating to the

law; to nation states; the cyber and social / physical states of
matter – or Metaphysics. In conditions of statelessness and of
high uncertainty and instability, there exists the possibility of
phase changes as new emergent structures condense to
articulate and define new beings.

Uncertainty applies to probabilities, as in a Risk Register
and to physical measurements that are already made, or to
Donald Rumsfelds’ known-unknowns, unknown-knowns and
unknown-unknowns (US DOD news briefing, 12 Feb. 2002).
Specifically, we consider Uncertainty to:

‘Arise in partially observable, opaque, stochastic
environments / non-ergodic (complex) ecologies, overly
prescribed, ruled or controlled (ergodic) regimes as well
as due to lack of assurance, instability, ignorance and / or
lack of caring and shared awareness; including
indolence’ [51], [52].

Instability can create Uncertainty and Uncertainty can

create Instability but they are not the same thing, Instability
may be considered as:

‘The quality or state of being unstable and / or the
tendency to behave in an unpredictable, changeable,
uncertain, or erratic manner’ [51], [52].

We suggest that the entangled nature of trust, risk,

uncertainty and instability become apparent through the
lenses scoped above. With respect to a joint venture (JV) or
collaborative process, we may consider it as a journey into
the unknown, where exploration and innovation is required
that may not be prescribed, ruled or controlled. At its heart,
therefore, a JV collaboration may necessarily be based upon
good faith which we posit (in this regard) as being:

An expression of implied intent to explore the
establishment of a trusting, collaborative, shared aware
relationship between one or more parties involving the
temporal suspension of disbelief that one party may have
towards another party’s raison d'être, rationale, modus
operandi, concepts or ideas. It especially involves having
all parties thinking that the other party’s intentions are
certain (within the kirk established), benevolent, trust-
worthy, competent, good, honest or true.

We reconstructed a famous case in New South Wales,

Australia involving a Joint Venture, Coal Cliff Collieries Pty
Ltd v Sijehama Pty Ltd [53]. The case involved a number of
negotiations commencing in the mid-1980s and culminating
in an ultimately unsuccessful JV some 5 years later. Our
reconstruction of events was based upon factors and
relationships considered to influence a given joint venture
(represented by a matrix, S), the permanent function of the
matrix is an indicator of the level of uncertainty associated
with a specific stage the process [54], [55]; based upon
similar work by several researchers [56] used in calculating
the uncertainty of a Performance Measurement (PM).

With relation to this Coal Cliff Collieries, a 5×5 matrix,
S, was developed using a Likert type [57] scaling to
represent the major parties and their partners in the joint
venture along with the existential factors that we presume
created the conditions for seeking such an agreement in the

147

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

first instance. From this a Decision Measurement (DM) was
assessed based upon levels of uncertainty at each stage of
negotiation for the Heads of Agreement (HoA) and the Joint
Venture, the HoA was expected to deliver, see Figure 3.

Figure 3. Longitudinal Concurrent Heads of Agreement and Joint

Venture processes with downstream appointment of Joint Venture Designer;
Joint Director and Project Manager (read bottom to top)

We determined that the JV negotiations broke down not

through lack of rules and processes but due to the lack of
trusts necessary to enable collaboration and shared
awareness and so collaboration through an uncertain
decision making / taking exploratory process.

By inserting trusted agents at key moments of the
negotiation to better represent all parties (rather than
applying rules and processes) it was found that uncertainty in
the process could be ‘brought under control’ and, as a result,
a satisfactory conclusion arrived at. In this instance, rather
than collapsing to high degrees of uncertainty, the JV may
have ended successfully in a new company / enterprise entity
forming, see Figure 4.

In a separate study [58], see Figure 5, we considered two
parallel (essentially disconnected) processes in the building
industry, the build process; and, the Green Building Council
for Australia (GBCA) Green Star programme for
‘developing a sustainable property industry for Australia by
encouraging the adoption of green building practices’. The
aim (or mission) of the GBCA is to: ‘develop a sustainable
property industry for Australia and drive the adoption of
green building practices through market-based solutions’

1
.

Figure 4. Heads of Agreement and Joint Venture Concurrent Processes

Uncertainty Index, read left to right

Research was supported through the interview of over 25
building industry subject matter experts, considered levels of
uncertainty at each Decision Measurement (DM) stage.

From Figure 6, it will be seen that, whereas the build
process commences with a relatively high DM Uncertainty
Index and that this increases initially, uncertainty in the
process then reduces to a more manageable banding around
the 15-20% uncertainty level.

The GBCA process, by contrast to build and design,
appears much more unstable, with wide uncertainty swings
of between 10-75% and with limited stability from one stage
to the next. For planning purposes, this suggests that the
current system may be unmanageable – without a foundation
to predict (due to its inherent uncertainty) and / or to
influence (since there is limited opportunity for
collaboration) outcomes. For example, the GBCA Design
Award is assessed at 50% Uncertainty – a basis of prediction
that would be as precise for tossing a coin as following due
process. Unlike the Build process, which creates
opportunities for local, collaborative delegation of
responsibility and authority, the GBCA process holds control

1 Green Building Council for Australia (GBCA) Website,
http://www.gbca.org.au/ visited Aug 2014.

148

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

through a limited number of players that largely disables
feedback, while requiring reach-back to individuals and
records (not held by the process) as the project develops.

Figure 5. Build and GBCA System Processes (read top to bottom)

In addressing the failures of government and collective
(collegial) intelligence prior to 9/11 and the Iraq War, the US
9/11 Commission [59] and the (Lord) Butler Enquiry [60]
identified that overly controlled or formalized organizational
structures such as those existing before 9/11 had not simply
atrophied but had become ‘tuned out’ – no longer able to
select between the vital weak-signals of innovation,
adaptation [61] and change [62] (as threat or opportunity) [9]
and the strong-signals of method [63] and process [64].
Recommendations arising from 9/11 [59] and the Global
Financial Crisis were three fold: first has been to require
greater transparency, for example, between the banks,
investors, borrowers and governments; secondly, has been to
demand greater regulation and thirdly, to move away from
the need to know control model towards what has been
described as the three needs model – need to know; need-to-
share; need-to-use (3NM) [17].

Figure 6. Build and GBCA System Uncertainties, read right to left

A control system identifies noise as risk and seeks then to
remove it. Similarly, administrative processes and legal
constructs based upon certainties seek to remove the noise –
or uncertainty – from the system to achieve a degree of
certainty against which legal judgments – based upon facts
after the event – have been established. In a social setting,
however, these same uncertainties can represent both noise
but also the weak signals of innovation and change –
potentially, as in 911, of threat also. Uncertainty – or rather
manageable levels of uncertainty – can consequently be a
good; enabling change and adaptation over time by testing
the organization. If that ability to adapt or change by testing
the ecology – in this case the ecology of a coal mine – are
removed or constrained, then the ability for innovation,
exploration, change and adaptation may also be impaired.

We readily accept that there are many examples of where
people obey hard legal rules with the clear intention to
comply with the law either because it is the law or because of
the sanctions that may be imposed on them for contravening
the law. Indeed such compliance may produce good results.
A road speed limit is a typical example of such compliance
by reason of sanction, people generally obey the limit for
fear of a fine if caught going over the limit [44] and the
speed limit may result in a reduced number of accidents
caused by speeding than would be the case if people were
left to judge for themselves the speed they should drive at in
any particular circumstance. Moreover, we do not question
the need for formal hard rules; every network needs such
rules to operate efficiently [45]. Our concern is with the
extent to which it is possible to promote good behavior
through law. The set speed limit may not promote
responsible driving; it may simply ensure people do not go
over the speed limit, indeed it may simply promote driving at
the speed limit in all situations. Traffic conditions vary for
many different reasons requiring drivers to make decisions
about speed, a hard rule cannot regulate behavior here as it is
a complex environment and hence, as noted, the need to
resort to more fuzzy concepts to promote thoughtful and
good behavior whether it be driving or regulating a joint
venture [46].

149

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Collaborative processes, such as JVs, are a journey into
the unknown and therefore require a degree of trust, stability
and certainty in the proceedings. At the same time, an
overly-prescriptive legal context may well deny those trusts
forming in the first place and so the stabilities necessary to
‘let go’ and move to the next stage. As a result, the joint
venture becomes fixed and frozen and can no longer move
up or down – like a sailor afraid of heights clinging to the
mast as their ship closes the rocks. We suggest that inherent
within leadership and management is the ability to manage
uncertainty and to identify those points of stability and
agreement against which progress can be safely navigated
[45].

Uncertainty above 50% would appear to be
unmanageable and so, if not already, an unstable basis upon
which to negotiate [54], [58]. Particularly a negotiation that,
at some point, needs to focus on the identification and
classification of its ecology; its standardization and
ultimately upon the optimum and efficient delivery of a new
company or organization – in this case a colliery. Optimizing
upon uncertainty would simply be nonsensical and highly
unstable – like our sailor letting go of three limbs and
holding on with the fourth! At the same time, absolutely no
uncertainty and no noise or dynamics within the system
would appear to rule out any opportunity for innovation,
from which change and adaptation might occur. This would
suggest, empirically, that successful joint venture /
collaborative processes may be those that seek to allow for
uncertainty between, say, 15 and 40% and establish the
structures necessary to allow for trusted debate in such a
context [54], [58].

In management settings, we can identify two forms of
leadership and management structures: the one more vertical
and aligned with control type hierarchies typical of industrial
/ clockwork armies, such as fought in 1914; the other more
horizontal, based upon trust and collaboration [24], [45]. In
joint venture / award processes (such as GBCA), there is a
need for a higher degree of collaboration and trusts to deal
with the uncertainty and so create points of stability against
which a successful venture may be founded. In other
management structures, this might count as noise and so
disrupt highly optimized manufacturing processes. The
problem appears not to be controls or the law, per se, but
who, where and when we choose to apply it.

The problems to be solved are very often not static and
do not yield to a technique of ‘thinking about it for a long
period of time’ because the ground upon which it sits
continuously shifts. The application of complex theory
provides valuable insights to how decisions are made and
taken and importantly how to influence decisions. This is of
vital importance in areas of human endeavor that defy
regulation solely by command and control type regimes /
processes. In particular, we are thinking of spaces that might
be termed ‘Stateless Jurisdictions’ and which we see as
operating according to principles of ‘Network Law’. In these
conditions of statelessness and of high uncertainty and
instability, there exists the possibility of phase changes as
new emergent structures condense to articulate and define
new beings. Beings such as a successful joint venture that

form from stateless or near stateless combinations to create a
new entity. We maintain that the mathematics and legal
conditions / rule-based processes enabling the emergence of
such entities is entirely antithetical to those pertaining for
‘steady state’, stable type regimes. In fact, as argued in this
paper the rigid application of ‘steady-state’ conditions and
constraints can destroy the bases for such condensations to
form. It is in these stateless spaces that we need to be able to
encourage good behavior and trusts to form in a way that is
to the benefit of the whole rather than simply forever
punishing bad behavior and, ultimately, encouraging further
the ‘flight to cyber’.

In studies (one dynamic (GBCA) and one retrospective
(Coal Cliffs)), it was possible to identify when and where
uncertainty and thereby instability might occur [54]. In the
event of the Coal Cliffs JV, it was shown that by introducing
collaborative agents at a key point in the negotiations, that
this could be instrumental to successful delivery of the JV
and completion of the Heads of Agreement. In this respect,
it may be possible to instrument negotiations in such a way
as to forecast or even predict when interventions may be
necessary to reduce uncertainty and so improve instability. In
the GBCA study [58], through dynamic social network
(DsN) and uncertainty analysis, it was possible to examine
both the build and GBCA Networks and to make
recommendations to improve collaboration / shared
awareness. This would involve sharing trusts and thereby
risks between both parties and, at the same time, creating a
knowledge hub or Librarian type position that would retain
knowledge of the process and previous builds, over time –
rather than re-inventing the wheel, every build. This was
contrary to industry expectations, which had posited
improvements might be required within their communities,
alone [58]. Research also pointed to an interesting dynamic
relationship between uncertainty and efficiency. Industry was
looking for efficiency gains and not understanding why the
process could not be made more efficient. Research indicated
that uncertainty in the process (see Figure 6) simply made
any attempt at optimization untenable – it would be a bit like
optimizing on moving ground. The process could only be
made more stable and less uncertain by improving
collaboration between the parties [58]. Only then, the system
could be optimized and so made more efficient. Provided, of
course, optimization did not remove the agents responsible
for the retention and management of knowledge (which is
not the same as KM!), so typical of Performance
Management regimes.

The science dictates that hard controls and rules will
always fail as emergent networks are too fluid and their rapid
ability to adapt and change will simply by-pass static rules
and regulations [54]. Regulation of behavior in such
jurisdictions or the influencing of behavior that promotes the
making and taking of good decisions for the individual and
the network requires the harnessing of legal / process
standards that promote reflection and an understanding of
how they can be deployed throughout a network. This is the
subject of future work.

150

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. NEW ECOLOGIES

We consider that in an adaptive system, the decision
making and taking processes are continuous and part of an
ecology constantly testing for both success and failure – so
as to avoid catastrophic degradation (the deleterious /
undesirable deterioration of a ecology; including destruction
of ecosystems and extinction of system-networks). The law
and certain process regimes (often used / applied by
Government on industry / the private sector) can be seen as a
fixed immovable, post-hoc (after the event), metricable
[measurable] object, like a castle. Examined from a
jurisdictional point of view, the objective of law / processes
such as the GBCA [54], [58], can be seen as ‘controlling in
order to rule’ based upon the representation of evidence
(data). The means have become the ends and the jurisdiction
drives the strategy. What constitutes jurisdictional or process
knowledge in law and control-engineering is not the same as
what constitutes knowledge in strategy and so decision
making and taking [24]. Strategic knowledge in Law is
vested within its jurisprudential social networks as it is
within the social techné (expert ‘know how’; subjective
knowledge of how to ‘changes things’) and phronesis
(reflective wisdom, which provides plausible explanation
and guidance in times of uncertainty’) contained within any
successful organization [54]. It is this co-adaptive knowledge
that is so important in understanding decision making and
taking [24].

We contend that there is a need in the 21
st
 Century, to

‘put humanity back in the loop’, and that people will be
employed more often in those complex lacunae where no
amount of control, rule or coordination will make sense. We
also see these as being the vital decision making and taking
commons fundamental to delivering timely laws; design;
strategies; and, policies that will prevail / pervade ‘over
time’. We also recognize that resilience does not come from
the info-techno-socio control type networks but from
investment in socializing and capitalizing our socio-info-
techno influence networks. One cannot understand these
complex systems without understanding their underpinning
networks and how they are managed and controlled;
influenced and led [24]. Understanding how Law interacts at
the project, unit, jurisdictional and systems influence and
jurisprudential levels is therefore important. Not simply to
aid understanding in times of crises, but to provide
sustainable future programmes and to enable timely,
collaborative, social responses to shocks and uncertainties,
be they human-made or natural.

We consider Network Law as a hard entity contained
within existing Jurisdictional Networks and connecting
through IT between them and different jurisprudences [54].
We suggest that they may have specific value in combining
and synthesizing historical legal codes, such as Common and
Codified Law. We do not advocate new laws, for example,
for Cyber, but for improved understanding and the
establishment of connecting soft networks – hence,
Jurisprudential Networks – to better socialize connections
between existing jurisdictions, Network Laws and the cyber-
internet – specifically in areas of uncertainty and potential

instability, for example, a collaborative process of Joint
Venture [54], [58]. It is in the area of Cyber and Law that
this paper makes a contribution and which, based upon the
principles derived and outlined in this paper including for
Fuzzy Logic and Fuzzy Law, which the authors are taking
forward for application and future development.

ACKNOWLEDGMENT

We acknowledge Lend Lease and the Royal Australian
Navy and in particular the Faculties of Law, Arts and Social
Science, the Centre for International Security Studies and
Engineering and Information Management & Technology at
the Universities of Sydney and Hong Kong.

REFERENCES

[1] S. Reay Atkinson, G. Tolhurst, and L. Hossain, “Decision
making and taking in changing ecologies considering
network law,” The Fourth International Conference on
Advanced Communications and Computation, INFOCOMP,
July 20 – 24, 2014, Paris, France: IARIA, pp. 76-82.

[2] A.J. Menéndez, “Review of Developments in German,
European and International Jurisprudence,” Special Issue –
Regeneration Europe M. Hartmann, and F. de Witte, Eds.,
German Law Journal: Berlin, pp. 441-712, 2013.

[3] A.-M. Grisogono, “Co-adaptation,” Proceeedings of SPIE –
the International Society for Optics and Photonics, 16
January, 2006, vol. 6039, article no. 603903.

[4] R. Ashby, An Introduction to Cybernetics. London:
Chapman and Hall,1957.

[5] J. Dunne, “Meditation XVII: nunc lento sonitu dicunt,
morieris,” John Dunne (1572-1631), English, Roman
Catholic convert to Protestantism, Lawyer, Diplomat, Poet,
Vicar and Prolocutor to King Charles the First (of England).
England: unknown, 1632.

[6] E. Stacey, “Collaborative Learning in an Online
Environment,” Journal of Distance Education. 14(2), pp. 14-
33, 1999.

[7] R.D. Stacey, Complexity and Creativity in Organizations.
San Francisco, CA: Berrett-Koehler Publishers, 1996.

[8] L. Hossain and R.T. Wigand, “Understanding virtual
collaboration through structuration,” in Proceedings of the
4th European Conference on Knowledge Management, 2003,
pp. 475-484.

[9] M. Granovetter, “The Strength of Weak Ties,” American
Journal of Sociology, 1973, vol. 78, iss 6, pp. 1360-1380.

[10] M.N. Shaw, International Law. 4th Edition. Cambridge,
England: CUP, 1997.

[11] I.C.J., “International Court of Justice (I.C.J.) reports,” ICJ
Reports quoting International Law Research (ILR), pp. 253,
257-267, ILR p. 398 and p. 412. 1974.

[12] L. Hossain and R.T. Wigand, “ICT Enabled Virtual
Collaboration through Trust,” Journal of Computer Mediated
Communication, JCMC 10 (1) November, pp.22-31, 2004.

[13] E. Mumford, “Risky Ideas in the Risk Society,” Journal of
Information Technology, vol. 11, pp. 321-31. 1996.

[14] A. Giddens, The Consequences of Modernity. Cambridge,
England: Polity Press, 1990.

[15] H. Mintzberg, D. Dougherty, J. Jorgensen, and F. Westley,
“Some surprising things about Collaboration - knowing how
people connect makes it work better,” Organizational
Dynamics. Spring, pp. 60-71, 1996.

[16] S. Reay Atkinson, A.M., Maier, N.H.M., Caldwell, and P.J.
Clarkson, “Collaborative trust networks in engineering
design adaptation,” International Conference of Engineering
Design, ICED11, 2011. Technical University of Denmark,
Lyngby.

[17] S. Reay Atkinson, S. Lesher, and D. Shoupe, “Information
capture and knowledge exchange: The Gathering Testing and

151

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

assessment of Information and Knowledge through
Exploration and Exploitation,” 14th ICCRTS: C2 and
Agility, CCRP, 2009, Washington.

[18] S. Reay Atkinson, A. Goodger, N.H.M Caldwell, and L.
Hossain, “How Lean the Machine: how Agile the Mind,”
The Learning Organization. vol. 19, iss. 3, pp. 183 – 206,
2012.

[19] D. Walker, S. Reay Atkinson, and L. Hossian,
“Counterinsurgency through civil infrastructure networks,”
Second International Conference on Social Eco-Informatics
(SOTICS) October 21 – 26, 2012, SOTICS: Venice.

[20] V. Harmaakorpi, I. Kauranen, and A. Haikonen, “The shift in
the techno-socio-economic paradigm and regional
competitiveness,” 43rd Conference of European Regional
Sciences Association (ERSA), 27-31 Aug 2003, Helsinki
University of Technology: Lahti Center, Jyväskylä, Finland.

[21] G. Ropohl, “Philosophy of Socio-Technical Systems,”
Society for Philosophy and Technology. vol. 4, Virginia
Tech: Blacksburg, VA, 1999.

[22] S. Reay Atkinson, Cyber-: “Envisaging New Frontiers of
Possibility,” UKDA Advanced Research and Assessmnent
Group, unpublished, Occasional Series, 03/09, 2009.

[23] S. Reay Atkinson, I. Hassall, N.H.M. Caldwell, M. Romilly,
and R. Golding, “Versatile modular system (VMS™) designs
for a versatile modular fleet (VMF™),” paper presented at
EAWWIV Conference, 2011, Old RN College, Greenwich,
London.

[24] S. Reay Atkinson, A. Vakarau Levula, N.H.M. Caldwell,
R.T. Wigand, and L. Hossain, “Signalling decision making
and taking in a complex world,” International Conference on
Information Technology and Management Science (ICITMS
2014), May 1-2, 2014, Hong Kong: WIT Transactions on
Engineering Sciences.

[25] D.S. Fadok, John Boyd, and John Warden: Air Power’s
Quest for Strategic Paralysis, ed. Air-University, Maxwell
Air Force Base, Alabama: Air University Press, 1995.

[26] S. Reay Atkinson, “Returning Science to the Social,” The
Shrivenham Papers, UK Defence Academy, Number 10, July
(July), 2010.

[27] M.A. Bunge, “Ten Modes of Individualism - None of Which
Works - And Their Alternatives,” Philosophy of the Social
Sciences, 30(3), pp. 384-406, 2000.

[28] C.S. Gray, “Weapons don’t make war,” in Policy, Strategy
and Military Technology, Editor: Lawrence, University
Press: Kansas, 1993.

[29] E.N. Luttwak, The Logic of War and Peace. Revised Edition,
Cambridge, MA: Harvard University Press, 2001.

[30] S. Reay Atkinson and A. Goodman, “Network strategy and
decision taking,” ARAG Occasional, UK Defence Academy,
11 / 08, 2008.

[31] L.A. Zadeh, “Toward a Perception-based Theory of
Probabilistic Reasoning with Imprecise Probabilities,”
Journal of Statistical Planning and Inference, vol. 105, pp.
233-26, 2002.

[32] T.D. Clark, J.M. Larson, J.N. Mordeson, J.D. Potter, and
M.J. Wierman, “Applying Fuzzy Mathematics to Formal
Modelling in Comparative Politics,” Studies in Fuzziness
and Soft Computing, vol 225, Springer, 2008.

[33] G. Pólya, “Heuristic reasoning in the theory of numbers,”
reprinted in: The Random Walks of George Pólya, Ed., G.W.
Alexanderson. Mathematical Association of America:
Washington, DC, 1959 (2000).

[34] D. Walker, S. Reay Atkinson, and L. Hossain,
“Collaboration without rules - A new perspective on stability
operations,” presented at IEEE Cyber Conference, 14-16
Dec, 2012, IEEE: Washington.

[35] S. Reay Atkinson, S. Feczak, A. Goodger, N.H.M. Caldwell,
and L. Hossain, “Cyber-internet: a potential eco-system for
innovation and adaptation,” European Alliance for
Innovation: Internet as Innovation Eco-System Summit and
Exhibition, 4-6 Oct., 2012, EAI, Riva del Garda: Italy.

[36] D. Cartwright, Influence, Leadership, Control, in Handbook
of Organizations, J.G., March, Editor, Rand McNally:
Chicago, pp. 1-47, 1965.

[37] P.A. David, “Path Dependence - A Foundational Concept for
Historical Social Science,” Cliometrica -The Journal of
Historical Economics and Econometric History, 1(2),
Summer, 2007.

[38] R.A. Dahl, “The Concept of Power”. Behavioral Science,
2:3, July, p. 201, 1957.

[39] L. Hossain, M. D’Eredita, and R.T. Wigand, “Towards a
product process dichotomy for understanding knowledge
management, sharing and transfer systems in Organizations,”
submitted to Information Technology and People, 2002.

[40] D.H. Wrong, “Some Problems in Defining Social Power,”
The American Journal of Sociology. vol. 73, No. 6, May, pp.
673-681, 1968.

[41] L.A. Zadeh, “Fuzzy Sets,” in Information and Control, vol.
8(3), pp. 338-353, 1965.

[42] T.J. Ross, J.N. Booker, and W.J. Parkinson, “Fuzzy logic and
probability applications: bridging the gap,” Fuzzy Logic and
Probability Applications. Philadelphia, PA: Society for
Industrial and Applied Mathematics (SIAM), p. 209, 2002.

[43] R.M. Tong, Analysis of Fuzzy Control Algorithms using the
Relating Matrix. PhD Thesis, in CUED, Cambridge
University: Cambridge, 1976,

[44] F. Schauer, “Do people obey the law?,” in Julius Stone
Address, 13 March, 2014, Sydney University Faculty of Law
(unpublished): Sydney University.

[45] S. Reay Atkinson, and J. Moffat, The Agile Organization,
Washington: CCRP Publications, 2005.

[46] W. Waldron, “Vagueness and the Guidance of Action,”
Philosophical Foundations of Language and the Law. A.
Marmor, and S., Soames Eds., 2011, Oxford Scholarship
Online, www.oxfordscholarship.com: Oxford, retrieved
March 2014.

[47] E. Mumford, “Problems, Knowledge, Solutions: solving
Complex Problems,” Journal of Strategic Information
Systems, vol. 7, pp. 255-269, 1998.

[48] R.B. Warren and D.I. Warren., The Neighborhood
Organizer’s Handbook. South Bend, Ind: University of Notre
Dame Press, 1977.

[49] S. Reay Atkinson, Engineering Design Adaptation Fitness in
Complex Adaptive Systems. PhD Thesis, CUED EDC.
Cambridge University Engineering Department: Cambridge,
UK, 2012.

[50] S. Reay Atkinson, M. Mitchell, A. Wehbe, I. Wahlet, H.
Ainsworth, M. Harré, and S. Sousa, “Classifying and
systemising uncertainty and instability - a dynamic social
network approach to risk,” in RISK Conference, 2014,
Brisbane, 28-30 May, Engineer Australia.

[51] S. Reay Atkinson, “Risk, Recovery and Creating Resilience -
research into the Blue Mountains Fires, Oct., 2013,”
Productivity Commission submission on Natural Disaster
Funding, B.M.C.C., S. Reay Atkinson, The Lions Club of
Winmalee, NRMA Insurance, RHoK (Sydney), ENGG 3853
Risk Managment Students, Ed. S. Reay Atkinson, University
of Sydney, CCSRG: Sydney. 2014.

[52] N.S.W.L.R., “Coal Cliff Collieries Pty Ltd v Sijehama Pty
Ltd.,” New South Wales Law Report (N.S.W.L.R.), Law:
vol. 1, iss. 24, Sydney, 1991.

[53] M. Foucault, The Order of Things: An Archaeology of the
Human Sciences, New York, NY: Vintage Books, 1994.

[54] S. Reay Atkinson and G. Tolhurst, “Certainty in joint venture
negotiations: a case study,” Commercial Law Quarterly,
March-May, vol. 3, The Commercial Law Association of
Australia: Sydney, pp. 3-21, 2015.

[55] S. De Sousa, I. Lopes, and E. Nunes, “On the quantification
of uncertainty of performance measures,” Third International
Conference on Business Sustainability, November 20-22,
2013, Management, Technology and Learning for
Individuals, Organisations and Society in Turbulent
Environment, Ed. Goran Putnik. Póvoa de Varzim, Portugal.

152

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[56] R.V. Rao, Decision Making in the Manufacturing
Environment: using Graph Theory and Fuzzy Multiple
attribute Decision Making methods, London: Springer. 2007.

[57] R. Likert, “A Technique for the Measurement of Attitudes,”
Archives of Psychology, vol. 140, 1932.

[58] A. Atwani, N. Tohver, and S. Reay Atkinson, “Application
of Concurrent Engineering to Decision Making and Taking:
delivering Sustainability Standards in Construction Projects,”
Atkinson SR (ed), Interim Report to Lend Lease. Sydney:
FEIT and CCSRG, 2014.

[59] U.S.-N.C.T.A. “National Commission of Terrorist Attacks
(N.C.T.A.),” 9/11 Commission Report, 2004, [cited 2007
June]; Available from: http://www.9-
11commission.gov/report/911Report.pdf.

[60] Lord Butler, “Review of Intelligence on Weapons of Mass
Destruction,” Report of a Committee of Privy Counsellors,
Chairman: The Rt Hon The Lord Butler of Brockwell KG
GCB CVO, 2004, Ordered by the House of Commons, 14th
July: London.

[61] H.I. Ansoff, “Managing Strategic Surprise by Response to
Weak Signals,” California Management Review, vol. XVIII,
no. 2, pp. 21-33, 1975.

[62] B. Coffman, “Weak Signal Research, Part I: Introduction,”
1997 [cited 2010 13 Oct]; available from:
http://www.mgtaylor.com/mgtaylor/jotm/winter97/wsrintro.h
tm.

[63] M. Hansen, “The Search-transfer Problem: the Role of Weak
Ties in Sharing Knowledge across Organization Subunits,”
Administrative Science Quarterly, pp. 82-111. 1999.

[64] E. Hiltunen, Weak Signals in Organizational Futures
Learning. PhD Thesis. Helsinki School of Economics, vol.
A-365, 2010.

www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601

