
Verifying Equivalence of Procedures in Different Languages: Preliminary Results

David J. Musliner, Michael J. S. Pelican, Peter J. Schlette
Smart Information Flow Technologies (SIFT)
{dmusliner, mpelican, pschlette}@sift.info

Abstract
NASA operates manned spacecraft according to rigorously-
defined procedures, some of which can be executed both au-
tomatically and manually. Unfortunately, the operating pro-
cedures for different pieces of equipment and different exe-
cution modes (onboard/offboard, manual/automatic) may be
written in entirely different languages. In this paper, we de-
scribe an approach to verifying that the underlying semantics
of these diverse procedure representations are the same; that
is, we want to verify that the two different procedures “do
the same thing.” We accomplish this verification by translat-
ing each procedural language into a common verification lan-
guage, Promela, and using the SPIN verification tool to con-
firm that the procedures behave identically when given iden-
tical inputs. This paper describes the patterns of translation
into Promela and explores the scalability of this approach.
More generally, this work represents first steps towards defin-
ing a rigorous semantics for both PRL and SCL, which can be
used for future verification and validation efforts supporting
high-confidence software for manned spaceflight.

Introduction
Like any organization with complex, hazardous equipment,
NASA operates manned spacecraft according to rigorously-
defined standard operating procedures (SOPs). These proce-
dures carefully define what steps should be taken to accom-
plish a wide variety of goals, including changing the operat-
ing modes of equipment, starting up and shutting down com-
ponents or subsystems, and conducting various joint ma-
chine/crew activities such as spacewalks. The procedures
may include sequences of primitive commands that change
the state of onboard equipment, tests that verify certain state
changes via telemetry, or branching logic that varies the pro-
cedural behavior depending on the state of the spacecraft or
other environmental factors. Some procedures can be exe-
cuted both automatically and manually. Spacecraft operat-
ing procedures are very carefully reviewed to ensure correct-
ness (Frank 2008).

As the space program has evolved over time, the op-
erating procedures for different pieces of equipment and
different execution modes (onboard/offboard, manual/auto-
matic) have been written in entirely different languages.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For example, some components of the new Orion crew
vehicle will be supplied with automatic procedures writ-
ten in SCL, the Spacecraft Command Language (Buckley
& Vangaasbeck 1994), while backup manual procedures
may be developed in PRL, the Procedure Representation
Language (Kortenkamp, Bonasso, & Schreckenghost 2008;
2007). PRL is an evolving language being designed to
capture both manual and automatically-executable proce-
dures. In contrast, SCL is an off-the-shelf product designed
for fully-automated procedures or, more generally, fully-
autonomous control systems involving both procedural and
event-triggered, rule-based elements.

PRL and SCL features differ significantly, to the extent
that an expert would have difficulty comparing even small
procedures. For example, an SCL developer could capture a
command’s safety conditions in one or more “constraints,”
rules that are checked after a command has been selected by
a script, but before the command has been sent to the space-
craft system. In PRL, it would be more natural to repre-
sent such conditions as “VerifyInstruction” steps before ev-
ery use of the command. To compare the procedure imple-
mentations statically, a tool must identify all relevant con-
straints that would be active in the execution context and de-
termine whether they are checking the same preconditions
that the PRL VerifyInstruction checks.

Our research focuses on proving that specific PRL and
SCL procedures have the same underlying execution seman-
tics, so that NASA can be assured that if an automatic SCL
program cannot be executed, a backup manual procedure in
PRL will be equivalent and safe. Our approach generalizes
to comparisons between other procedure representation lan-
guages, other NASA programs, and other industries.

In the following sections, we first overview PRL and
SCL, showing how a simple example procedure fragment
might be encoded in each language. We then describe our
approach to verifying that these different encodings pro-
duce the same behavior. Our approach involves translating
each procedural language into a common verification lan-
guage, Promela, and confirming that the procedures behave
identically when given identical inputs (Heimdahl, Choi, &
Whalen 2002), using the SPIN verification tool (Holzmann
1997; 2005). We illustrate the respective SCL and PRL
translations, present a preliminary evaluation of scalability,

Universe

Spacecraft

PRL System

Undefined
Data

Handling

Undefined
PRL Executive

XTCE Model

Undefined
Event Triggers

PRL Procedures

Figure 1: PRL semantics depend in part on the specification
of future executives.

and discuss limitations of the approach.
While our translation patterns are not yet fully auto-

mated, our preliminary results indicate that this language-
translation-and-model-checking approach is both feasible
and scalable to the desired level of fidelity. This work rep-
resents first steps towards defining a rigorous semantics for
both PRL and SCL, which can be used for future verifica-
tion and validation efforts supporting high-confidence soft-
ware for manned spaceflight. We conclude with observa-
tions on the remaining challenges in increasing the fidelity
of the verification process and addressing the resulting scal-
ability problems.

The Procedure Representation Language
(PRL)

PRL is a still-evolving language designed to capture pro-
cedures that may be executed either by automation or by
humans (Kortenkamp, Bonasso, & Schreckenghost 2008).
Defined by an XML schema, PRL allows a programmer
to construct top-level procedures that are decomposed into
steps, each of which may execute blocks of primitive in-
structions and control statements. Instructions can include
spacecraft commands, tests of telemetry values, calls to
other procedures, and wait instructions that block for
some time or until a boolean expression becomes true. In-
structions may be specified as only executable by man-
ual means, or may include automation data to help de-
scribe how an (as yet undefined) automatic PRL executive
should run the procedures. Automation data can include
the expected StartConditions that must be true to en-
able the procedure, InvariantConditions that must
remain true during execution (or the procedure fails), and
EndConditions that wait until they are true to allow the
procedure to end. PRL commands refer to spacecraft com-
ponents by their unique identifiers as defined in an XML
Telemetric & Command Exchange (XTCE) model (Object
Management Group 2004).

PRL is being developed to support a gradual transition

Figure 2: The PRIDE integrated development environment
supports relatively painless PRL editing and visualization.

Universe

Spacecraft

SCL System

DataIO

CMDGEN

Real-Time Engine SML Model

SCL Scripts

SCL Rules &
Constraints

Figure 3: SCL’s flight-proven implementation defines its
execution semantics.

from fully-manual, textual procedures towards automation.
As a result, some elements of a fully-automatic PRL system
are not yet defined, including a complete formal semantics
for the language and an automatic PRL executive. However,
initial steps towards both have been taken in an experimental
translation of PRL into the Universal Executive’s PLEXIL
language (Kortenkamp, Bonasso, & Schreckenghost 2008).

An Eclipse-based development environment, PRIDE, has
been developed to simplify procedure authoring (Izygon,
Kortenkamp, & Molin 2008). The PRL fragment in Fig-
ure 2 is drawn from a real ISS procedure that configures an
electrical component by issuing a series of commands and
verifying assorted telemetry values.

The Spacecraft Command Language (SCL)
As illustrated in Figure 3, Spacecraft Command Language
(SCL) is a suite of tools for building and deploying auto-
mated control systems for spacecraft. SCL has flown on
many unmanned space missions, including FUSE, EO-1,
and TacSat-2. SCL’s Real Time Engine (RTE) executes pro-
grams defined in a language that combines procedural script-
ing with event-triggered rules and constraints. The RTE
interfaces with the spacecraft sensors through the DataIO
module, which implements data sampling rates, smoothing,
and other filtering operations defined by a data model writ-
ten in Spacecraft Markup Language (SML). Outgoing com-
mands are sent via the CMDGEN component to spacecraft

rule EnsureHealth
subsystem Health
priority 28
activation yes
if X.RPCMORUHealthStatus != OKAY then

exit
end if
end EnsureHealth

// Main returns true if completes OK.
function main(X)
IssueCommand("X.RPCMCommonClearCmdType")
if (!VerifyEquality(X.RPCPowerOnResetStatus,

ON)) then
return false

end if
// More steps omitted...
return true
endfunction main

function IssueCommand(subject)
SendCommand(subject)

endfunction IssueCommand

function VerifyEquality(subject, targetValue)
if (dereference(subject) == targetValue)

then return true
else

return false
end
endfunction VerifyEquality

Figure 4: SCL combines rules and hierarchical function
calls, challenging the representational power of automatic
verification systems.

actuators.
The SCL language allows behavior descriptions in three

different program elements: rules, constraints, and scripts.
Rules can be triggered by external events (including com-
mands from crew and ground) and updates to internal data.
Constraints check safety conditions or validity criteria be-
fore spacecraft commands are issued. Scripts are written
in a fairly standard procedural language that includes func-
tion calls and both local and global variables. SCL’s RTE
schedules rule evaluation using a priority-based agenda, and
also manages parallel execution of scripts at fixed priori-
ties. Taken together, these elements of SCL provide an ex-
tremely flexible programming environment and the possibil-
ity of creating control flows that would be very difficult to
verify. In practice, experienced SCL developers use a set
of well-understood design patterns, such as using individ-
ual event-triggered rules to activate scripts (which provide
sequencing logic), rather than Prolog style rule chaining.

As an implemented and deployed system, SCL has a con-
crete de facto execution semantics, although some details
are not clearly described in the publicly available documents
(e.g., the precise algorithm of the RTE scheduler is unclear).
To make the verification problem tractable, the use of paral-
lel interacting scripts must be limited.

To illustrate some of the representational power of the
SCL language, we have used both rules and scripts to en-
code a portion of the same example ISS procedure. Figure 4
shows our approximate SCL translation of the first three
steps of the partial procedure shown in Figure 2. The main
function in our SCL encoding includes two steps of the pro-
cedure: issuing a single command and verifying its result.
For the third step, another state verification, we used a sim-
ple rule that monitors a property and takes action when it en-
ters a given state. Here, we issue an exit command when-
ever X’s ORU health enters any state other than OKAY. Such
rules— along with constraints, which function in a similar
manner— have a number of complexities that must be han-
dled. For example, each rule is assigned to a subsystem, and
every rule or constraint within a subsystem can be activated
or deactivated using a single SCL command. The interac-
tions between rules, constraints, and scripts are mediated by
their priority levels and the aforementioned scheduler algo-
rithm, which makes precise modeling even more difficult.

Approach
To verify the functional equivalence of spacecraft proce-
dures implemented in SCL and PRL, we translate the na-
tive implementations into a third language, Promela. We
then use the SPIN model checking tool (Holzmann 1997;
2005) to generate a complete set of possible input sequences
and feed them to the Promela procedure models, collecting
each output command stream. The procedure implementa-
tions are equivalent if, for every input sequence, the com-
mand streams match in every place. In other words, we
check for observable execution trace equivalence, where the
only observables are the commands sent to the spacecraft.

SPIN
We use the SPIN model checker to exhaustively verify
Promela models of procedure implementations and inputs.
SPIN takes Promela as input and generates a set of C lan-
guage files unique to the input given. Then the user compiles
these into an executable which performs exhaustive verifi-
cation. This verification detects cycles, assertion violations
embedded into Promela, blocks of unreachable code, and so
on. If a branch of the verification violates an assertion or en-
counters some other error, SPIN creates a “.trail” file which
contains information on the state of the model up until the
time of the error. This feature provides a counter-example
that shows under what circumstances the two encoded pro-
cedures behave differently.

In Promela, a statement is not necessarily executable; if
a condition evaluates to false, the statement is ignored until
the condition becomes true. Some commands, such as as-
signment, are always executable. Others, such as false are
never executable. Many depend on the state of the system,
such as boolean conditions or a request for a message from a
channel which may or may not be empty. If an unexecutable
statement is reached in a if or do block, a different state-
ment which is executable will be run instead. If Promela
becomes ”stuck” at a point where no possible branch has a

Promela model of
PRL Procedure

Promela model of
SCL Scripts
and Rules

Same
command
sequence?

Input
sequence

Figure 5: SPIN generates possible input sequences and
feeds them to models of PRL procedures and SCL scripts
and rules. The implementations are considered equivalent
only if the sequences of command outputs are the same.

statement that is executable, then execution ends. The ->
operator is used to emphasize the first statement in a condi-
tional’s role as a guard. The language supports analogs to
most basic imperative language features: if, do (a loop),
labels and gotos, and calling functions with parameters
passed. A key difference is that if more than one leading
statement is executable simultaneously in an if or do, the
statement block that will be executed first is selected non-
deterministically. This feature enables one to easily select
a value for an input from a domain of potential values, or
represent other sources of nondeterminism. In an exhaustive
verification, all possibilities will be explored.

Promela provides message channels that send and receive
data between processes. The most basic and frequently used
channel operators are ! and ?, which respectively send and
receive messages. To share data between two processes, it is
necessary to pass the same channel as a parameter to both
processes. Channels can also be tested with empty and
full, as well as len, which will return a positive number
(implicitly true) if there are any messages in the queue,
and false otherwise. These can be used to take alternate ac-
tion if a queue is full or to receive messages until a channel
is empty. In addition to the basic send and receive, the !!
and ?? operators serve a more specialized purpose. !! is
particularly relevant to our efforts and will be discussed later.

Modeling system state
To test procedure equivalence, we need a framework in
which to provide identical sets of inputs to models of the
procedures and then gather their output in a way that allows
them to be compared. For this purpose, each procedure will
take two channels as inputs. The “state” channel provides
the initial state of the procedure and system configuration
(including values selected for state variables) and will be
filled with the end state at end of execution. The “command
log” channel will be passed to the procedure with no mes-
sages in it. This channel will be used to create a log of all
the spacecraft commands issued by the procedure.

As mentioned above, modeling nondeterminism in
Promela is trivial. Fig. 6 demonstrates a small random ini-
tialization process, by which both state channels will be
filled with the same initial state.

Just as critical as supplying an initial state is verifying

#define RPC_POWER_ON_RESET 0
#define RPCM_ORU_HEALTH_STATUS 1
#define ON 2
#define OFF 3
/* ... */
chan prlState = [NUM_INPUTS] of {byte,short};
chan sclState = [NUM_INPUTS] of {byte,short};

/* Set initial state for the pump status */
if
:: prlState!RPC_POWER_ON_RESET,ON ->

sclState!RPC_POWER_ON_RESET,ON
:: prlState!RPC_POWER_ON_RESET,OFF ->

sclState!RPC_POWER_ON_RESET,OFF
fi;
/* */

Figure 6: Promela’s nondeterministic if generates se-
quences of input streams that cover the range of possible
inputs (i.e., system state) and copies them to send to both
procedure models.

/* Model execution precedes this... */
int prlType, prlValue, sclType, sclValue;
bool success = false;
do
:: (len(prlLog) && len(sclLog)) ->

prlLog?prlValue;
sclLog?sclValue;
if
:: (prlValue == sclValue) ->

printf("Models agree\n");
:: else -> /* mismatch! */

printf("Models disagree!\n");
success = false;
break /* Abort loop */

fi;

/* When at least one queue is dry */
:: else ->

/* Failure if one queue non-empty */
if
:: len(prlLog) ||

len(sclLog)) ->
success = false

:: else -> success = true
fi;
break

od;

/* Omitted similar check of state */
assert(success)

Figure 7: Channel contents must agree in both value and
size in order to be considered equivalent.

the end state. Our current approach is quite simple: the top
message in each procedure’s command log is pulled off, and
the two are compared. If the two are equal, this process is
repeated. However, if the two stacks have different numbers
of messages or if two messages don’t contain the same data,
then an appropriate error message is printed and an assertion
is violated. The same process is then carried out on the state
of the two models. Fig. 7 shows a summary of this process
in Promela.

Having established a method for testing the equivalence
of two models, we now discuss the process of construct-
ing Promela models that emulate the behavior of PRL and
SCL procedures. Because this project is still in its early
stages, generation of models for these procedures has thus
far been accomplished by hand. However, we have worked
with the aim of demonstrating a systematic conversion, and
have already taken small steps towards automatic transla-
tion. Below we discuss the challenges in describing PRL or
SCL code with the limited faculties provided by Promela,
and these challenges apply to both manual and automatic
methods.

PRL Translation
Translating PRL into Promela is relatively simple, for a va-
riety of reasons. The scope of every block and command is
well established, so the control flow is very easy to under-
stand. PRL’s lack of support for global variables and pass
by reference is convenient, since Promela doesn’t support
these features natively either. The presence of strings and
enumerations seems at first to be a source of difficulty, but
they can simply be exchanged for constants via #define
directives. PRL also has the capacity to jump between steps,
which we can emulate using a Promela statement label and
goto. Automatic generation can easily handle these chores.

SCL Translation
Generating Promela to represent SCL is much less straight-
forward. In order to accurately emulate SCL, details such as
rule and script scheduling must be taken into account even
before the task-specific code can be examined. However, we
defer discussion of these complexities and start with the core
approach to procedure representation.

In order to support SCL’s notions of passing by reference,
return values, and global variables, Promela channels are
used to shuttle values between parent and child functions,
or, in the case of globals, between any two functions. Chan-
nels acting as return values also create a convenient way for
parents to wait for their children to finish before beginning
the next task, as the parent can simply try to read from the
return channel and SPIN will block that execution path un-
til the value is available. The state overhead for spawning
a child process is reasonable, but not so small as to be ig-
nored altogether. This is especially so in the case of nesting
functions, where greater quantities of memory are required
to track every function in the stack.

The next items to consider are rules and constraints. Rules
are mechanisms which go into action when a variable or

variables meet certain conditions. Although the SCL RTE’s
behavior is more complex, in our current approximation,
when the rule’s conditions are met, a subprocedure is ex-
ecuted. The most natural way to enforce this would be a
separate, concurrent Promela process that constantly moni-
tors the state of the simulation and fires these rules; unfortu-
nately, we do not have a scalable way to accomplish this in
Promela. A different, less-elegant solution has been devised:
macros. As alluded to earlier when discussing PRL, Promela
uses the C preprocessor. A macro is defined to call every rule
(usually expressed as macros themselves) and is inserted be-
tween every spacecraft command, so that any state change
can be observed immediately and acted upon, as it would be
in SCL. Due to their similarity, constraints are handled in a
similar, though slightly more complex manner: the check on
variable state occurs before a command is issued, and if the
constraint is violated, a flag is set indicating that the com-
mand should be jumped over using goto.

Every subprocedure within SCL has a priority which must
be taken into account by the SCL scheduler, which dictates
when each subprocedure may run. Though the exact in-
ternal workings are not known, we have built a simplified
model wherein subprocedures are sorted first by priority, and
second by order in which they’ve joined the queue. If not
for Promela channels’ !! operator, this requirement could
be very difficult and expensive to enforce; a priority queue
would have to be implemented within the very tight bounds
of the language, probably with the effect of expanding the
state space immensely. Fortunately, the !! operator essen-
tially turns a message queue into a priority queue: messages
entering a queue can be placed according to a priority ex-
pressed in the first message field. This allows a scheduler
process to send an activation message to the highest priority
process that arrived first in the queue.

Model Examples
To test our approach, we took an existing ISS procedure to
reconfigure a power controller (for which we have a PRL en-
coding created by NASA’s Automation for Operations pro-
gram (Frank 2008)) and created a possible SCL implemen-
tation. We then systematically hand-translated the PRL and
SCL representations into Promela models. The Promela
translation of the PRL encoding follows the source language
quite closely (compare Figure 8 to Figure 2).

The same procedure, this time written in SCL and trans-
lated to Promela, is shown in Figure 9. The most notable
difference is that this procedure is now accomplished by a
main process and two helper processes, rather than a sin-
gle process. In order to emulate this behavior, our Promela
model uses a message channel that holds a single bool.
This channel is supplied to each child of the parent process.
If the child has no meaningful value to return, an arbitrary
value is supplied via this channel at the end of execution
to indicate to the parent that the child has finished; other-
wise, the appropriate value is sent to the parent where it can
be handled. Note that in general the return value could be
of any type; for example, a message with multiple fields

/* This macro collects the data in the
initial state channel into an array. */
POP_SENSORS;

/* Command instruction */
xmit!X_RPCMCommonClearCmdType;

/* Verify instruction: */
if
:: localSensors[RPC_POWER_ON_RESET]

== ON -> skip
:: else ->

goto exitFailure
fi;

/* Verify instruction: */
if
:: localSensors[RPCM_ORU_HEALTH_STATUS]

== OKAY -> skip
:: else ->

goto exitFailure
fi;

goto exitSuccess;

exitFailure:
xmit!Failure;
goto finish;

exitSuccess:
xmit!Success;
goto finish;

finish:
/* This macro puts the sensor data back
into the initial channel to be examined. */
PUSH_SENSORS;
}

Figure 8: The structure of PRL lends itself well to represen-
tation in Promela.

#define ENSURE_HEALTH_RULE\
if \
:: localSensors[RPCM_ORU_HEALTH_STATUS]\

!= OKAY ->\
goto returnFalse;\

:: else -> skip\
fi

#define CHECK_RULES ENSURE_HEALTH_RULE

proctype issueCommand(mtype command;
chan xmit, ret)

{
xmit!command;
ret!true

}
proctype verifyEquality(mtype propertyValue,

desiredValue; chan xmit, ret)
{
if
:: propertyValue == desiredValue ->

ret!true
:: else ->

ret!false
fi

}
proctype sclModel(chan xmit, initial)
{
chan retChan = [1] of { bool }
bool returnVal;

POP_SENSORS; /* Gather initial state */

CHECK_RULES;
/* Issue Common Clear command. */
run issueCommand(X_RPCMCommonClearCmdType,

xmit, retChan);
retChan?returnVal;
CHECK_RULES;
/* Verify Power On Reset status */
run verifyEquality
(localSensors[RPC_POWER_ON_RESET_STATUS],
ON, xmit, retChan);

retChan?returnVal;
if
:: returnVal == false ->

goto returnFalse;
:: else -> skip

fi;
CHECK_RULES;
goto returnTrue;

returnFalse:
xmit!Failure;
goto finish;

returnTrue:
xmit!Success;
goto finish;

finish:
PUSH_SENSORS;

}

Figure 9: Emulating SCL in Promela is harder.

chan init1 = [I] of {short,short};
chan init2 = [I] of {short,short};
chan xmit1 = [M] of {short};
chan xmit2 = [M] of {short};

/* Repeat I times, one initial state
sent for each input. */

if
:: init1!0,0; init2!0,0
:: init1!0,1; init2,0,1

/* ... */
:: init1!0,D-1; init2,0,D-1
fi;
/* ... more inits */

if
:: init1!I-1,0; init2!I-1,0
:: init1!I-1,1; init2,I-1,1

/* ... */
:: init1!I-1,D-1; init2,I-1,D-1
fi;

/* Both models take in these input values,
then send M messages containing a random
input back to the xmit channels */
run Model1(init1, xmit1);
run Model2(init2, xmit2);

/* Iterate through each message from the
models */
do
:: nempty(xmit1) && nempty(xmit2) ->

/* get front value of each channel */
:: empty(xmit1) || empty(xmit2) ->

break;
od;

Figure 10: The abstract model is designed to mirror the
equivalence model discussed previously, while allowing for
simple quantitative scaling.

could be used to send multiple values. Through the use of
the ENSURE HEALTH RULE macro, the verification of the
health of the craft that was explicit in the PRL translation
is now, to an extent, implicit. If need be, many more rules
could be added to the system and added to the list of rules
enforced by the CHECK RULES macro.

For the sake of clarity in the demonstration, the SCL
scheduler mechanism is not present in this example; how-
ever, the basis of its implementation should be clear and only
a few modifications would be necessary to incorporate it.

Evaluation
Naturally, a scheme using exhaustive verification must be
concerned with scalability, as larger and more complex pro-
cedures cause exponentially more possible states to be cre-
ated. To evaluate the scalability of our general approach to
procedure encoding and comparison, we created a scalable
abstract Promela model that follows similar patterns. Fig-
ure 10 shows the structure of the abstract model and its sim-
ilarities to the model used for actual comparison of proce-

Figure 11: For smaller problems, bitstate hashing’s over-
head and potential loss of accuracy makes it undesirable.

Figure 12: Even when states are highly compressed, small
increases in the number of state variables can cost enormous
amounts of memory during exhaustive verification.

dures. We generated a spectrum of test samples by vary-
ing three dimensions: number of inputs (I), domain size
for inputs (D), and message volume of each submodel (M).
The abstract model creates I initial state variables, and each
one is nondeterministically assigned an integer in the range
[0, D − 1]. Two sub-models abstractly represent the proce-
dure encodings; each is passed an input channel just large
enough to hold the I inputs, as well as a second “trace”
channel with a size of M short integers. Through this chan-
nel, the sub-models send M messages. The content of the
messages sent is randomly selected from the inputs. This
was done to avoid sending the same value repeatedly, which
SPIN might somehow optimize. Once both models have ex-
ecuted, the messages are drawn out of their channels one
by one into local variables. No comparison is done, how-
ever, since the abstract procedure models do not have real
semantics but choose their outputs randomly. We expect that
omitting the comparison operators will have little effect on
performance relative to other factors, since in the real pro-
cedure comparison process the outcome of these operators
depends on the initial state, and does not cause nondeter-
ministic branching in the state space.

Our evaluation results indicate that the primary concerns
are the number and range of inputs, which cause an explo-
sion in the size of the state space. We expect that the factor
of state space increase should be ∈ O(DI).

We ran numerous tests on this abstract model, and present

results for tests having from two to twenty-two inputs, each
with D = 2 and M = 100. Two SPIN modes were tested:
one used -DHC0, which uses “hash table compaction” with
the highest compression. This method is lossless and will
always search exhaustively. The other SPIN mode used
“bitstate hashing” (compile time flag -DBITSTATE), which
does not guarantee completeness but, with well-chosen pa-
rameters, can explore the vast majority of the state space us-
ing a fixed amount of memory. For bitstate hashing, the de-
fault 3 bits per state were used, and the hashtable was allot-
ted 235 entries. Both modes were limited to 5000 megabytes
of memory.

Figure 11 shows the relationship between the number of
state variables used when modeling and the time taken to ex-
plore the model. The time expressed in the figure is the sum
of the time taken to generate the C code, compile it using
gcc, and run it. Clearly, hash compaction is more time ef-
ficient for tractable problems. However, these two methods
operate very differently: hash compaction is complete and
faster, but the memory it consumes increases directly with
the size of the state space (and by extension, exponentially
in the number of state variables). Figure 12 demonstrates
this fact. The bitstate hashing method is not shown in this
graph because it consumes a constant amount of memory.
As state space increases, it can be seen that the hash com-
paction method will no longer be available when the size
of the problem exceeds that of today’s machines. Bitstate
hashing is still possible on these problems because it keeps
a hash table whose size is independent of the problem. The
cost that bitstate hashing pays is instead in computation time
and coverage. Although it can be used on problems of any
size, if the task is large enough then the lack of coverage will
reduce confidence in the result (Holzmann 1995), even with
multiple verifications. It should be noted, however, that for
the models verified in the figures, bitstate hashing found as
many unique states as the hash compaction method – that is,
all of them. Further investigation is needed to find at what
point the accuracy of bitstate hashing drops below the point
of being trustworthy.

Based on the results as visualized in the graph and in the
fundamental mathematics, it seems crucial to avoid an in-
crease in the number of inputs and the size of the input do-
mains. Of the two, an increase in domain size seems most
easily controlled, by intelligently deciding which initial val-
ues may be redundant. For example, if a value must be at
least 50 to pass a check then the values 1 through 49 will act
identically, so only one of these values need be tested; this
would avert a large increase in state space. The details of
implementing such a scheme are so far undetermined.

Related Work

This work is related to a wide variety of prior and ongoing
research in verification of high-reliability systems including
work on performed for NASA’s ongoing Automation for Op-
erations (A4O) project (Frank 2008).

NASA Procedure Verification
Previous work on verification of procedures for NASA mis-
sions has largely focused on verifying the internal consis-
tency, safety, and semantics of individual procedures and
scripts, rather than comparison between two implementa-
tions of a procedure. For example, recent NASA research
on verification of procedures written in PRL has addressed
static verification to ensure well-formed Program Universal
Identifier references, as well as dynamic verification of as-
sertions such as “after the state ‘abort plan’ is set to true, no
node in the plan repeats (loops)” (Brat et al. 2008). Sim-
ilarly, verification methods have been used to ensure static
and limited dynamic properties of executable scripts coded
in PLEXIL by translating the PLEXIL into Java and using
the Java Pathfinder model checking tool.

Formal Verification Methods: Program
Equivalence
The program equivalence problem for general programming
languages attracts much good research from the larger ver-
ification research community. Program equivalence is for-
malized as several forms of bisimulation. In general, bisim-
ulation refers to the idea that two programs have the same
state transition structure. CADP (Construction and Analy-
sis of Distributed Processes, http://www.inrialpes.
fr/vasy/cadp/) is a popular suite of tools that can an-
alyze abstract programs (formulated as Labelled Transition
Systems (LTSs)) and provide numerous analyses including
checking for common faults (e.g., deadlock) as well as ver-
ifying more complex properties expressed in specifications
such as temporal logic or mu-calculus. Given two programs
formulated as LTSs (in our case, two procedures from differ-
ent sources), the CADP bisimulation tool can check to see if
the procedures are equivalent, modulo one of several equiv-
alence relations. These relations, including strong equiv-
alence, observational equivalence, and safety equivalence,
provide different levels of guarantees about how the proce-
dures correspond. We are interested in the application of
CADP to the procedure comparison problem, but its high
licensing fees prevented us from using it.

Verification of Procedures
The verification of procedures has been explored in other
contexts, such as nuclear power plant operation. For exam-
ple, Zhang (1999) has used SPIN model-checking to verify
properties of operator procedures (e.g., liveness), and devel-
oped an incremental approach for the construction of system
models with increasing complexity in order to reduce the
cost of finding mistakes. These techniques may be useful
for spacecraft procedures when spacecraft models become
more available, depending upon the complexity of the mod-
els and procedures and the performance of the verification
tools.

Verification of Rule-Based Systems
Verifying the use of SCL rules is a specific case of the more
general problem of verifying rule-based systems. Previous

work in this area is largely focused on improving the soft-
ware development process, not on verifying the correctness
of the outputs (Preece 2001). There is also interest in ver-
ifying the consistency and completeness of rule sets used
for applications such as the semantic web (Paschke 2006).
These techniques may be useful for testing properties of
SCL rule bases.

Conclusion and Future Directions
We have shown how operational procedures captured in two
different languages, SCL and PRL, can be translated into
Promela and thence shown to be observationally equivalent.
Our preliminary evaluations of scalability indicate that the
approach is viable for reasonably compact procedures of the
sort we expect to occur in practice.

However, we have not yet modeled significant aspects of
the SCL and PRL languages, such as the full SCL sched-
uler and PRL’s unordered statement blocks. Once we have
developed a more complete mapping between the languages,
automating the process of mapping the procedural languages
to Promela should be fairly straightforward.

Adding more expressive correctness criteria would also
increase the utility of our approach for procedure verifica-
tion. In some cases, requiring exact execution trace match-
ing is too strict. For example, some commands may be ir-
relevant or order may not matter for some set of commands.
For those groups, it may be possible to accumulate the com-
mands as an aggregate for comparison’s sake. We must also
consider where the meta-information about command order
comes from. In PRL this can be expressed by using an un-
ordered block. In SCL, a source code convention would have
to be established to mark unordered groups of commands.

More importantly, we have not yet experimented with dy-
namic aspects of the spacecraft’s response to commands,
and its environment. Our experiments only tested procedure
equivalence for different static initial conditions, because we
lack a model of the spacecraft’s response to the procedural
commands. A significant advantage of the Promela/SPIN
approach is that we should be able to interface the verifier
to an existing spacecraft simulator, and have the simulator
emulate the expected dynamics. This would allow SPIN to
explore and verify procedure behaviors that rely on teleme-
try values changing in response to procedure commands.
(Dealing with nondeterministic simulators is another inter-
esting research challenge.) There are also finite state ma-
chine models of spacecraft which could be directly encoded
in Promela.

We also hope to explore the use of non-enumerative for-
mal methods such as proof systems to examine the proce-
dure structures directly and prove that they are equivalent.

Acknowledgments
The authors would like to thank Mats Heimdahl for valu-
able conversations that led to our equivalence-checking ap-
proach. In addition, we would like to recognize Guillaume
Brat, Jeremy Frank, and David Kortenkamp, whose feed-
back has helped to shape this project. This work was sup-

ported by NASA’s Automation for Operations program un-
der SBIR Contract NNX09CC43P. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NASA or the U.S. Government.

References
Brat, G.; Gheorghiu, M.; Giannakopoulou, D.; and Pasareanu,
C. 2008. Verification of plans and procedures. In Proc. IEEE
Aerospace Conference.
Buckley, B., and Vangaasbeck, J. 1994. SCL: An off-the-shelf
system for spacecraft control. In Third Int’l Symp. on Space Mis-
sion Operations and Ground Data Systems, 559–568.
Frank, J. 2008. Automation for Operations. In Proceedings of
the AIAA SPACE 2008 Conference.
Heimdahl, M. P. E.; Choi, Y.; and Whalen, M. 2002. Deviation
analysis through model checking. In Proc. IEEE In’tl Automated
Software Engineering Conference, 37–46. IEEE Society Press.
Holzmann, G. J. 1995. An analysis of bitstate hashing. In Formal
Methods in System Design, 301–314.
Holzmann, G. J. 1997. The model checker SPIN. IEEE Transac-
tions on Software Engineering 23(5).
Holzmann, G. J. 2005. Software model checking with SPIN.
Advances in Computers 65:78–109.
Izygon, M.; Kortenkamp, D.; and Molin, A. 2008. A proce-
dure integrated development environment for future spacecraft
and habitats. In Proceedings of the Space Technology and Ap-
plications International Forum (STAIF 2008), available as Amer-
ican Institute of Physics Conference Proceedings Volume 969.
Kortenkamp, D.; Bonasso, R. P.; and Schreckenghost, D. 2007.
Developing and executing goal-based, adjustably autonomous
procedures. In Proceedings AIAA InfoSysAerospace Conference.
Kortenkamp, D.; Bonasso, R. P.; and Schreckenghost, D. 2008. A
procedure representation language for human spaceflight opera-
tions. In Proceedings of the 9th International Symposium on Arti-
ficial Intelligence, Robotics and Automation in Space (i-SAIRAS-
08).
Object Management Group. 2004. XML telemetric & command
exchange (XTCE) – informative specification.
Paschke, A. 2006. Verification, validation and integrity of dis-
tributed and interchanged rule based policies and contracts in
the semantic web. In Second International Semantic Web Policy
Workshop (SWPW’06), 2–16.
Preece, A. 2001. Evaluating verification and validation methods
in knowledge engineering. In Roy, R., ed., Micro-Level Knowl-
edge Management. Morgan-Kaufman. 123–145.
Zhang, W. 1999. Model checking operator procedures. In Proc.
Int’l SPIN Workshop, 200–215. London, UK: Springer-Verlag.

